Journal of Organometallic Chemistry, 127 (1977) C32—C34
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

EINE EINFACHE METHODE ZUR HERSTELLUNG VON trans-DIALUMINIUM-STILBENEN

HEINZ HOBERG* und VICENTE GOTOR

Max-Planck-Institut für Kohlenforschung, D 4330 Mülheim-Ruhr, Postfach 011325 (B.R.D.) (Eingegangen den 27. Dezember 1976)

Die Enthalogenierung von Alkyl- bzw. Aryl-Aryl-aluminium-mono-halogeniden, R_2 AlX, mit Alkalimetallen verläuft in Abhängigkeit von R unterschiedlich. So erfolgt bei R = n-Alkyl bzw. Aryl die Umsetzung unter Abscheidung von Aluminium (A) [1]. Bei R z.B. i- C_4H_9 werden unter vergleichbaren Bedingungen Al-Al-Einheiten gebildet (B) [2].

$$R_2 Al - X \xrightarrow{+ M} R_3 Al + Al$$

$$R_2 Al - X \xrightarrow{- MX} R_3 Al + Al$$

$$R_3 Al + Al$$

(X = Halogen, M = Alkalimetall)

Über den Mechanismus der Enthalogenierungsreaktion ist Genaues nicht bekannt. Es bleibt offen, ob hierbei z.B. Aluminiumradikale, R₂Al^{*}, oder etwa Aluminiumanionen, R₂Al^{*}, durchlaufen werden [3]. Mögliche Zwischenstufen dieser Reaktion sind schon bei Einwirkung von Kalium auf AlCl₃ durch Äthylen zu 1,2-Dichloraluminiumäthan abgefangen worden [4].

Für uns war es von Interesse zu prüfen, ob auch Alkine hierbei als Substrat eingesetzt werden können, um etwa auf diesem Wege stereoselektiv 1,2-Dialuminiumverbindungen zu erhalten.

Wir fanden, dass auch bei Einwirkung von Lithium auf R_2 AlCl unabhängig von R keine Al-Abscheidung erfolgt, wenn die Umsetzung in polaren Lösungsmitteln (Äther -20°C, THF -80°C) in Gegenwart von Tolan durchgeführt wird.

$$2 R_{2}AICI + C_{6}H_{5} - C = C - C_{6}H_{5} + 2 Li$$

$$C_{6}H_{5} - C = C - C_{6}H_{5} + 2 Li$$

$$C_{6}H_{5} - C = C - C_{6}H_{5} + 2 Li$$

$$C_{6}H_{5} - C = C - C_{6}H_{5} + 2 Li$$

$$C_{6}H_{5} - C = C - C_{6}H_{5} + 2 Li - C$$

TABELLE 1
AUSBEUTEN UND Fp. DER trans-DIALUMINIUMSTILBENE (I)

I	R	LB	Ausbeute (%)	Fp. (°C)	
a	C,H,	(C,H,),O	80	115	
ь	i-C,H,	(C,H,),O	77	111	
c	i-C ₄ H	(C,H,),O	56	176 (Zers.)	
đ	i-C ₄ H ₉	THF	68	146	
	CoH,	$(C_2H_4)_2O$	36	172	

Überraschend ist, dass die Bildung der Dialuminiumverbindung stereoeinheitlich verläuft und hier ausschliesslich zum *trans-*Stilbenprodukt (I) führt. I fällt dabei als Diätherat an und lässt sich in kristalliner Form abtrennen (Tab. 1).

Die hier beobachtete Bildung des trans-Produktes (I) ist um so erstaunlicher, als bei Einwirkung von Natrium auf Triäthylaluminium, $(C_2H_5)_3$ Al, unter Zusatz von Tolan nur ein cis-Dialuminium-at-Komplex gebildet wird [5].

Über den zu I führenden Reaktionsmechanismus ist noch nichts bekannt. Es bleibt zu prüfen, ob der Angriff des Lithiums zunächst am Tolan oder am R_2 Al-Halogen erfolgt.

Betrachtet man den Substituenten R als eine für die Geschwindigkeit der Enthalogenierung wesentliche Grösse, so ergibt sich folgende Abhängigkeit: $i-C_3H_7 > i-C_4H_9 \simeq C_2H_5 >> C_6H_5$.

Experimentelles

trans-Diäthylaluminiumstilben-bis-diäthylätherat (I). Zu 16.78 g (94.2 mmol) Tolan in 300 ml Diäthyläther wurden bei –20°C zunächst 22.0 g (183.2 mmol) Diäthylaluminiumchlorid und dann unter kräftigem Rühren 1.32 g (188.5 mmol) Lithiumsand gegeben. Nach ca. 24 h wurde auf Raumtemperatur erwärmt und filtriert. Der Niederschlag (16.2 g) wurde zweimal mit je 20 ml Toluol digeriert, wobei die Aluminiumverbindung in Lösung geht. Der Rückstand (7.6 g; 180 mmol, 96%) besteht aus LiCl. Die vereinigten Filtrate (Äther + Toluol) wurden auf ca. 200 ml eingeengt, auf –20°C abgekühlt und nach ca. 24 h die ausgeschiedenen Kristalle abfiltriert.

Erhalten: 37.4 g (75.4 mmol, 80%), farblose Kristalle, Fp. 115°C. Analyse: Gef.: C, 72.62; H, 10.30; Al, 10.81. $C_{30}H_{50}Al_2O_2$ (496.7) ber.: C, 72.54; H, 10.15; Al, 10.86%.

Alkoholyse: 0.920 g (1.85 mmol) liefern mit 10 ml 2-Äthylhexanol 159.3 ml N (96%) Äthan.

Hydrolyse: 5.2 g (10.47 mmol) wurden mit 20 ml 0.10 N H₂SO₄ hydrolysiert und mit Äther extrahiert. Die ätherische Phase liefert: 1.7 g (9.5 mmol, 91%) trans-Stilben (98% GC).

¹H-NMR (C_6D_6 , 60 MHz, TMS als externer Standard): τ 2.68 (m; 10 H, C_6H_5), 6.5 (q; 8 H, CH_3 — CH_2 —O), 8.75 (t; 12 H, CH_3 - CH_2 -Al), 9.32 (t; 12 H, CH_3 - CH_2 O), 10.17 (q; 8 H, CH_3 - CH_2 -Al) ppm.

Die übrigen in Tabelle 1 aufgeführten Verbindungen wurden in analoger Weise dargestellt.

Literatur

- K. Ziegler und H. Lehmkuhl in Houben-Weyl-Müller, Methoden der organischen Chemie, 4. Aufl., Thieme Verlag, Stuttgart, 1970, Bd. 13/4. S. 51; T. Mole und E.A. Jeffery, Organoaluminum Compounds, Elsevier, Amsterdam, 1972, S. 37.
- 2 H. Hoberg und S. Krause, Angew. Chem., 88 (1976) 760; Angew. Chem. Int. Ed. Engl., 15 (1976) 694.
 3 H. Lehmkuhl, Chimia, 24 (1970) 182.
 4 R. van Helden, H.P. Braendlin, A.F. Bickel und E.C. Kooyman, Tetrahedron Lett., (1959) 24.

- 5 H. Lehmkuhl, J. Culjkovic und H. Nehl, Liebigs Ann. Chem., (1973) 666.