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Summary

13C NMR spectra have been recorded for trimethylenemethane—Fe(CO); (I)
as well as its acetyl (I1), 1-hydroxyethyl (III), 1-acetoxyethyl (IV) and ethyl (V)
derivatives respectively. Compounds II—IV exhibit 8 distinct *CO resonances at
room temperature. These signals undergo a reversible broadening and merge into
a single sharp signal on warming. QG* for Fe(CO), rotation at the coalescence
points is 17—18 kcal mol™. The rotational barrier is electronic in origin.

Structures of trimethylenemethane—Fe(CO); complexes have been studied by
several techniques [1—5]. Almenningen et al. [2] studied the parent compound
(I) by electron diffraction. Their data suggested that the molecule is “quite
rigid*’ and that a substantial barrier to rotation of the Fe(CQO); group relative to
the trimethylenemethane ligand exists. Although hindered rotation has been
reported for complexes having one or more PF; ligands in place of CO ligands
[6], no conclusive evidence for the high barrier to rotation for the tricarbonyl
complexes has been reported. We have measured the '*C NMR spectra of several
trimethylenemethane—Fe(CO); complexes and have observed three separate
metal carbonyl resonances at room temperature, a clear indication of a relatively

high barrier to rotation. H
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. The spectra of compounds (I—V) were recorded in several solvents Chem1cal
shifts for these compounds are presented in Table 1. Thrée separate metal car-:
bonyl resonances are observed at room temperature for compounds II—V.in' at
least one solvent. In methylene chloride two of the peaks are shifted together
by a solvent effect and can only be resolved for compound III-D. Owingtoa-
very dilute sample of compound V, the carbony! peaks could not be located ac-
curately. '

The chemical shift a551gnments in Table 1 are based in part on the coupled
spectra. Comparison of the spectra of ITI-H and III-D permits the unamblguous
assignment of C-2 and C-3 in these compounds. Except for C-5 and C-6 the re-
maining assignments are clear from the coupled spectra. Of the two unassigned
triplets, the upfield peak is in all cases assigned to C-5, which experiences a large
v effect from C-2 [8]. For compound V the 7y effect is unusually large because
C-5 is constrained to be nearly eclipsed with C-2. The -y effect for C-6 (anti rela-
tionship with C-2) is expected to be smaller and this peak is sthted upfield only
slightly compared with compound I [8].

For alcohols III-H and III-D the upfield peak is again assigned to C-5. The
smaller shift difference is an example of the syn-axial 6 effect reported by Grover
et al. in which a syn-axial hydroxyl group in a § position produces a consider-
able downfield shift of the carbon resonance in question [9]. Owing to their
method of synthesis and their chemical properties, alcohol III and acetate ester

TABLE 1
13¢ CHEMICAL SHIFTS IN TRIMETHYLENEMETHANE—Fe(CO); COMPLEXES ¢

Compound Solvent c1 c-2 ca c-4 c-5 c6 . c=0
I CH,Cl, . 54.9 106.1  54.9 54.9 211.9
] 53.0? "1050 53.0 53.0 211.6
a cClq 29.9 200.2  68.8 106.8  53.3 58.4 208.8
@aesye 157) 162) (162)  209.7
. 209.8
CH,Cl; 30.4 202.5 69.4 107.3  54.3 58.4 209.8
210.3
CgH5CH3 29.9 201.0 69.4 107.1  53.7 58.6  209.
: 210.3
. , . 210.4
Ir-H CH;Cl; 27.5 66.7 85.9 102.6. 51.4 52.9 211.0
@23 @138 (147 a72) @72) 2114
1,4-dioxane  28.0 66.2 87.3 1029  61.2 53.1 211.3
. 212.2
2123
1I1-D CH,Cl, 27.3 85.9 102.8 51.6 53.1 211.2
© 211.5
211.6
wvd ‘CH3Cly 24.5 700 . 79.9 103.6  51.7 e 211.3
. ) . 212.3
CgHsCH;3 24.3 69.4 80.0 - 103.3 5.2 527 213.4 .
: 214.1
' o : .o 2143
) CH,Cl, 17.0 23.4 82.7 ° 103.2 - 39.9 508 . f

@ Chemical sh.lfu (£0.1) in ppm downfield from intemnal TMS. ? £1.0 Hz, data from ref, 5. € lJ(G—H)

(5 Hz) measured from coupled spectra are given i in parentheaea.d Acetate methyl, 56 21.1 ppm (CHZCIZ),

- hidden by solvent peak in CgH5CH3a: acetate carbonyl, § 169.9 (Cﬂzmz). 171.5 ppm (06H50H3) € Peak .
‘hidden by solvent peak. T Carbonyl sigrals too weak to locate accurately
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IV are believed to possess the relative configurations and (approximately) the

" conformations shown. The spectrum of the acetate, IV, follows from that of the

,'alcohol For the ketone, II, a smaller vy effect than for V would be expected, as
is observed.

- Variable temperature spectra were measured for compounds II and ITI-H. For
the alcohol, spectra were run in dioxane at 27°, 47°, 57°, 77°, and again at 27°C,
As the temperature was raised the three carbonyl resonances broadened to give
a'single broad peak at 57°C (AG{ = 17 + 2 keal/mol™*). This peak sharpened
considerably on increasing the temperature to 77°C; upon return to 27°C three
sharp peaks reappeared exactly as before. Spectra of compound II were taken

at approximately five degree intervals from 32° to 88°C with a two degree inter-
val at the first coalescence point. The two downfield metal carbonyl! peaks co-
alesce at 59°C (AG? = 18 + 1 kecal/mol™) and this peak coalesces with the up-
field resonance at 71°C (AG{ = 18 £ 1 kcal/mol™). Cooling to 32°C produced
the original 3-line spectrum.

The origin of rotational barriers in the PF; substituted complexes may arise
from steric or electronic effects [6], but those in the tricarbonyl complexes
II—1IV clearly are electronic barriers. Such a barrier is expected on the basis of
the bonding capabilities of a d® Fe(CO); fragment of C,, symmetry, presented
by Elian and Hoffmann [10]. The e and a, orbitals or optimum energy for bond
formation can be resolved into 3 hybrid orbitals which are directed in space so
that the Fe(CO); fragment possesses pseudooctahedral symmetry. Direction of
these hybrids at the 3 methylene groups of a tetramethylenemethane ligand
gives the staggered geometry (VI) found for all tmnethylenemethane—Fe(CO)3
complexes to date [1—4,11].
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A 60° rotation of the Fe(CO); group reduces overlap between the iron bonding
hybrids and the carbon 2p orbitals at the methylenes (VII). Prof. Roald Hoff-
mann has informed us that a preliminary estimate of the rotational barrier in I
using the extended Hiickel method gave a value of 0.7 ev. We wish to thank
Prof. Hoffmann for communication of this resuit.

Experimental section
Compounds I and II were prepared using modified literature procedures [12].

Compounds ITI-H and III-D were prepared by reduction of II with NaBH, and
NaBD, respectively while IV was produced by acetylation of III using acetic an-
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_hydnde in pyndme. V was prepared by L1A1H4/AICI3 reductlon of II Detalls of
these syntheses ‘will be reported elsewhere.. =~ -7

-13C NMR spectra were measured on a Bruker HX-90 spectrometer at 22 63
MHz with broad-band 'H decouphng and using a short pulse width and a. long
delay time (4—5 sec). The spectra were accumulated and transformed using a
Nicolet Series 1080 computer system. Temperature was regulated by the Bruker

B-ST 100/700 variable temperature unit and was calibrated using a Cu/constan— :
tan thermocouple and potentzometer.
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