Journal of Organometallic Chemistry, 131 (1977) C5—C6
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

NOVEL ANIONIC ORGANOTHALLIUM(III) COMPLEXES

R. USON*, A. LAGUNA, J. VICENTE and J.A. ABAD

Department of Inorganic Chemistry, University of Zaragoza (Spain)
(Received February 22nd, 1977)

Summary

The novel organothallium(III) anions $[Tl(C_6F_5)_4]^-$, $[Tl(C_6F_5)_2(C_6Cl_5)_2]^-$, $[Tl(C_6F_5)_3Cl]^-$ and $[\{Tl(C_6F_5)_2Cl\}_2Cl]^-$ have been prepared, and isolated as the tetraalkylammonium salts.

The only previously described anionic tetraalkyl- or tetraaryl-thallium(III) complex $[TlMe_4]^-$, isolated in form of its lithium salt [1], is unstable in daylight and atmospheric moisture. The organothallium(III) anions of different types [2-5] $[TlRx_3]^-$, $[TlR_2X_2]^-$, $[TlR_3X]^-$, $[TlRx_4]^-$, $[TlR_2X_3]^-$, $[(TlR_3)_2X]^-$ and $[TlR_2B_{10}H_{12}]^-$ are poorly represented, and for $R = C_6F_5$ only compounds [3] of the $[Tl(C_6F_5)_2X_2]^-$ type (X = Cl, Br, I or SCN) are known.

We now report the synthesis of novel anionic organothallium(III) complexes containing the anions $[Tl(C_6F_5)_4]^-$, $[Tl(C_6F_5)_2(C_6Cl_5)_2]^-$, $[Tl(C_6F_5)_3Cl]^-$ and $[\{Tl(C_6F_5)_2Cl\}_2Cl]^-$, which have been isolated as the respective tetraalkylammonium salts.

The tetraalkylammonium tetrakis(pentafluorophenyl)thalliate(III) can be made by the reaction of an ether solution of LiC_6F_5 with $(C_6F_5)_2TlBr$, $R_4N[TlX_4]$, or $TlCl_3$ and, if necessary, subsequent addition of R_4NBr , as shown in eqns. 1—3.

$$(C_6F_5)_2$$
TlBr + LiC₆F₅ $\xrightarrow{+R_4NBr}$ R₄N[Tl(C₆F₅)₄] (1)

$$R_4N[T1X_4] + LiC_6F_5 \longrightarrow R_4N[Tl(C_6F_5)_4]$$
 (2)

$$TICl3 + LiC6F5 \xrightarrow{+R_4NBr} R_4N[Tl(C6F5)4]$$
 (3)

The reactions were carried out at -78°C under dry nitrogen. The stirred solutions were allowed to warm to room temperature. Then R₄ NBr was added, and though insoluble in ether it dissolved immediately. Evaporation gave solids which were recrystallized from dichloromethane/hexane. The yields are about 70, 70 and 90% for processes 1, 2 and 3, respectively.

On the other hand, if $(C_6F_5)_2$ TIBr is added to a stirred ether solution of

TABLE I PROPERTIES OF ANIONIC ORGANOTHALLIUM(III) COMPLEXES

		М.р. (°С)	Λ _M (ohm ⁻¹ cm ² mol ⁻¹)	ν(Ti—Ci)
ī	(n-Bu, N)[Tl(C, F,),]	127 (dec.)	99	-
П	(Et, N)[T1(C, F,),]	132 (dec.)	117	_
Ш	$(n-Bu_4N)[Tl(C_4F_5)_2(C_4Cl_5)_2]$	142 (dec.)	85	-
ΙV	$(n-Bu_AN)[Tl(C_AF_4)_1Cl]$	83	97	251
v	$(n-Bu_4N)[\{Tl(C_6F_3)_2Cl\}_2Cl\}$	152	114	255

LiC₆Cl₅ at -15°C in dry nitrogen, subsequent addition of n-Bu₄NBr gives n-Bu₄ N[Tl(C_6F_5)₂(C_6Cl_5)₂] which can readily be isolated (eq. 4). This is one of

$$(C_6F_5)_2$$
TlBr + 2 LiC₆Cl₅ $\xrightarrow{\text{n-Bu}_4\text{NBr}}$ n-Bu₄N[Tl(C₆F₅)₂(C₆Cl₅)₂] (4)

the few compounds which contain both a C₆F₅ and a C₆Cl₅ group (the other are $Ni(C_6F_5)(C_6Cl_5)(PPh_2Me)_2$ [6] and $Pd(C_6F_5)(C_6Cl_5)(PEt_3)_2$ [7]), and it is the sole example of a complex containing two ligands of each type.

When n-Bu₄N[Tl(C₆F₅)₄] is treated with TlCl₃ at room temperature (in ether with 40 h stirring) white crystals of n-Bu₄N[{Tl(C₆F₅)₂Cl}₂Cl] separate. Filtration followed by evaporation of the filtrate leaves an oil and addition of n-Bu2O gives white crystals of n-Bu₄ N[Tl(C_6F_5)₃Cl].

The anion $[Tl(C_6F_5)_4]^-$ is not capable of oxidizing gold(I) complexes; thus Et4N[Tl(C6F5)4] reacts with ClAuPPh3 to give C6F5AuPPh3 and $Et_4N[Tl(C_6F_5)_2Cl_2].$

All the complexes gave satisfactory elemental analyses (C, H, N and Tl). Table 1 lists their melting points, conductivities, and the values of $\nu(Tl-Cl)$. The conductivities in acetone are those expected for 1/1 electrolytes. The complexes are stable in daylight and atmospheric moisture at room temperature.

Complexes IV and V show vibrations in the 400-200 cm⁻¹ region which point to the presence of terminal TI-Cl bonds [3]. Though complex V very probably has a dinuclear structure, we could not detect the vibration due to $\nu(Tl-Cl-Tl)$ which must be beyond the range of our spectrophotometer (Perkin-Elmer 577, 4000-200 cm⁻¹).

$$\begin{bmatrix} F_5C_6 & C_6F_5 \\ Cl & Tl-Cl-Tl & Cl \\ F_5C_6 & C_6F_5 \end{bmatrix}$$

References '

- 1 A.T. Weibel and J.P. Oliver, J. Organometal. Chem., 74 (1974) 155. 2 H. Kurosawa and R. Okawara, Organometal. Chem. Rev. A, 6 (1970) 65.
- 3 G.B. Descon, J.H.S. Green and R.S. Nyholm, J. Chem. Soc., (1965) 3411. 4 T. Eheminn and K. Dehnicke, J. Organometal. Chem., 71 (1974) 191.
- 5 N.N. Greenwood, B.J. Thomas and D.W. Wite, J. Chem. Soc. Dalton, (1975) 229.
- M.D. Rausch and F.E. Tibbetts, Inorg. Chem., 9 (1970) 512; N.R. Churchill and M.V. Veidis, J. Chem. Soc., Chem. Commun., (1970) 1099.
- 7 R. Uson, J. Forniss and F. Martinez, J. Organometal, Chem., in press.