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Summary

The title campound is isolated from reaction of hexafluorobut-2-yne
vith p-p'-Dichlorobis(cycloocta-1,5-ciene)diiridium(I) at 90°C. Crystals
of the complex, solvated with deuterobenzene, are monoclinic, space group
P2 /p with 8 = 10.97 # 0.02, b = 17.96 + 0.03, ¢ = 11.63 + 0.02 &, 8 =
127.h + 0.60. The acetylene has abstracted a hydrogen atom forming & o-
bonded cis-vinylic group and the original cyclooctadiene, having lost a
proten, is coordinated as the cycloocta-l,5-dienyl ligand. Mean bond
lengths are Ir-Cl 2.467, Ir-C {allylic) 2.17, I-C (olefinic) 2.36 and

Ir-C (vinylic) 2.09 £.

Introduction

"WE recently reported [1] the isolation of camplexes I and II from
-reaction of hexaflucrobut-2-yne (C,Fc) with p-p'-Dichlorobis(cycleocta-1,5-
aiene)diiriaium(I) at 90° and 20° respectively. In this paper we report in
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The reactions of C!‘F6 vith p-p'-Dichlorobis(cycloocta-1,5-diene)
dirhodium(I) and (cycloocta-1,5-dienelacetylacetonatoiridium(I) produce
camplexes in which the acetylenme has, respectively, added 1,4 to the
cyclooctadiene ligand, and, formed an iridiacyclopentene ring[2]. Complexes
similar to II are almost certainly intermediates in the formation of these
eddition products and it is probeble that complexes similar to I are also
intermediates. However, because of the higher temperature required to
form I, it is likely to be further along sny postulated reaction sequence.
The formation of I from II would be an important step in such & sequence
since the change is from formally five coordinate IrI to formelly six

III

coordinate Ir and involves no more than & net proton transfer.
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Experimental

A few clear pale yellov crystals wvere isolated from the soluticm in
bexadeuterocbenzene used to record the 'H n.m.r. spectrum. They wvere
parallelipipeds with the forms {100}, (011} and {011} developed. The
crystals slovly become opaque on standing in air and wvere therefore sealed
in thin-walled glass capillaries. Unit cell dimensions are from oscillation
photographs recorded with Cuk radiation and from 28 values [Hn! ruunian]
optimised on a Heissenberg ditrr.etaleter T .
Crystal Da.ta - °zk“zk°12’12 2'2°6D6 (I). M= n63.8 lr.noclinic with
a = 10.97 ;,Q.oe, _y_,-,,:_rr.%_g_.,o.vos,_ c - 11.63 * o.ozi 8= 121.h * o 6°
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ebsences hO lvhen h+ 1 =2n+land Ok Owhen k = 2n + 1. A (CuK ) =
= = -

1.5419, A (Mo-K)) = 0.7207R. p (MoK) = 79.5 L.

Intensities were measured in ten layers (O k 1 through 9k 1 ) on a
Stoe Weissenberg diffractometer using monochromatic H°E° radiation and a
w-scan technique. The 1755 significant [I > 20(I)] iptensities with 0.1 <
sinB/A < 0.68 -1 measured from a crystal of approximate dimensions 0.032 x
0.014 x 0.0lkcm were corrected for Lorentz polarisation and absorption
effects [3].

Scattering factors were taken from ref. L, corrections for the
anamajous scattering by iridium were fram ref. 5. The structure was
solved by conventional 'heavy atam® methods. The positional and thermal
parazeters of the non-hydrogen atams were refined by a block-diagonal
least-squares procedure each block containing the parameters of one atom.
Anisotropic thermal parameters were refined for Ir, Cl and F atoms.
Bydrogen atoms were not located and not included in the structure factor
calculations. Slight crystal decomposition vas evident and layer scale
factors were refined before anisotropic thermal parameters vere intro-
duced. In the final cycles a wveighting scheme, with _the weight given by
w= (5.53—0.207|§°|+ O.OOBblg°|2)-1, vas introduced in order that _ulAa be
approximately independent of _!‘:‘o « The fipal R vas 0.071 and R® 0.076
(R' = tg(’gol-lgcl)/tglgol) for 1755 reflections. The maximum shift in
the final cycle wvas 0,10 . A final difference Fourier synthesis showed
no maxima or minima with an absolute height > 0.8eR>. The final atomic
coordinates and thermal parameters are listed in Table 1. All anisotropic

therma) paraneters had real principal compoaents.

Discussion -
7'n:e ioleculu' gecnetry and atom numbering of I are shown in Fig. 1.

(continued on p. 308)
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TABLE 2 BOND LENGTHS (R®) AND ANGLES (°) WITH ESTIMATED
STANDARD DEVIATIONS (IN PARENTHESES).

Mean C-C {benzene) and C-F bond lengths are 1.51(9) and 1.26(6) &
respectively. The mean C-C-C (benzene) angle is 120 (10): M{1) is
the midpoint of the C(4)-C(5) bond and M(2) is the centre of gravity
of atams C(1), c(2) ana c(8).

Ir-C1 2.454(6) Ir-Cl-Ir® 101.5(9)
Ir-C1* 2.480(6)
Cl-Ir-c(11) 8d(1)
Ir-c(1) 2.13(3) ci'-Ir-c(11) 90(1)
Ir-c(2) 2.19(3) M(2)-Ir-c(11) 9l
Ir-C(8) 2.18(3) M(1)-Ir-C1 95
M(1)-Ir-C1* 90
Ir-c(h) 2.35(3) M(1)-Ir-M(2) 8l
Ir-c(5) 2.37(3) Ci-Ir-C1? 78.5(6)
Cl-Ir-M(2) 139
Ir-c(11) 2.09(2) Cl*-Ir-M(2) 143
c(1)-c(2) 1.47(L) Ir-c(11)-c(10) 121(2)
c(1)-c(8) 1.38(4) Ir-c{11)-c(12) 119(2)
c(2)-c(3) 1.L7(L) c(12)-c(11)-c{10) 120(2)
c(3)-c(h) 1.52(4) c(11)-c(10)-c(9) 130(3)
c(s)-c(5) 1.37(4)
c(5)-c(6) 1.55(k) c(1)-c(2)-c(3) 127(3)
c(6)-c(7) 1.61(4) c(2)-c(3)-c(k) 98(3)
c(7)-c(8) 1.47(4) c(3)-c({s)-c(s) 121(3)
c(b)-c(5)-c(6) 132(3)
c(l)-c(12) 1.47(4) €(5)-Cc(6)-C(T) 11k4(2)
c(10)-c(9) 1.51(4) c(6)-c(7)-c(8) 112(2)
c(11)-c(10) 1.26(&) c(7)-C(8)~C(9) 126(2)

~ c(8)-c(1)-c(2) 119(2)




Ci6) C(7)
—

FIGURE 1 Molecular geocmetry and atom numbering for
[Ir(cauu){c(CPB)c(cr3)u}c1]2. Thermal

ellipsoids are gcaled to 105 probability.

Bond lengths and angles are listed in Teble 2. The complex is & centro-
symmetric dimer, each half containing a pseudo-octehedrally co-ordinated

II1

Ir atom if the allyl function is regarded as an anjonic four-electron

donor occupying two sites of the (distorted) octahedron.
The Ir-C(vinylic) and C=C{vinylic) bond lengths in I [2.09 ana 1.26%

resp.] are similar to those reported for the vinylic grouping in the
complexes, Ir{c(cH) = c{cu)uHcC (@)h}(PPh3) co (2.09 enad 1.29%) [6] ana
Ir(ct = cHB,(C)H, )(C=CB, (€ H) J)C1(PPh,),CO (2.08 and 1. 29%) [7]- The
vinylic grouping is planar within experimental error. The distance

from Ir to the centre of the co-ordinsted olefinic band C(k) = c(5),

2.26? is grutér than normally found in olefin canplexu of IrI

. but

correspnds to values found in’ 1r%T ccaplexes where the olefin in

trans to a a-‘bondgd ca.r‘bm atan [8.9].7 k )
Theplmeofthe..uglcarbenmis ucunedush°tothe

Zl:x.-c;l.2 phne. - A nhtimah:lp betveen th:ls tngl,e and the dirference

betveenthe distance otthcactal utc-tothe centr-l tl]guc'carbcu T
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Cl]a, in which all Pd-C distances are equgl, the angle is 111.5° [10]
whereas, for example, in Pd(t-allyl)(SnCl3)(PPh3), where the metal-
central carbon distance is shorter, the angle is 114.5° [11]. The
difference between Ir-c(1), 2.13&. and the mean of Ir-C(2) and Ir-c(8)
distances, 2.192, although of low significance is in accord with this

relationship.
The presence of a co-ordinated double bond in the cyclo-octadienyl

ring appears to impose a rotation on the co-ordinated allyl function

Cl, plane and about the Ir-Ir vector, relative

2772
to the observed orientation in unconstrained x-allyl complexes. This

with respect to the Ir

effect can be obgserved in Fig. 2, where it may also bte seen that the
Ir-Ir vector intersects the allyl group plane at a point nearer to the
central carbon atom than does the Pd-Pd vector in [Pd(t-allyl)cllz. The

absence of any twisting about the C(4}~C{5) bond, and the unexceptional

FIGURE 2 Orientation of the w-allylic functien:
8} in {(z-alay1)Pac1],
b) in complex I.
ring angles and ring bond torsion angles [Tables 2 and 3] are indicative
ofa m-at strain in the cyclo-octadienyl ligand. The mean of the
. c(3) - c(z) - c(1) - ¢(8) and c(2) - c(1) - c(8) - ¢(7) torsion angles
[ko°] ecnpu-es vith the eorrespmdins angle of 43° in 1,1,3, 3-€etrnetlwl-

. nnlcuomm.uu(n) dim {22]. .
m observed utferenee betmcn the tvo Ir-Cl bond qugths. together

vith the.dirrerenc" orienmions ot the tvo outer a.uyl carbon’ atm [c(a)
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TABLE 3 TORSION ANGLES (¥) FOR THE RING BONDS IN THE
CYCLOOCTADIENYL LIGAND.

c(8)-c(r)-c(2)-c(3) 33 c(lk)-c(5)-c(6)-c(T) 33
c(1)-c(2)-c(3)-c(h) 89 c(5)-c(6)-c(T)-Cc(8) 46
c(2)-c(3)-c(s)-c(5) 91 c(6)-c(T)-c(8)-Cc(1) 102
c(3)-c(k)-c(5)-c(6) 1 c(7)-c(8)-c(1)~c(2) N
TABLE L MEAN PLANES DEFINED 3Y ATOMS AND DEVIATIONS

(R) OF SPECIFIED ATOMS FROM THOSE PLANES.

i) c(13), c(is), c(as), c(16), c(17), c(18):
c(13) o0.03, c(1s) -0.09, c{15) 0.06
c(16) -0.00, c(17) -0.07, c(18) 0.06

i) Ir, c{9), c(10), c(11), c(12):
Ir 0.01, ¢(9) 0.03, c(10) -0.06
c{11) o0.05, c(12) -0.02

iii) Ir, Ir', C3, C1'?
c(1) -0.35, c(2) o.50, C(8) 0.09
c(k) 2.18, c(5) 2.32, c(11) -2.09

_iv) c(1), c(2), c(8):
c{3) -0.65, ¢(7) —0.88

v) c(3), c(s), c(5), c(6): .
c(3) 0.00, c(k) -0.00, ¢(5) 0.00
c(6) -0.00

Dihedral angle between planes 1ii) and iv) is 63.6°




group is unsymmetrically co-ordinated, with C(8) having the greater g-
component. Unfortunately, the two bond lengths C(1) - c(2) ana c(1) -
€(8), though of low accuracy, do not correlate with this conclusion.

The extreme anisotropic thermal parmetex;a obtained for the fluorine
atoms (Table 1 and Fig. i), frequently observed in compounds containing
Cl’-‘3 groups, suggest large librational motion or disorder about their
respective C-C bonds. )

The geometry of the hexadeutercbenzene molecule is poorly determined.
The large temperature factors of its carbon atoms suggest considerable
libration but it is also possible that the crystal 'decomposition®
(vide supra) is due to loss of this solvent of crystallisation with a
resulting lack of definition. The molecular packing is illustrated in

Fig. 3. There are no exceptionally short intermolecular contacts.

FIGURE 3 ORTEP stereo drawing of the unit cell contents
vieved approximately along [100].
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