Journal of Organometallic Chemistry, 127 (1977) C51-C54 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

ALLYLPLATINUM COMPLEXES: SYNTHESIS FROM BIS(CYCLO-OCTA-1,5-DIENE)PLATINUM AND THEIR DYNAMIC BEHAVIOUR IN SOLUTION

NEIL M. BOAG, MICHAEL GREEN, JOHN L. SPENCER and F. GORDON A. STONE* Department of Inorganic Chemistry, The University, Bristol BS8 1TS (Great Britain) (Received December 24th, 1976)

Summary

Allyl halides oxidatively add to $[Pt(cod)_2]$ to afford monomeric η^1 -allyl complexes $[PtX(CH_2CR^1=CHR^2)(cod)]$ ($R^1 = H$, $R^2 = H$, Me or Ph, X = Cl or Br; $R^1 =$ Me, $R^2 = H$, X = Cl or Br; $R^1 = Cl$, $R^2 = H$, X = Cl), which on treatment with AgBF₄ yield η^3 -allyl compounds $[Pt(CH_2CR^1CHR^2)(cod)]BF_4$. The cyclo-octa-1,5-diene ligands are readily replaced by tertiary phosphines, phosphites, arsines, stibines, pyridine, or isocyanides. The dynamic behaviour of the η^1 - and η^3 -allyl species is discussed.

Whereas bis(cyclo-octa-1,5-diene)nickel reacts with allyl halides to give dimeric complexes $[Ni(\mu-X)(\eta^3-allyl)]_2$ [1], we find that the platinum analogue $[Pt(cod)_2]$ [2] readily affords mononuclear η^1 -allyl compounds $[PtX(CH_2CR^1=CHR^2)(cod)]$ ($R^1 = H, R^2 = H, Me \text{ or Ph}, X = Cl \text{ or Br}; R^1 = Me, R^2 = H, X = Cl \text{ or Br}; R^1 = Cl, R^2 = H, X = Cl)$. Treatment of these platinum species with silver tetrafluoroborate yields the corresponding tetrafluoroborate salts $[Pt(\eta^3-CH_2CR^1CHR^2)-(cod)]BF_4$. The cyclo-octa-1,5-diene ligand is readily replaced in both the neutral and ionic compounds by ligands $L = Ph_3P$, Cy_3P , $(MeO)_3P$, Ph_3As , Ph_3Sb , py or t-BuNC. These new syntheses thus provide a general route to allylplatinum complexes via $[Pt(cod)_2]$.

The dynamic behaviour of allylplatinum complexes [3, 4] has been of considerable interest in relation to the nature of the species present in solution. The presence of η^1 -allyl groups in the compounds [PtX(CH₂CR¹=CHR²)(cod)] is indicated by the appearance in their infrared spectra of a band (~ 1620 cm⁻¹) characteristic of a C=C group, while the chloro-species show Pt-Cl stretches at ~320 cm⁻¹. The ¹³C and ¹H NMR spectra of [PtX(CH₂CH=CHR²)(cod)] (R² = Me or Ph) are in accord with the presence of a non-fluxional η^1 -allyl group. All the other η^1 -allyl complexes, however, show dynamic behaviour at room temperature. The observed equivalence of the signals due to the cod group in both the ¹³C and ¹H spectra of the fluxional complexes suggests that exchange of the ends of the allyl moieties occurs via halide dissociation, formation of an η^3 -allyl intermediate, followed by subsequent nucleophilic attack on the metal by halide from either side of the π -allyl group with concomittant re-formation of a σ -allyl species.

The allyl groups in the cations $[Pt(\eta^3-CH_2CR^1CHR^2)(cod)]^+$ ($R^1 = H, R^2 = H$, Me or Ph, $R^1 = Me, R^2 = H$) are also fluxional, the protons undergoing syn, anti exchange at room temperature. This is in contrast to the species $[Pt(\eta^3-allyl)L_2]X$ ($L = R_3P$ or diars) which are non-fluxional when $X = BF_4^-$, ClO_4^- or PF_6^- , but undergo a syn, anti exchange of the allyl substituents when X = halide [5]. This latter behaviour has been interpreted as involving a four co-ordinate square planar η^1 -allyl non-ionic intermediate A of *cis*-stereochemistry [4].

We have synthesised (see Scheme 1) complexes $[PtX(CH_2CHCHR^2)L_2]$ ($L_2 = diphos$, $R^2 = H$ or Me and X = Cl or BF₄; L = PPh₃, $R^2 = H$ or Ph and X = Cl; L = PPh₃, $R^2 = Me$, X = Cl or BF₄), and studied their ¹H, ¹³C and ³¹P NMR spectra. The ³¹P spectra of the bis(diphenylphosphino)ethane chloro-complexes (Table 1) reveal, by comparison with the corresponding borofluoride salts, the presence of both cationic η^3 -allyl species and neutral η^1 -allyl complexes A. While the presence of the neutral complex [PtCl(η^1 -CH₂CH=CH₂)(diphos)] is only just detectable, the crotyl complex consists of ~75% of the isomer [PtCl(η^1 -CH₂CH=CHMe)(diphos)] at -80°C, strongly indicative of exchange through this intermediate.

The ³¹P spectrum of $[PtCl(CH_2CHCHPh)(Ph_3P)_2]$ shows the presence of two species. By comparison with the spectra of the diphos complexes, the weaker

TABLE 1

L ₂	R	x	Isomer ^b	Chemical shifts and coupling constants
diphos	Me	BF.	C(syn)	48.44 (J(PtP), 3685; J(PP) 9), 46.53 (J(PtP), 3781; J(PP), 9)
			C(anti)	47.03 (J(PtP), 3655; J(PP), 6) ^c
diphos	Me	Cl	C(syn)	48.55 (J(PtP), 3679), 46.74 (J(PtP), 3784)
			A	44.30 (J(PtP), 4398), 41.92 (J(PtP), 1758)
diphos	н	Cl	С	47.46 (J(PtP), 3696)
			А	43.54 (J(PtP), 4341), 45.25 (J(PtP), 1823)
diphos	н	BF,	C	47.46 (J(PtP), 3702)
2Ph,P	Ph	CI	В	28.01 (J(PtP), 3284)
			A	22.30 (J(PtP), 2538; J(PP), 13), 18.86 (J(PtP), 4490; J(PP), 13)
2Ph3P	н	Cl	C	15.92 (J(PtP), 3933)
		1	Ba	27 92 (J(P+P) 3918)

³¹P NMR DATA FOR [PtCI(CH,CHCHR)L,] COMPLEXES^a

^aMeasured at -80° C in CH₂Cl₂/CD₂Cl₂ solution unless otherwise indicated. Shifts (ppm) are relative to H₃PO₄, with coupling constants in Hz. ^bSee text. ^cOther ³¹P resonance not observed due to overlapping with signals of syn isomer. ^dObserved in toluene/benzene-d₄.

SCHEME 1. Synthesis of allylplatinum complexes from [Pt(cod)₂].

signals at 22.30 and 18.86 ppm may be assigned to an isomer of type A. The remaining band cannot be due to an isomer C since it is a unique signal and because $J(^{195}Pt-P)$ is too small for an η^3 -allyl system. This resonance must, therefore be due to a *trans* isomer B. Moreover, ^{13}C studies ($-80^{\circ}C$, CH_2Cl_2/CD_2Cl_2 solutions) confirmed the presence of a second η^1 -allyl species with J(PtC) 604 Hz for the carbon atom bonded to platinum. Studies on [PtCl(CH₂CHCHMe)(Ph₃P)₂] revealed that although the cationic complex (isomer C) is the dominant species in solution, comparison of the ^{31}P spectrum with that of [PtCl(CH₂CHCHPh)(Ph₃P)₂] indicates that both isomers A and B may be present.

These results show that not only do *cis*-isomers A play a part in syn-anti exchange [4], but also that *trans* isomers B are involved in the equilibria. Indeed, in view of the increasing number of four co-ordinate platinum(II) η^1 -allyl species known [6, 7] dynamic behaviour in solution may involve the two η^1 neutral isomers with a cationic η^3 -allyl species as intermediate. The latter may be the dominant isomer in certain solvents, in the solid state, or for steric reasons. This

is supported by the isolation of isomers B and C for $[Pt(CH_2CHCHR^2)(Ph_3P)_2Cl]$ $(R^2 = H \text{ or } Me)$ [4, 8], and the isomerisation of $[Pt(CH_2CHCH_2)(Ph_3P)_2Cl]$ from structure C (CH₂Cl₂ solution) to structure B (C₆H₅Me/C₆D₆) (Table 1).

Acknowledgements

We thank the S.R.C. for a research studentship (N.M.B.) and for support and Dr. M. Murray for helpful discussions.

References

- 1 P.W. Jolly and G. Wilke, The Organic Chemistry of Nickel, Volume 1, Academic Press, 1974, Ch. 6.
- 2 M. Green, J.A.K. Howard, J.L. Spencer and F.G.A. Stone, J. Chem. Soc. Chem. Comm., (1975) 3; idem. J. Chem. Soc. Dalton, in press, 1977, J.L. Spencer, Inorg. Synth., 19, in press.
- 3 K. Vrieze, in L.M. Jackson and F.A. Cotton (Ed.), Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press, 1975, Ch. 11.
- 4 H. Kurosawa and G. Yoshida, J. Organometal. Chem., 120 (1976) 297.
- 5 H.C. Clark and H. Kurosawa, Inorg. Chem., 12 (1973) 357; and references cited therein.
- 6 A. Scrivanti, G. Carturan, U. Belluco, N.B. Pahor, M. Calligaris and L. Randaccio, Inorg. Chim. Acta, 20 (1976) L3.
- 7 H.C. Clark and C.R. Jablonski, Inorg. Chem., 14 (1975) 1518.
- 8 M.C. Baird and G. Wilkinson, J. Chem. Soc. A, (1962) 865.