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Summary

The ESR spectrum obtained during the photolysis of Mn, (CO),, in
tetrahydrofuran is assigned to a quartet state consistent with manganese(0),

not manganese(1l) species; the conclusion is supported by chemical studies.

Photochemical rupture of metal—metal bonded systems represents a
potentially valuable method for the generation of transient paramagnetic
species. Indeed, there is chemical and physical evidence for the formation of
carbonylmanganese(0) during photolysis of decacarbonyldimanganese in
solution [1-5]. However, the assignment of the ESR spectrum in Fig. 1 ob-
tained during photolysis of Mn, (CO),, in tetrahydrofuran (THF) is contro-
versial. The 6-line spectrum showing unusual linewidth effects due to hyper-
fine splitting by Mn was originally observed by Hallock and Wojcicki*.
Recently, Hudson, Lappert and Nicholson [5] contended that the spectrum
is not due to manganese(0) but to a manganese(II) species formed by dis-
proportionation of Mn, (CO),q. Their argument was based primarily on the
stability of the spectrum over a long period (unexpected for a mononuclear
manganese(0) species)**, and the spectrum of a frozen solution similar to
that of manganese(II) in a high spin d® configuration. We wish to present
spectral and chemical evidence which does not support the manganese(II)
assignment but favors a manganese(0) species.

A 10™2 M solution of freshly sublimed Mn, (CO),, in very dry THE***
afforded the ESR spectrum in Fig. 1 immediately upon irradiation with -
ultraviolet light through a pyrex filter at room temperature. The intensity of

*These authors-alluded to Mn(CO); as being responsible for the spectrum but did not make the
assignment explicitly.
** A stable paramagnetic di-1,3-butadienecarbonylmanganese has recently been isolated and its
crystal structure determined [6].
THF was refluxed over sodium hydride and stored over Na/K alloy before distilling directly into
the ESR tube in vacuo.
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Fig.1. ESR spectrum obtained from a photolyzed solution of Mn, (CO),, in tetrahydrofuran at room
temperature.

the signal increased rapidly at first, but it reached a plateau after 30 min
irradiation™. The light orange solution became wine-red after photolysis

at —70°C; and it gradually turned orange then yellow on sitting in the dark

at room temperature for a day. The amplitude of the ESR spectrum did not
change materially during this period and is, thus, largely independent of these
color changes™*.

The paramagnetic species responsible for the spectrum is rather stable
and a properly sealed solution showed an undiminished signal over a period
of a month or more. However, upon introduction of oxygen the spectrum
disappeared entirely and the yellow solution turned brown [7]. Removal
of oxygen by a thorough degas in vacuo did not restore either the signal or
the color. The addition of iodine (via a breakseal) into the photolyzed solution
of Mn, (CO),;, in THF caused a marked decrease in the ESR signal. None of
these chemical changes could be induced in a THF solution of anhydrous
manganese(Il) perchlorate [8].

The spin state of the paramagnetic manganese species can be obtained
from the observation in Fig. 1 of the broad outer lines with fine structure, in
contrast to the narrower central lines showing no further splitting. Using
isotropic g and A tensors for the Hamiltonian of the system™* ¥, the energy
can be calculated to second order by the perturbation method. We find the
frequency for the traunsition between |Mg, m; > and |Mg,1, m; > to be given

Thxs observation differs from that of Hudson et al. who reported a 2 h induction period.

**The gradual fading of the color which propagated from the surface to the bottom of the solution
suggests that it is associated with a diamagnetic species formed by loss of CO (compare ref. 1).
*Zero-field splitting, being a traceless tensor, is expected to give no contribution to the Hamiltonian
when the paramagnetic species is tumbling fast in solution (see ref. 12).
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Fig.2. Resolved outer line corresponding to my = 5/2 of Fig.1. Upper: Experimental spectrum; middle:
Computer simulation for S = 3/2 using lines with intensity ratios 3:4:3; lower: Computer simulation
for S = 5/2 using lines with intensity ratios of 5:8:9:8:5.
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Fig. 3. Partially resolved line corresponding to my = 3/2 of Fig.1. Upper: Experimental spectrum; lower:
Computer simulation for S = 3/2.
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numbers, respéctively. The last term is responsible for the fine structure in the

spectra. Using A = 93 G and H = 3000 G, we estimate the splitting between
neighboring fine structures to be 7.21, 4.32 and 1.44 for my = +5/2, +3/2 and
+1/2, respectively. Close examination of the outermost lines (m; = £5/2)
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shows the presence of three lines separated by approximately 7 G [Fig. 2a]
which strongly suggests a quartet state. Computer simulation [Fig. 2b] using
Lorentzian lines with a half-width of 8.5 G, separation of 7.3 G and intensity
ratio 3:4:3 confirms our suspicions that S = 3/2, and not 5/2 as shown in
Fig. 2c. Computer simulation of the second line of the spectrum in Fig. 3b
using a theoretically predicted value for the separation (4.3 G) and a pertinent
half-width (8.5 G), also shows that fine structures in the central lines would
not be resolved due to their separations being smaller than the linewidths.

- We have confirmed [5] the ESR spectrum of a frozen THF solution of
prhotolyzed Mn, (CO);, showing well-resolved hyperfine splittings in addition
"to lines due to the so-called forbidden transitions (i.e., Amy = +1). However,
the latter are not an exclusive property of sextet states [present, e.g., in high
spin manganese(II)]. According to Bleaney and Rubins [9], the forbidden
transitions arise from second order effects due to the cross terms in the spin
Hamiltonian between the zero field splitting D and the hyperfine splitting A;
it is only necessary that S>1.A quartet state for a carbonylmanganese(O)
species could certainly account for the frozen spectrum™. On the other

hand, a manganese(II) species consisting of a d5 system in an octahedral or
tetrahedral field would produce either a sextet or a doublet state. A quartet
state is possible for manganese(II) in a square planar environment, but in
searching the literature we could find only two such examples, manganese(II)
phthalocyanine and dithiocarbamate [11]. However, in neither case is an
ESR spectrum observed in solution due to the highly anisotropic g and A
tensors expected for such configurations.

Finally, we have examined directly the ESR spectrum of managense(II)
in THF solutions in the presence of the poorly coordinating perchlorate
counterion [8]. The spectrum due to Mn(THF ), ** consists of 6 broader
lines of almost equal Intensity. It is obviously different from that in Fig, 1
but closely resembles the spectrum of Mn(NCCH; )6 2* [12]. The spectrum is
unaffected by iodine or by the presence of an oxygen or a carbon monoxide
atmosphere.

We conclude that manganese(II) species cannot be responsible for the
ESR spectrum of photolyzed Mn, (CO),,. A manganese(0) species as originally
proposed [1] is consistent with our results. Unfortunately, more structural
information on the manganese(0) species from the hyperfine splittings was
not possible due to our inability to observe *3C or 3'P (from Mn, (CO)s (PPh;),)
splittings. Studies of the temperature dependence of the line broadening and
solvent variation indicate a solvated species™™

Acknowledgement

We wish to thank the National Science Foundation for financial support
and Dr. Richard Budnik for his help.

*ad? system in a tetrahedral field could be in a quartet state and have isotropic gand A tensors,
an ohbvious candidate being Mn(CO),. Depending on the magnitude of the pairing energy,
S-coordinate manganese(0) species in different configurations can also have quartet ground states.
For theoreticai calculations of various metal carbonyl fragments see ref. 11.

- **Details of the interesting line broadening and the frozen spectrum will be published separately.
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