Journal of Organometallic Chemistry. 142 (1977) C52-C54
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

## Preliminary communication

# METAL CARBONYL COMPLEXES OF 3,5-DIMETHYLACEHEPTYLENE. SYNTHESIS AND MOLECULAR STRUCTURES OF ( $\left.\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Mn}_{2}(\mathrm{CO})_{6}$ $\mathrm{AND}\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{8}$ 

MELVYN ROWEN CHURCHILL*, STUART A. JULIS,
Department of Chemistry. State University of New York at Buffalo. Buffalo. NY゙14214 (U.S.A.)
R. BRUCE KING and CLAUDE A. HARMON

Department of Chemistry: Universily of Georgia, Alhens, Georgia 30602 (U.S.A.)
(Received September 15 th, 1977)

## Summary

The reactions of the non-alternant polycyclic aromatic hydrocarbon 3,5-dimethylaceheptylene, $\mathrm{C}_{1 i} \mathrm{H}_{8} \mathrm{Me} e_{2}$, with various transition metal carbonyls and the molecular geometry of the compounds $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Mn}_{2}(\mathrm{CO})_{6}$ and $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right)$ $\mathrm{Fe}_{3}(\mathrm{CO})_{3}$ is shown.

The reactions of the tricyclic hydrocarbon I ( 3,5 -dimethylaceheptylene, $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{Me}_{2}$ ) with various transition metal carbonyls have been investigated:

(I)

Reaction of $\mathrm{C}_{14} \mathrm{H}_{\mathbf{5}} \mathrm{Me}_{2}$ with $\mathrm{Mn}_{2}(\mathrm{CO})_{10}-1.0 \mathrm{~g}(4.9 \mathrm{mmol})$ of $\mathrm{C}_{14} \mathrm{H}_{8}-$ $\mathrm{Me}_{2}$ and 8.0 g ( 20.5 mmol ) of $\mathrm{Mn}_{2}(\mathrm{CO})_{10}$ were boiled under reflux in $2,2,5$-trimethylhexane for 16 h . The solvent was removed at $\sim 25^{\circ} \mathrm{C} / 0.1 \mathrm{~mm}$ Hg , and the residue was chromatographed on alumina using pentane. The

[^0]major red band was eluted with pentane. Recrystallization (9/1 heptane/dichloromethane) yielded 0.85 g ( $36 \%$ yield) of dark red crystalline ( $\mathrm{C}_{14^{-}}$ $\mathrm{H}_{8} \mathrm{Me}_{2}$ ) $\mathrm{Mn}_{2}(\mathrm{CO})_{6}$ (m.p. $162-164^{\circ} \mathrm{C} ; \nu(\mathrm{C}-\mathrm{O}) 2070 \mathrm{~s}, 1970 \mathrm{vs} \mathrm{cm}^{-1}$ ).

Reaction of $\mathrm{C}_{14} \mathrm{H}_{5} \mathrm{Me}_{2}$ with $\mathrm{Fe}_{3}(\mathrm{CO})_{12}-1.0 \mathrm{~g}(4.9 \mathrm{mmol})$ of $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}$ and $8.0 \mathrm{~g}(16 \mathrm{mmol})$ of $\mathrm{Fe}_{3}(\mathrm{CO})_{12}$ in hexane $(100 \mathrm{ml})$ were heated under reflux for 44 h . Chromatography of the mixture on alumina with hexane and recrystallization from hexane/dichloromethane yielded 2.2 g of red-browa $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{5}$ ( $2(\mathrm{C}-\mathrm{O}) 2060 \mathrm{~s}, 1990 \mathrm{~s}, 1972 \mathrm{~s} \mathrm{~cm}^{-1}$ ).

The molecular structures of $\left(\mathrm{C}_{14} \mathrm{H}_{4} \mathrm{Me}_{2}\right) \mathrm{Mn}_{2}(\mathrm{CO})_{6}$ and $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{5}$ have each been determined unambiguously via single-crystal X-ray diffraction studies. Diffraction data were, in each case, collected with a Syntex P2 diffractometer and the structures were solved using a locally-modified version of the Syntex XTL system. The experimental method has been described previously [2]. Pertinent data are as follows: $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Mn}_{2}(\mathrm{CO})_{6}$ : orthorhombic, space group $P 22_{1} 2_{1}, a 9.678(1), b 13.100(2), c 15.639(3)$ A; final $R_{F} 6.7 \%$ for 1079 reflections with $5^{\circ}<2 \theta<40^{\circ}$ [ $\left.\mathrm{Mo}-\mathrm{K}_{\alpha}\right] .\left(\mathrm{C}_{:} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{5}$ : monoclinic, space group P2 $2_{1} / \mathrm{c}, a 22.580(4), b 7.299(1), c 14.520(2)$ A,$\beta 104.62(1)^{\circ}$; final $R_{\mathrm{F}} 5.6 \%$ for 1930 reflections in the range $5^{\circ}<2 \theta<40^{\circ}$ [ $\mathrm{Mo}-\mathrm{K}_{\alpha}$ ].

The molecular geometry of these species is illustrated in Fig. 1 and 2.
The ( $\mathrm{C}_{1} ; \mathrm{H}_{3} \mathrm{Me}_{2} \mathrm{MIn}_{2}(\mathrm{CO})_{6}$ molecule contains two $\mathrm{Kin}(\mathrm{CO})_{3}$ groups, on opposite sides of the organic ligand; one $\operatorname{Mn}(\mathrm{CO})_{3}$ group is bound symmetrically to


Fig. 1. Molecular geometry of ( $\mathrm{C}_{44} \mathrm{H}_{8} \mathrm{Me}_{2}$ ) $\mathrm{Mn}_{2}(\mathrm{CO})_{8}$. Metal-to-ligand bond distances (in A ) are as follows: $\operatorname{Mn}(1)-C(1) 2.085(14) . \operatorname{Mn}(1)-C(2) 2.139(15) . \operatorname{Mn}(1)-C(2 a) 2.203(14) . \operatorname{Mn}(1)-C(10 a) 2.194(17)$. $\operatorname{Mn}(1)-C(10 b) 2.177(14): \operatorname{Mn}(2)-C(3) 2.256(15) . \operatorname{Mn}(2)-C(4) 2.119(14) . \operatorname{Mn}(2)-C(5) 2.149(13)$. Mn(2)-C(6) 2.151(13). and Mn(2)-C(6a) 2.404(14).


Fig. 2. solecular Reometry of ( $\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}$ ) $\mathrm{Fe}_{3}(\mathrm{CO})_{\mathrm{g}}$. Metal-to-ligand distances (A) are as follows: $\mathrm{Fe}(1)-\mathrm{C}(1)$ $2.098(8) . F e(1)-C(2) 2.098(8) . F e(1)-C(2 a) 2.120(5) . F e(1)-C(10 a) 2.116(7) . F e(1)-C(10 b) 2.106(7):$ $F e(2) C(3) \geq 188(7)$. Fe(2) C(4) 2.060(9). Fe(2)-C(5) $2.071(8) . F e(2)-C(6) 2.151(8): F e(3)-C(8)$ 2.2.2(9; $F e(3)-C(9) 2.050(9)$, and $F e(3)-C(10) 2.140(8)$.
the five-membered ring, while the other $\mathrm{Mn}(\mathrm{CO})_{3}$ group is linked somewhat asymmetrically to five carbon atoms of a seven-membered ring (i.e., $C(3)-C(4)-C(5)-$ $\mathrm{C}(6)-\mathrm{C}(6 \mathrm{a})$ ). The metal-to-ligand bonding is similar to that in (azulene) $\mathrm{Mn}_{2}(\mathrm{CO})_{6}$ [3]. The system $C(7)-C(8)-C(9)-C(10)$, in which $C(7)-C(8) 1.294(21)$, $C(S)-C(9) 1.488(23)$, and $C(9)-C(10) 1.270(24) \hat{\lambda}$, remains a conjugated noncoordinated cis-diene system.

In the $\left(\mathrm{C}_{14} \mathrm{H}_{8} \mathrm{Me}_{2}\right) \mathrm{Fe}_{3}(\mathrm{CO})_{5}$ molecule, an $\mathrm{Fe}(\mathrm{CO})_{2}$ group is inked symmetrically to the five-membered ring, and an $\mathrm{Fe}(\mathrm{CO})_{3}$ group is bound via a $\pi$-allylic linkage to the $C(8)-C(9)-C(10)$ system; the associated iron-iron bond length is $2.793(2)$ i. This overall portion of the molecule resembles (azulene) $\mathrm{Fe}_{2}(\mathrm{CO})_{5}$ [4]. However, there is an additional $\mathrm{Fe}(\mathrm{CO})_{3}$ group linked via an $\eta^{4}$-cis-diene $\rightarrow$ metal linkage to the atoms $C(3)-C(4)-C(5)-C(6)$.

It appears therefore that, as in azulene [5] and acenaphthylene [6] chemistry, the dominant feature in the reaction of aceheptylene with metal carbonyls is the utilization of its five-membered ring in an $\eta^{5}$-cyclopentadienyl $\rightarrow$ metal linkage.

## Acknowledgement

This work was supported by the National Science Foundation (Grant CHE77-04981, to M.R.C.).

## References

[^1]
[^0]:    Address correspondence to this author.

[^1]:    1 K. Hatner and J. Schneider. Liebigs Ann. Chem., 624 (1959) 37.
    2 M.R. Churchill. R.A. Lashewycz and F.J. Rotella. Inorg. Chern. 16 (1977) 265.
    3 M.R. Churehill and P.H. Bird. Inorg- Chem. 7 (1968) 1793.
    4 M.R. Churchill, Inorg. Chem.. 6 (1967) 190.
    5 M.R. Churchill, Prog. inorg. Chem., 11 (1970) 53.
    6 M.R. Churchill and J. Woruald. Inorg. Chem.. 9 (1970) 2239.

