Journal of Organometallic Chemistry, 142 (1977) C52–C54 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

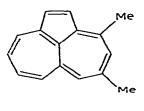
Preliminary communication

METAL CARBONYL COMPLEXES OF 3,5-DIMETHYLACEHEPTYLENE. SYNTHESIS AND MOLECULAR STRUCTURES OF $(C_{14}H_8Me_2)Mn_2(CO)_6$ AND $(C_{14}H_8Me_2)Fe_3(CO)_8$

MELVYN ROWEN CHURCHILL*, STUART A. JULIS,

Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14214 (U.S.A.)

R. BRUCE KING and CLAUDE A. HARMON


Department of Chemistry, University of Georgia, Athens, Georgia 30602 (U.S.A.) (Received September 15th, 1977)

Summary

The reactions of the non-alternant polycyclic aromatic hydrocarbon 3,5-dimethylaceheptylene, $C_{14}H_8Me_2$, with various transition metal carbonyls and the molecular geometry of the compounds $(C_{14}H_8Me_2)Mn_2(CO)_6$ and $(C_{14}H_8Me_2)$ -Fe₃(CO)₈ is shown.

The reactions of the tricyclic hydrocarbon I (3,5-dimethylaceheptylene,

 $C_{14}H_{\delta}Me_2$) with various transition metal carbonyls have been investigated:

(I)

Reaction of $C_{14}H_8Me_2$ with $Mn_2(CO)_{10}$. 1.0 g (4.9 mmol) of $C_{14}H_8^-$ Me₂ and 8.0 g (20.5 mmol) of $Mn_2(CO)_{10}$ were boiled under reflux in 2,2,5-trimethylhexane for 16 h. The solvent was removed at ~25°C/0.1 mm Hg, and the residue was chromatographed on alumina using pentane. The

^{*}Address correspondence to this author.

major red band was eluted with pentane. Recrystallization (9/1 heptane/dichloromethane) yielded 0.85 g (36% yield) of dark red crystalline (C_{14} -H₈Me₂)Mn₂ (CO)₆ (m.p. 162–164°C; ν (C–O) 2070s, 1970vs cm⁻¹).

Reaction of $C_{14}H_8Me_2$ with $Fe_3(CO)_{12}$. 1.0 g (4.9 mmol) of $C_{14}H_8Me_2$ and 8.0 g (16 mmol) of $Fe_3(CO)_{12}$ in hexane (100 ml) were heated under reflux for 44 h. Chromatography of the mixture on alumina with hexane and recrystallization from hexane/dichloromethane yielded 2.2 g of red-brown $(C_{14}H_8Me_2)Fe_3(CO)_8$ $(\nu(C-O) 2060s, 1990s, 1972s \text{ cm}^{-1}).$

The molecular structures of $(C_{14}H_8Me_2)Mn_2(CO)_6$ and $(C_{14}H_8Me_2)Fe_3(CO)_8$ have each been determined unambiguously via single-crystal X-ray diffraction studies. Diffraction data were, in each case, collected with a Syntex P2₁ diffractometer and the structures were solved using a locally-modified version of the Syntex XTL system. The experimental method has been described previously [2]. Pertinent data are as follows: $(C_{14}H_8Me_2)Mn_2(CO)_6$: orthorhombic, space group $P2_12_12_1$, a 9.678(1), b 13.100(2), c 15.639(3) A; final R_F 6.7% for 1079 reflections with $5^\circ < 2\theta < 40^\circ$ [Mo-K_a]. $(C_{14}H_8Me_2)Fe_3(CO)_8$: monoclinic, space group $P2_1/c$, a 22.580(4), b 7.299(1), c 14.520(2) Å, β 104.62(1)°; final R_F 5.6% for 1930 reflections in the range $5^\circ < 2\theta < 40^\circ$ [Mo-K_a].

The molecular geometry of these species is illustrated in Fig. 1 and 2.

The $(C_{14}H_{5}Me_{2})Mn_{2}(CO)_{6}$ molecule contains two $Mn(CO)_{3}$ groups, on opposite sides of the organic ligand; one $Mn(CO)_{3}$ group is bound symmetrically to

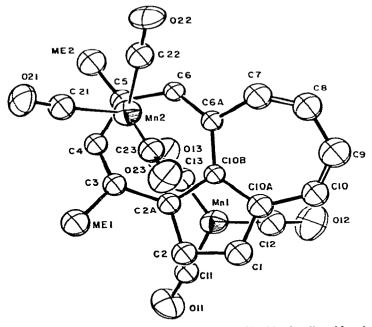


Fig. 1. Molecular geometry of $(C_{14}H_8Me_2)Mn_2(CO)_6$. Metal-to-ligand bond distances (in Å) are as follows: Mn(1)—C(1) 2.085(14), Mn(1)—C(2) 2.139(15), Mn(1)—C(2a) 2.203(14), Mn(1)—C(10a) 2.194(17), Mn(1)—C(10b) 2.177(14); Mn(2)—C(3) 2.256(15), Mn(2)—C(4) 2.119(14), Mn(2)—C(5) 2.149(13), Mn(2)—C(6) 2.151(13), and Mn(2)—C(6a) 2.404(14).

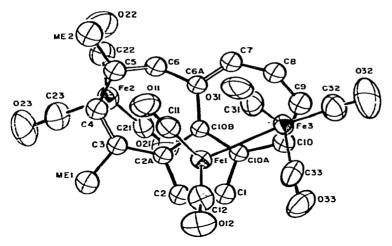


Fig. 2. Molecular geometry of $(C_{14}H_8Me_2)Fe_3(CO)_8$. Metal-to-ligand distances (Å) are as follows: $Fe(1) \rightarrow C(1)$ 2.098(8), Fe(1)-C(2) 2.098(8), Fe(1)-C(2a) 2.120(7), Fe(1)-C(10a) 2.116(7), Fe(1)-C(10b) 2.106(7); Fe(2) C(3) 2.188(7), Fe(2) C(4) 2.060(9), Fe(2)-C(5) 2.071(8), Fe(2)-C(6) 2.151(8); Fe(3)-C(8) 2.222(9), Fe(3)-C(9) 2.050(9), and Fe(3)-C(10) 2.140(8).

the five-membered ring, while the other Mn(CO)₃ group is linked somewhat asymmetrically to five carbon atoms of a seven-membered ring (i.e., C(3)-C(4)-C(5)-C(6)-C(6a). The metal-to-ligand bonding is similar to that in (azulene) Mn₂(CO)₆ [3]. The system C(7) - C(8) - C(9) - C(10), in which C(7) - C(8) 1.294(21), C(S)-C(9) 1.488(23), and C(9)-C(10) 1.270(24) Å, remains a conjugated noncoordinated cis-diene system.

In the $(C_{14}H_8Me_2)Fe_3(CO)_8$ molecule, an Fe(CO)₂ group is linked symmetrically to the five-membered ring, and an Fe(CO)₃ group is bound via a π -allylic linkage to the C(8)-C(9)-C(10) system; the associated iron-iron bond length is 2.793(2) Å. This overall portion of the molecule resembles (azulene)Fe₂(CO)₅ [4]. However, there is an additional Fe(CO), group linked via an η^4 -cis-diene-metal linkage to the atoms C(3)-C(4)-C(5)-C(6).

It appears therefore that, as in azulene [5] and acenaphthylene [6] chemistry, the dominant feature in the reaction of aceheptylene with metal carbonyls is the utilization of its five-membered ring in an η^{5} -cyclopentadienyl \rightarrow metal linkage.

Acknowledgement

This work was supported by the National Science Foundation (Grant CHE77-04981, to M.R.C.).

References

- 1 K. Hafner and J. Schneider, Liebigs Ann. Chem., 624 (1959) 37.
- 2 M.R. Churchill, R.A. Lashewycz and F.J. Rotella, Inorg. Chem., 16 (1977) 265.
- 3 M.R. Churchill and P.H. Bird, Inorg. Chem., 7 (1968) 1793.
- 4 M.R. Churchill, Inorg. Chem., 6 (1967) 190. 5 M.R. Churchill, Prog. Inorg. Chem., 11 (1970) 53.
- 6 M.R. Churchill and J. Worwald, Inorg. Chem., 9 (1970) 2239.