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Summary 

Ally1 halides oxidatively add to [Pt(cod),] to afford monomeric $-ally1 com- 
plexes [PtX(CH2CR’=CHR2)(cod)] (R’ = H, R* = H, Me or Ph, X = Cl or Br;R’ = 
Me, R* = H, X = Cl or Br; R’ = Cl, RZ = H, X = Cl), which on treatment with 
AgBF, yield n3-ally1 compounds [Pt(CH*CR’ CHRZ)(cod)]BF4. The cyclo-octa- 
1,5diene ligands are readily replaced by tertiary phosphines, phosphites, arsines, 
stibines, pyridine, or isocyanides. The dynamic behaviour of the $ - and n3-ally1 
species is discussed. 

Whereas bis(cyclo-octa-1,Bdiene)nickel reacts with ally1 halides to give dimeric 
complexes [Ni(p-X)(n3-allyl)], [ 11, we find-that the platinum analogue [Pt(codh ] 
[Z] readily affords mononuclear vi -ally1 compounds [ PtX(CH* CR’ =CHR’ )(cod)] 
(R’=H,R*=H,MeorPh,X=ClorBr;R’=Me,R* =H,X=ClorBr;R* =Cl, 

R* = H, X = Cl). Treatment of these platinum species with silver t&rafhJoro 
borate yields the corresponding tetrafluoroborate salts [Pt(q3-CHz CR’ CHR* )- 
(cod)]BF,. The cyclo-octa-1,5diene ligand is readily replaced in both the neutral 
and ionic compounds by ligands L = PhBP, Cy,P, (Me0)3P, Ph3As, Ph3Sb, py or 
t_BuNC. These new syntheses thus provide a general route to allylplatimun com- 
plexes via [Pt(cod), ]- 

The dynamic behaviour of allylplatinum complexes [3,4] has been of consider- 
able interest in relation to the nature of the species present in solution. The 
presence of p’ ally1 groups in the compounds [PtX(CH2CR’ =CHR2 )(cod)] is in- 
dicated by the appearance in their infrared spectra of a band (- 1620 cm-’ ) 
characteristic of a C=C group, while the chloro-species show Pt-Cl stretches at 
-320 cm’-’ . The 13C and ‘H NMR spectra of [PtX(CH,CH=CHR’)(cod)] (R* = 
Me or Ph) are in accord with the presence of a non-fluxional $-ally1 group. All 
the other $-ally1 complexes, however, show dynamic behaviour at room tempera- 
ture. The observed equivalence of the signals due to the cod group in both the 
13C and ‘H spectra of the fluxional complexes suggests that exchange of the ends 
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of the ally1 moieties occurs via halide dissociation, formation of an n3-ally1 inter- 
mediate, followed by subsequent nucleophilic attack on the metal by halide 
from either side of the s-ally1 group with concomittant m-formation of a u-ally1 
species. 

The ally1 groups in the cations [P~(Q~-CH~CR’CHR*)(~~~)]*~ (R* = H, RZ = H, 
Me or Ph, R’ = Me, R’ = H) are also fluxional, the protons undergoing syn, anti 
exchange at room temperature. This is in contrast to the species [Pt(n3-allyl)L,]X 
(L = RsP or diars) which are non-fiuxional when X = BF,‘, ClO,- or PF6-, but 
undergo a syn, anti exchange of the ally1 substituents when X = halide [ 53. This 
latter bebaviour has been interpreted as involving a four co-ordinate square planar 
$-ally1 non-ionic intermediate A of cis-stereochemistry [43 _ 

We have synthesised (see Scheme 1) complexes [PtX(CH* CHCHR* )L2 ] (L2 = 
diphos,R2=HorMeandX=C1orBF,;L=PPhB,R’=HorPhandX=C1;L= 
PPh3. R’ = Me, X = Cl or BF,), and studied their ‘H, 13C and 3’P NMR spectra. 
The 31P spectra of the bis(diphenylphosphino)ethane chloro-complexes (Table 1) 
reveal, by comparison with the corresponding borofluoride salts, the presence of 
both cationic q3-allyl species and neutral TJ’ -ally1 complexes A_ While the 
presence of the neutral complex [PtCl($-CH2CH=CH2)(diphos) ] is only just de- 
tectable, the crotyl complex consists of -75% of the isomer [PtCl($- 
CH,CH=CHMe)(diphos)] at -80°C strongly indicative of exchange through this 
intermediate_ 

The 31P spectrum of [PtCl(CH,CHCHPh)(Ph,P), ] shows the presence‘of two 
species. By comparison with the spectra of the diphos complexes, the weaker 

TABLE I 

“P NMR DATA FOR tPtCI<CW,CHCRR)L,I COMPLEXES= 

L2 R X Isomab Chemical shifts ami couplin6 constants 

diphos Me BF, CoYn> 48.44 (J(PtPI.3685;JVP) 9). 46.53 <J(PtPP). 378l:JVP). 9) 
C(anW 47.03 <J(PtP). 3855; JW?. 6)= 

diphos Me cl C<syd 48.55 <J<ptP). 3679). 46.74 <JVtP>. 3764) 
A 44.30 (J(PtPl. 4398). 41.92 (JGU’h 1768) 

diphm H cx c 47.46 <J(PtP). 3696) 
A 43.54 <J(PtP). 4341). 45.25 <J<ptP). 1823) 

diphos H BF, C 47.46 <J(PtP). 3702) 
2Ph,P Ph Cl B 28.01 (J(PtPb. 3284) 

A 2230 <J@tP). 2538; J<pP>. 13). 18.66 <jcptP,. 4490; J<pP). 13) 
zPh,P R cl c 

Bd 
16.99 <JCPtph 39331 
27-92 (J@tP). 3218) 

=I!desaued at -80°C in CH&l,/CD,Q, soluiian unlcn athemdse hdicated. Shit& (PPm> are reldiw to 
H,PO,, with couplit canstaats in Hz. bSee tut. =Othu ‘*P tuotuacc not obsexved due to aVSX.hVDiBX 
with signals of ryn imma. dOb!scrved in tohlure/lJc-cd,. 
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R2CH=CR*CH2X 
Cl-$R’=CHR* 

[Pt(cod12] CodPt 
/ 

‘X 

-I 
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SCHEME 1. Syntheds of allylplatinum complexes from LPtG=~)~l- 

signals at 22.30 and 18.86 ppm may be assigned to an isomer of type A. The re- 
maining band cannot be due to an isomer C since it is a unique signal and because 
&‘g5Pt-P) is too small for an r~~-ailyl system. This resonance must, therefore be 
due to a truns isomer B. Moreover, ‘% studies (-BO”C, CHIClz/CD2C11 solutions) 
confirmed the presence of a second $-ally1 species with J(PtC) 604 Hz for the 
carbon atom bonded to platinum. Studies on [PtCI(CH,CHCHMe)(Ph,P),] re- 
vealed that although the cationic complex (isomer C) is the dominant species in 
solution, comparison of the 31P spectrum with that of [PtCl(CH2 CHCHPh)(Ph3PL ] 
indicates that both isomers A and B may be present. 

These results show that not only do cis-isomers A play a part in syn-anfi ex- 
change 143, but also that tins isomers B are involved in the equilibria. Indeed, in 
view of the increasin g number of four co-ordinate platinum(II) $-ally1 species 
known [S, 71 dynamic bebaviour in solution may involve the two Q’ neutral 
isomers with a cationic i3-ally1 species as intermediate. The latter may be the 
-dominant isomer incertain solvents, in the solid state, or for steric reasons. This . 
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is supported by the isolation of isomers B and C for [Pt(CH2 CHCHR* )(PhSP)2 Cl] 
(R* = H or Me) [4,8], and the isomerisation of [Pt(CH2CHCH2)(Ph,P),Cl] from 
structure C (CH2C12 solution) to structure B (C6HSMe/Cb-D6) (Table 1). 
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