Journal of Organometallic Chemistry, 114 (1976) C23—C26
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

DAS VERHALTEN VON MONO- UND DIORGANYLPHOSPHAN-SULFIDEN GEGENÜBER METALLCARBONYLSYSTEMEN

X*. ISOMERISIERUNG VON DIORGANYLPHOSPHANCHALKO-GENIDEN AN METALLCARBONYLSYSTEMEN DER VII. NEBENGRUPPE

E. LINDNER* und B. SCHILLING

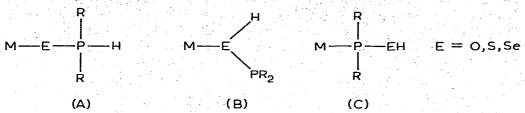
Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle, D 74 Tübingen 1 (B.R.D.)

(Eingegangen den 12. Mai 1976)

Summary

The isomerization of secondary phosphane chalkogenides of the type R_2 HPE (E = O, S, Se; R = CH₃, C₆H₅) on the manganese and rhenium carbonyl complexes XM(CO)₅ (M = Mn, Re; X = Cl, Br, I) was investigated. In the case of E = O and S linkage isomers via oxygen and sulphur are obtained, i.e. via phosphorus bridged complexes; for E = Se the new isomer I is discussed.

$$(OC)_4$$
M—Se


 $P(C_6H_5)_2$

Bei der Einwirkung der sekundären Phosphansulfide R_2 HPS ($R=CH_3$, C_2H_5 , C_6H_5) auf verschiedene Halogencarbonylsysteme der VII. Nebengruppe des Typs XM(CO)₅ (X = Cl, Br, J; M = Mn [2], Re [3]) und die Hexacarbonyle der VI. Nebengruppe [4] erfolgt eine Isomerisierung der Liganden in die entsprechenden thiophosphinigen Säuren. Zunächst wird immer eine Metall—Schwefel-Bindung geknüpft; unter Protonenwanderung erfolgt dann eine Umorientierung des Phosphansulfid-Liganden unter Ausbildung einer Metall—Phosphor-Bindung.

Im Anschluss an diese Untersuchungen lag es nahe, nunmehr auch sekundäre Phosphanoxide und -selenide in ihrem Verhalten gegenüber Metallen

^{*}Für IX. Mitteilung siehe Ref. 1

der VII. Nebengruppe zu prüfen. Bei der Isomerisierung sind grundsätzlich 3 verschiedene Verknüpfungsarten A, B und C in Betracht zu ziehen.

Von besonderem Interesse wäre der Nachweis des Isomeren B mit einer funktionellen E—H-Gruppe. Gleichzeitig hätte man damit einen weiteren Beweis bezüglich des Übergangszustandes im Rahmen des Mechanismus der Isomerisierung [4]. Lässt man die sekundären Phosphanoxide R_2 HPO ($R = CH_3$, C_6H_5) mit $BrM(CO)_5$ in n-Heptan gemäss Gl. 1. (M = Mn; $R = CH_3$, C_6H_5 : 80 bzw. 60°C; M = Re; $R = CH_3$, C_6H_5 : 120 bzw. 85°C) reagieren, so $BrM(CO)_5 + R_2$ HPO \rightarrow (OC)₄ BrMPR₂ OH + CO (1)

erhält man die in guten Ausbeuten anfallenden orangefarbenen bzw. farblosen P-verknüpften Tetracarbonyl(dimethyl- bzw. -diphenylhydroxyphosphan)brom-mangan- bzw. -rhenium-Komplexe vom Typ C. Der Nachweis der O—H-Gruppe erfolgt IR- und NMR-spektroskopisch. Die durch Metallkoordinierung stabilen phosphinigen Säuren sind den bereits bekannten Verbindungen (OC)₅ MoPR₂ OH [5] an die Seite zu stellen.

Verwendet man an Stelle von $BrRe(CO)_5$ das CO-ärmere dimere. [BrRe(CO)₄]₂, so gelingt es für R = C₆H₅ bei 20°C in THF sogar das O-Isomere (Typ A) zu isolieren (Gl. 2). Die Re—O-Verknüpfung wurde eindeutig

$$[BrRe(CO)_4]_2 + 2(C_6H_5)_2HPO \rightarrow 2(OC)_4BrReOPH(C_6H_5)_2$$
 (2)

IR-spektroskopisch nachgewiesen. Die Verbindung zersetzt sich jedoch leicht und kann nicht analysenrein erhalten werden.

In gleicher Weise lassen sich mit den Pentacarbonyl(halogen)rhenium-Komplexen $XRe(CO)_5$ X = Cl, Br, J auch die sekundären Phosphansulfide R_2 HPS ($R = CH_3$, C_2H_5 , C_6H_5) isomerisieren [5]. In allen Fällen bilden sich hierbei zunächst die S-Isomeren (OC)₄ $XReSPHR_2$, welche sich thermisch in die stabileren P-verknüpften Komplexe (OC)₄ $XReSPHR_2$ SH überführen lassen. Für die Umwandlung von (OC)₄ $JReSPH(C_2H_5)_2$ in (OC)₄ $JReP-(C_2H_5)_2$ SH beträgt ΔH aufgrund von differentialthermoanalytischen Messungen 5 kcal/Mol.

Bei der Einwirkung von $(C_6 H_5)_2$ HPSe auf BrM(CO)₅ (M = Mn, Re) stellt man bemerkenswerterweise fest, dass hier als einzige isolierbare Verbindung vermutlich das gesuchte Isomere (B) entsteht.

TABELLE 1 v(C-O)- UND v(O-H)-VALENZSCHWINGUNGEN (IN cm⁻¹) DER VERBINDUNGEN (OC)₄ BrReOPH(C₆ H₅)₂ UND (OC)₄ BrMPR₂ OH (M = Mn, Re; R = CH₃, C₆ H₅)

Verbindung	ν(C—O)		ν(O—H)	
(OC) ₄ BrReOPH(C ₆ H ₅) ₂ a	2110 s-m	(A')		· ·
	2010 sst	(A")		
	1988 m-st	(A')		
	1940 st	(A')		
(OC) ₄ BrMnP(C ₅ H ₅) ₂ OH ^b	2098 m	(A')	3170 s-m	
	2036 st	(A')		
	2026 st-sst	(A")		
	1960 st	(A')		
$(OC)_4$ BrReP $(C_6H_5)_2$ OH b	2114 m	(A')	3190 s-m	
	2024 st	(A')		
	2020 st-sst	(A")		
	1953 st	(A')		
(OC) ₄ BrMnP(CH ₃) ₂ OH ^b	2095 m-st	(A')	3250 s-m	
	2032 st-sst	(A')		
	2015 sst	(A")		
	1962 st-sst	(A')		
(OC) ₄ BrReP(CH ₃) ₂ OH ^b	2104 s-m	(A')	3250 s-m	
	2023 m-st	(A')		
	2007 st-sst	(A")		
	1948 st	(A')		

a Phase: CCl. b Phase: n-Hexan.

In beiden Verbindungen liegt ein miteinander koppelndes Drei-Spin-System vor (77 Se $^{-1}$ H $^{-31}$ P). Die genaue Lage des Protons konnte indessen weder durch 77 Se $^{-1}$ H $^{-1}$ noch durch 31 P $^{-1}$ H $^{-1}$ gekoppelte NMR-Messungen lokalisiert werden. Tieftemperatur-NMR-Messungen, welche Aufschluss über die Lage des Protons bringen sollen, sind im Gange. Die chemischen Eigenschaften der Isomeren B unterscheiden sich wesentlich von denjenigen der bisherigen Komplexe vom Typ (A) und (C). Lässt man beispielsweise auf die Verbindungen (OC)₄ BrMSe(H)P(C₆ H₅)₂ starke Basen einwirken, so beobachtet man spontane Selenabspaltung. Dieses Verhalten steht im Gegensatz zur HX-Abspaltung bei den O-, S- und P-isomeren Komplexen (OC)₄ XMEPHR₂ und (OC)₄ XMPR₂ EH (X = Cl, Br, J; M = Mn, Re; R = CH₃, C₂ H₅, C₆ H₅; E = O,

TABELLE 2 CHEMISCHE VERSCHIEBUNGEN UND KOPPLUNGSKONSTANTEN DER VERBINDUNGEN (OC)₄ BrMSe(H)P(C_6H_5)₂ (M = Mn, Re; Standard: H_3PO_4 bzw. CH_3SeCH_3)

Verbindung	Chemische Verschiebungen a δ (ppm) (1 H-gekoppelt)		Kopplungskonstanten J(Hz)	
	³¹ P	⁷⁷ Se	J(P=Se)	J(P—H)
(C ₆ H ₅) ₂ HPSe [8] ^b	+ 6	—359	764	459
(OC) BrMnSe(H)P(C, H,), C	+38	•	478	
(OC) ₄ BrMnSe(H)P(C ₅ H ₅) ₂ c (OC) ₄ BrReSe(H)P(C ₅ H ₅) ₂ b	+52	-370	457	

a Vorzeichen: + Tieffeldverschiebung; — Hochfeldverschiebung. b Lösungsmittel: C_6 D_6 . c Lösungsmittel: CH_2 CH_2 .

S). Hier entstehen die von uns erstmals dargestellten neuartigen Heterocyclen [(OC)₄ MEPR₂]₂ [6,7] mit vermutlich vertwisteter Cyclohexanstruktur.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, für die finanzielle Unterstützung dieser Untersuchungen.

Literatur

- 1 E. Lindner und W.-P. Meier, Chem. Ber., im Erscheinen.
- 2 E. Lindner und H. Dreher, J. Organometal. Chem., 104 (1976) 331.
- 3 B. Schilling, Diplomarbeit, Universität Tübingen 1974.
- 4 E. Lindner und W.-P. Meier, J. Organometal. Chem., im Erscheinen.
- 5 C.S. Kraihanzel und C.M. Bartish, J. Amer. Chem. Soc., 94 (1972) 3572.
- 6 E. Lindner und H. Dreher, J. Organometal. Chem., 105 (1976) 85.
- 7 E. Lindner, Vortrag 2nd. Europ. Symp. Coordin. Chem., Cambridge, England, 1976.
- 8 W. McFarlane und D.S. Rycroft, J. Chem. Soc. Dalton Trans., (1973) 2162.