Journal of Organometallic Chemistry, 104 (1976) 107—116 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

ETUDE EN RESONANCE MAGNETIQUE NUCLEAIRE DU CARBONE-13 DE COMPLEXES η -1,5-CYCLOOCTADIENE β -DICETONATO IRIDIUM(I)

R. BONNAIRE

Laboratoire de Cinétique Chimique, Université de Paris VI, 1 rue Guy-de-la-Brosse, 75230 Paris Cédex 05 (France)

et N. PLATZER

Laboratoire de Chimie Organique Structurale, Université Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris Cédex 05 (France)

(Reçu le 13 juin 1975)

Summary

The 13 C NMR spectra of iridium complexes of 1,5-cyclooctadiene are reported and discussed. For compounds containing β -diketonato ligands, a correlation is found between the ethylenic carbon chemical shifts and the Swain and Lupton $\mathcal F$ and $\mathcal R$ values of the substituents of the β -diketonato ligand. The relationship is satisfactorily explained by considering the Dewar, Chatt and Duncanson model of bonding. Tentative interpretation of the observed chemical shifts of the other carbons is presented.

Résumé

Les spectres de RMN 13 C de complexes de l'iridium avec le cyclooctadiène-1,5 sont décrits et discutés. Dans le cas des composés comportant un ligand β -dicétonato, une corrélation est présentée entre les déplacements chimiques des atomes de carbone éthyléniques et les constantes $\mathcal F$ et $\mathcal R$ de Swain et Lupton des radicaux du ligand β -dicétonato. Cette relation est interprétée à l'aide du modèle de liaison proposé par Dewar, Chatt et Duncanson. Les valeurs des déplacements chimiques des autres atomes de carbone sont également examinées.

Introduction

Le perfectionnement des techniques (RMN par impulsions et transformation de Fourier) a permis l'utilisation de la résonance magnétique nucléaire du carbone-13 pour l'étude des composés organométalliques des éléments de transition, en particulier des platinoïdes [1-23].

TABLEAU 1
COMPLEXES [IrDetCod], (Det = R'COCHCOR"), ABREVIATIONS UTILISEES

R'	R"	Dct	no.	
CH ₃	CH ₃	Acac	1	
СН3	CF ₃	Tfa	11	
CF3	CF ₃	Hfa	III	
CH ₃	Ph	Ba	IV	
Ph	Ph	Dbm	\mathbf{v}	
CF ₃	Ph	Bta	VI	
C(CH ₃) ₃	C(CH ₃) ₃	Dpm	VII	
CH ₃	OCH ₃	Maa	VIII	

Les déplacements chimiques étant beaucoup moins sensibles aux phénomènes d'anisotropie en RMN ¹³C qu'en RMN ¹H, il est possible d'obtenir des informations plus précises sur les répartitions électroniques et les modes de liaison.

Il nous a donc paru intéressant de réexaminer en RMN 13 C les dérivés du type η -1,5-cyclooctadiène β -dicétonato iridium(I), [IrDctCod]*, précédemment étudiés en RMN du proton [24,25].

Le Tableau 1 présente les différents ligands β -dicétonato utilisés et la Fig. 1 indique la structure moléculaire supposée de ces complexes (cette structure est proposée par analogie avec celle antérieurement décrite pour des dérivés η -1,5-dichloro-1,6-cyclooctadiène β -dicétonato rhodium(I) [26]).

Partie expérimentale

Les spectres de RMN ont été enregistrés à l'aide d'un spectromètre JEOL PS 100 à 25.15 MHz au Groupement Régional de Mesures Physiques de Paris-Centre. Les composés ont été étudiés en solution dans le deutérochloroforme en utilisant le tétraméthylsilane (TMS) comme référence interne. Compte tenu de la solubilité peu élévée de ces complexes le nombre d'accumulations nécessaires avant transformation de Fourier varie de 3000 à 10000. Les résultats sont présentés dans les Tableaux 2 et 3.

La préparation des complexes a été décrite antérieurement [24].

Fig. 1. Structure moléculaire supposée pour les complexes [IrDctCod].

^{*} Dct = anion β-dicétonato, Cod = cyclooctadiène-1,5.

Discussion et résultats

Influence de la nature du métal

On met en évidence en premier lieu une très forte perturbation du cyclooctadiène à la suite de la coordination. Le déplacement chimique des atomes de carbone éthyléniques est abaissé d'environ 65 à 70 ppm, dans le complexe par rapport au diène libre (Tableaux 2 et 3). Ces déplacements chimiques peuvent être comparés à ceux publiés antérieurement [1] pour des complexes analogues du rhodium. La constance de l'écart $\delta(Ir) - \delta(Rh)$ (16.2 ppm) laisse supposer que le métal joue un rôle très important. On retrouve d'ailleurs un résultat analogue pour le couple Pt-Pd. Nous déduisons en effet des travaux de Cooper. Hughes et Powell [5], sur des complexes apparentés du palladium(II) et du platine(II), une valeur de l'ordre de 22 ppm pour $\delta(Pt) - \delta(Pd)$. Les atomes de carbone éthyléniques apparaissent plus blindés dans les composés du métal 5d que dans ceux du métal 4d de la même colonne de la classification périodique et l'écart s'accroit lorsque l'on passe de la colonne Rh-Ir à la colonne Pd-Pt. Ces variations s'expliquent fort bien en fonction du modèle de liaison métal-oléfine proposé par Dewar [27], Chatt et Duncanson [28]. Deux composantes entrent en jeu:

une liaison oléfine \rightarrow métal de type σ ,

une rétrocoordination de type π métal \rightarrow oléfine.

Dans le cas des platinoïdes cette rétrocoordination est importante [29,30] et gouverne les propriétés de ces complexes. Consistant en un apport d'électrons dans les orbitales π^* des atomes de carbone éthyléniques, elle correspond à un blindage et celui-ci sera d'autant plus marqué que:

le métal aura une charge formelle plus faible (mais sera également apte à accepter des électrons (couche d incomplète) car les transferts d'électrons σ et π présentent une synergie);

les orbitales du métal auront une étendue spatiale plus importante, ce qui les

Tableau 2 Comparaison des deplacements chimiques $\delta(^{13}\text{C})$ des atomes de carbones ethyleniques dans differents complexes de l'iridium et du rhodium

Complexe	δ(ppm)	$\Delta = \delta$ (libre) — δ (complexe)	$\Delta(Ir) - \Delta(Rh)$
[(IrClCod) ₂]	62.1	66.5	10.5
[(RhClCod) ₂]	78.3-78.9	50	16.5
[IrAcacCod]	59.3	69.3	
[RhAcacCod]	75	52.6	16.7
[IrTfaCod]	60.5	68	
[RhTfaCod]	76.3	52.3	15.7
[IrHfaCod]	62.4	66.2	
[RhHfaCod]	78.2	50.4	15.8
			16.2 ^a

a Valeur moyenne,

TABLEAU 3

SPECTRES DE RMN 13C DES COMPOSES R'-C-CH-C-R" Valeurs (b) en ppm, référence TMS; valeurs (J) en Hz.

Les valeurs Les valeurs	données pour utilisées pour	Les valeurs données pour les g-dicétones corres Les valeurs utilisées pour les calculs dans le cas	Les valeurs données pour les Adleétones correspondent aux formes énoliques Les valeurs utilisées pour les calculs dans le cas des ligands Adicétonato dissymétriques, sont les valeurs moyennes des signaux observés	es ymétriques	, sont les v	aleurs moyennes des signa	ıux observ	, ss	
<u>بر</u>	"#	ט	Û=U	CH ₂	0=0		Ç,	R	R "
	-		128,60	28.3a	1	and the second s		And a distribution of the state	
CII	CH3	н				191,3	100.5	24.7	24.7
CH3	CH ₃	IrCod	59,3	31,1		186,6	101.6	27.4	27.4
CH ₃	CH ₃	RhCod	494						
CH3	CH ₃	Rh(C2H4)2	36.36						
CH3	CH ₃	Rh(C3H6)2	65,0-63,8 (J(Rh-C) 13.7) ^c						
			75.8 (J(Rh—C) 15.5)°						
CH3	CF3	Ξ			195	176.3 (2J(C-F) 37)	96.7	24,9	117.6 (1/(C-F) 282)
CII3	CF3	IrCod	60,13 60,91	31,0	194	166,3 (2J(C-F) 34)	97.2	28.8	119 (1J(C-F) 282)
į	2		60,5						
EE CE		Kncod	76.3			,			
CF3	CF3	==				177.4 (2J(C-F) 38)	94,3	117,3 (1J(C~F) 281)	117,3 (¹J(C-F) 281)
CF3	CF3	IrCod	62.4	30,9		174.3 (² J(C-F) 35)	92,9	118,4 (1J(C~F) 283)	118,4 (1/(C-F) 283)
Ę,	ć	KhCod	78.2						
CH ₃	Ph	=			193,7	183,2	96,6	25.7	134,8-126.9-
	i								128,5-132.2
CIII3	T.	IrCod	59.6	31,1	188,3	179.5	98,4	28.3	138,6-128,4-
	;		59.7						127,4-131.2
둞	# <u>#</u>	Ħ				186.7	93.1	136.6-127.1-	135.5-127.1-
	i	- 1						128.6-132.4	128,6-132,4
Ph	E.	IrCod	60.1	31,3		181	92'6	139.1-128.5-	139,1-128,6-
. 1	į				,			127.6-131.3	127.5-131,3
CF3	똢	Ħ			177,4 (2	177,4 (2J(C-F) 37) 186,4	92.4	117,5 (1J(C-F) 284)	134.2-127.7-
									129,1-133
CF3	Lh Lh	IrCod	61.3	31.1	168,5	185,4	93,9		137,3-127,8-
		;	61						128,8-132,9
C(CH3)3	C(CH3)3	=				201.2	90,5	39,4-27,4	39.4-27.4
C(CH ₃) ₃	C(CH ₃) ₃	Ircod	59.2	31.1		1,961	91,9	41.3-28.4	41,3-28,4
CHJ	OCH3				176,0	173,1	89,5	21.0	51,1
CH3	OCH ₃	IrCod	59.0	31,1	187.7	171,9	85,6	27.2	62.2
2			68.8						

a Signal du cyclooctadiene-1,5 pur, b Réf. 1, c Réf. 3.

rend plus aptes à s'adapter aux exigences géométriques d'un recouvrement important (les distances métal—oléfine varient très peu d'un composé à l'autre).

Complexes de l'iridium: influence des substituants du ligand \beta-dic\'etonato

En second lieu on observe dans la famille des composés [IrDctCod] des effets liés à la nature des radicaux du ligand β -dicétonato. Il est à remarquer que la RMN du carbone-13 se révèle, pour cette étude, beaucoup plus sensible que la RMN du proton. La gamme des déplacements chimiques $\delta(^{13}C)$ des atomes de carbone éthyléniques s'étend sur 3.65 ppm, alors que celle des protons $\delta(^{1}H)$ était limitée à 0.36 ppm. En outre dans le cas des dérivés de β -dicétones dissymétriques, nous observons deux signaux nettement distincts pour les atomes de carbone éthyléniques opposés (notés C' et C"). Contrairement aux atomes de carbone éthyléniques, les atomes de carbone méthyléniques du cyclooctadiène-1,5 présentent un déplacement chimique remarquablement constant (valeur moyenne sur 8 mesures: 31.09 ppm, écart type sur la moyenne: 0.04 ppm).

Nous avons tenté d'interpréter ces résultats en fonction des effets électroniques dûs aux radicaux R' et R". Nous ne retiendrons pas l'hypothèse de Cooper, Hughes et Powell [5] selon laquelle les déplacements chimiques seraient gouvernés par le blindage d $\hat{\mathbf{u}}$ aux interactions non liantes des orbitales d partiellement remplies. La modification de la population électronique des orbitales dde l'iridium en fonction de la nature des radicaux R' et R" qui justifierait certes les variations observées des déplacements chimiques des atomes de carbone éthyléniques C' et C" devrait également entrainer des modifications mesurables des $\delta(^{13}C)$ pour les atomes de carbone méthyléniques. En effet ce type de perturbation varie en fonction de l'inverse du cube de la distance métal—carbone et des déterminations structurales récentes sur les complexes du cyclooctadiène-1,5 avec les platinoïdes [31] ont montré que la géométrie de l'oléfine complexée est invariante. Les distances métal—carbone étant respectivement voisines de 2.2 Å pour d(M-C') et 3.1 Å pour $d(M-CH_2)$, la gamme de variation de $\delta(^{13}C)$ pour les atomes de carbone méthyléniques devrait alors être évaluée à 1.3 ppm en considérant celle que l'on observe pour les $\delta(^{13}C)$ des atomes de carbone éthyléniques (3.65 ppm). L'expérience infirme cette estimation.

Le modèle de Dewar [27], Chatt et Duncanson [28] nous semble mieux apte à expliquer les phénomènes électroniques mis en jeu.

Le cycle du chélate M—O—C—C—C—O peut être considéré comme pseudo-aromatique. Il comporte un squelette σ et possède une densité électronique π délocalisée. La modification des radicaux R' et R'' va, par leurs influences électroniques, apporter des modifications aux deux populations électroniques au niveau du métal. Ceci rendra donc plus importante la rétrocoordination qui lui permet de maintenir sa charge réelle faible [32].

Afin de préciser d'une manière plus quantitative ces phénomènes, nous avons cherché une relation entre les déplacements chimiques de la RMN ¹³C et les constantes de type Hammett caractérisant les substituants. Les études antérieures [24,25] ayant mis en évidence la nécessité de faire intervenir à la fois les propriétés de champ et de résonance, nous avons testé principalement les échelles à deux variables.

Les résultats (Tableau 4) ont été obtenus par une méthode de moindres carrés à l'aide du programme LMCL2 de Unger et Swain [33]. Comme dans le

Tableau 4 Resultats des correlations $\delta = A + BX(+CY)$

Echelle	Z	4	σ(A)	В	σ(B)	Ü	a(C)	п	FR	
ХХ	:		·	-						
Swain et Lupton						***************************************			-	
۲. انجاز انجاز	× '	60.1	0,1	1,0	0.2	2,6	0,3	0.9898	1210	
ž	27	60.1	0,2	1,0	6,0	2.5	0,4	0.9897	48c	
Taft et Ehreson										
o lo	7	F09	9'0	1.7	0.5	3,1	9.0	0.9814	52 ^b	
જા જા	₫α	0.09	0.3	1,8	9.0	3.1	0.7	0.9839	16 <i>d</i>	
Dewar						•				
E	80	60.7	0.2	-0,3	0.5	1.0	0,2	0,9822	q89	
	59	9.09	0.3	0.4	0,5	1.0	0.2	0.9904	51 _c	
d _m	· &	59.5	0,2	3.1	0.4			0.9357	42 <i>b</i>	
<i>o</i> ^m	59	59.4	0.3	3,2	9'0			0,9255	18c	
ďo	æ	60.0	90.0	2,2	0.1			0.9882	250^{b}	
ďb	50	0.09	0.1	2.2	0.2			0066'0	148b	
- * -0	æ	59.4	0,1	2.8	0,3			0.9710	966	
d +	20	59.3	0.2	2.8	0,4			0.9672	436	
o p	∞ ′	60,4	0.1	1,6	0,1			0.9758	119^{b}	
÷ď.	50	60,3	0.1	1.6	0.2	٠		0.9820	81p	••
	. G	59.4	0.2	3.1	0.5			0.9549	31^{c}	
## ***	, og	59.7	0,1	2.4	0.2			0.9825	83 ₀	
0 *	, ₀ ,	59.3	0.7	0,43 0,4	0.03			0,9857	1690 680	
Swein et Lanton		-							ļ* -	
ع بر ع	1	105.1	8.0	-16		22	63	0,9837	a q09	
Toff of Throngon										
ol or	7	105.1	0.4	-23.7	6.0	28	1	0,9957	231 ^b c	
Dewar										
F W	7	115,3	0.3	-37.5	0.5	14.7	0.2	0,9995	1198 ^b ^c	
					, T		***************************************			

a Corrélation ne tenant pas compte des composés à groupements R' et R" aromatiques, b Corrélation de validité supérieure à 99%, c Corrélation de validité supérieure à 95%, d' Corrélation non valable, c Corrélation relative à l'atome de carbone γ du ligand β -dicétonato, en faisant abstraction du complexe [IrDpmCod],

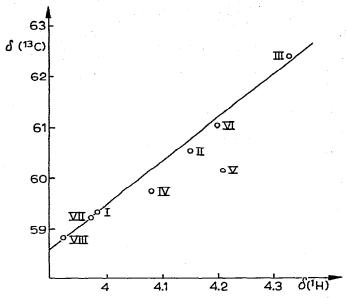


Fig. 2. Relation entre les déplacements chimiques RMN 13 C et ceux de la RMN 1 H (valeurs en ppm). Les numéros en chiffres romains se rapportent au Tableau 1.

cas des études effectuées en résonance magnétique protonique la meilleure corrélation est celle obtenu en utilisant les échelles proposées par Swain et Lupton [34] (sur 8 points, coefficient de corrélation R=0.9898, tests statistiques: $F_{\rm R}=121$; $F_{\rm X}$ (Swain et Lupton par rapport à σ_p) = 2). Les tests statistiques $F_{\rm R}$ et $F_{\rm X}$ indiquent que:

la corrélation $\delta(^{13}\text{C})(\text{ppm/TMS}) = 60.1(0.1) + 1(0.2)\mathcal{F} + 2.6(0.3)\mathcal{R}$ est bonne (F_R) ; (les écarts types sur les coefficients sont rapportés entre parenthèses).

l'amélioration apportée par la séparation des termes de champ et de résonance est significative à 80% (F_x) .

Nous avions constaté en RMN du proton que les composés présentant le plus grand écart à la linéarité dans ce type de corrélation étaient ceux comportant des radicaux aromatiques du fait de l'anisotropie de ces groupements. On vérifie que la RMN ¹³C est beaucoup moins sensible à ces phénomènes: les corrélations prenant en compte les dérivés à radicaux aromatiques conduisent aux mêmes résultats que celles faisant abstraction de ces dérivés (Tableau 4 et Fig. 2).

En conclusion, l'utilisation d'échelles d'effets électroniques des groupements R' et R'' du ligand β -dicétonato, comportant une séparation entre effet de champ et de résonance permet de rendre compte d'une manière satisfaisante des déplacements chimiques des atomes de carbone éthyléniques du cyclooctadiène-1,5.

Dans le cas des atomes de carbone C_{γ} du ligand β -dicétonato on n'obtient une corrélation valable qu'en écartant le complexe [IrDpmCod] pour lequel la valeur $\delta(^{13}C)$ parait anormalement faible. Toutefois dans ce cas à l'effet électronique se superpose un effet stérique (présence de deux groupements particulièrement voluminuex) qui doit effectivement entrainer le déplacement de ce signal vers les champs forts (Tableau 4).

DEPLACEMENTS CHIMIQUES 13C DES ATOMES DE CARBONE DES GROUPEMENTS AROMATIQUES DES COMPLEXES A LIGANDS A-DICETONATO POSSEDANT DES GROUPEMENTS AROMATIQUES, DES LIGANDS LIBRES SOUS LEUR FORME ENOLIQUE ET DES IONS ENOLATES (DANS LE TABLEAU 6

METHANOL) (VALEURS EN ppm)

Complexe	HDct fo	HDct forme énoliqu	ant		[IrDetCod]	=			NaDct			
	.	. 0	m	d	b	0	E	ď	ď	0	æ	ď
[IrBaCod] [IrDbmCod] [IrBtaCod]	134.8 135.5 134.2	126.9 127.1 127.7	128.5 128.6 129.1	132.2 132.4 133	138.6 139.1 137.3	128.4 128.5 127.8	127.4 127.5 128.8	131.2 131.3 132.9	144.3 146.2	127.6 128.9	128.6 127.8	130.1

TABLEAU 6

SPECTRES DE RMN ¹⁹F

Valeurs données par rapport à l'acide trifluoroacétique, en référence externe, en ppm

	δ	δ (libre) — δ (complexe)	
HTfa [IrTfaCod]	-1.44 1.44	-2.88	
HBta [IrBtaCod]	-0.9 1.6	-2.6	

Les déplacements chimiques des carbones des noyaux aromatiques sont regroupés dans le Tableau 5. La comparaison des spectres des ligands libres et complexés montre que la complexation s'accompagne principalement d'un déblindage au niveau de l'atome de carbone quaternaire et d'un blindage faible au niveau de l'atome de carbone en para, ce qui pourrait donc correspondre à un effet inductif donneur et à un effet de résonance accepteur des radicaux phéniles. On peut d'ailleurs noter que les déplacements observés pour les signaux de l'atome de carbone quaternaire et de l'atome de carbone en para du phényle lorsque l'on forme le sel de sodium d'une β -dicétone par addition de soude à sa solution dans le méthanol sont de même sens que lors de la chélation à l'iridium mais très accentués.

Les β -dicétones comportant un groupement CF_3 et leurs dérivés ont été examinés en RMN du fluor (Tableau 6). La formation du complexe entraine un déblindage du fluor tout comme elle entrainait un déblindage du carbone $\underline{C}F_3$.

Etude des phénomènes d'échange: cas du composé [IrTfaCod]

La présence de deux signaux distincts pour les atomes de carbone éthyléniques C' et C" du cyclooctadiène lorsque le ligand β -dicétonato est dissymétrique, montre que l'échange est lent par rapport à l'échelle de temps de la RMN 13 C. Pour le complexe [IrTfaCod] par exemple, en solution dans le deutérochloroforme on n'observe à 60°C qu'un faible élargissement des signaux. Pour une solution dans le deutérotoluène la coalescence se produit à 100°C. La séparation des deux signaux étant de 19.8 Hz dans ce solvant, l'enthalpie libre d'activation ΔG^* estimée d'après l'équation d'Eyring est donc de l'ordre de 19.2 kcal à 100°C.

Conclusion

Il ressort de cette étude que la RMN ¹³C constitue une méthode particulièrement sensible pour examiner les perturbations apportées aux ligands par la coordination ainsi que pour étudier les variations de densité électronique dans une série de composés.

Il nous a été possible de mettre en évidence une corrélation entre les déplacements chimiques des atomes de carbone éthyléniques du cyclooctadiène complexé et les propriétés électroniques des radicaux R' et R'' du ligand β -dicétonato.

Les résultats que nous avons obtenu sont en accord avec le schéma de liaison de Dewar, Chatt et Duncanson et mettent en évidence l'importance de la rétrocoordination dans ces composés. De plus si nous comparons les valeurs des déplacements chimiques observés en RMN 13 C et 1 H (Fig. 2), nous voyons qu'il existe une relation linéaire entre ces deux grandeurs. Les points qui s'écartent de la droite correspondent à des ligands β -dicétonato possédant des groupements aromatiques. Ce sont donc ceux pour lesquels il y a en résonance magnétique protonique des phénomènes d'anisotropie dus à la circulation des électrons π sur ces groupements.

Bibliographie

- 1 G.M. Bodner, B.N. Storhoff, D. Doddrell et L.J. Todd., Chem. Commun., (1970) 1530.
- 2 R.G. Parker et J.D. Roberts, J. Amer. Chem. Soc., 92 (1970) 743.
- 3 K.R. Aris, V. Aris et J.M. Brown, J. Organometal. Chem., 42 (1972) C67.
- 4 O.A. Gansow, D.A. Schexnayder et B.Y. Kimura, J. Amer. Chem. Soc., 94 (1972) 3406.
- 5 D.G. Cooper, R.P. Hughes et J. Powell, J. Amer. Chem. Soc., 94 (1972) 9244.
- 6 M.H. Chisholm, H.C. Clark, L.E. Manzer et J.B. Stothers, J. Amer. Chem. Soc., 94 (1972) 5087.
- 7 A.N. Nesmeyanov, E.I. Fedine, L.A. Fedorov et P.V. Petrovski, Zh. Strukt. Khim., 13 (1972) 1033.
- 8 D.E. Axelson, C.E. Holloway et A.J. Olivier, Inorg. Nucl. Chem. Lett., 9 (1973) 885.
- 9 M.H. Chisholm, H.C. Clark, L.E. Manzer, J.B. Stothers et J.E.H. Ward, J. Amer. Chem. Soc., 95 (1973) 8574.
- 10 H.C. Clark et J.E.H. Ward, J. Amer. Chem. Soc., 96 (1974) 1741.
- 11 R.G. Salomon et J.K. Kochi, J. Organometal. Chem., 64 (1974) 135.
- 12 M.H. Chisholm, H.C. Clark, L.E. Manzer, J.B. Stothers et J.E.H. Ward, J. Amer. Chem. Soc., 97 (1975) 721.
- 13 D.G. Cooper, G.K. Hamer, J. Powell et W.F. Reynolds, J. Chem. Soc. Chem. Commun., (1973) 449.
- 14 R.P. Hughes et J. Powell, J. Organometal. Chem., 60 (1973) 427.
- 15 C. Masters, J. Chem. Soc. Chem. Commun., (1972) 1258.
- 16 C.D. Beverwijk et J.P.C.M. Van Dongen, Tetrahedron Lett., (1972) 4291.
- 17 J.P.C.M. van Dongen et C.D.M. Beverwijk, J. Organometal. Chem., 51 (1973) C36.
- 18 G. Rigatti, G. Boccalon, A. Ceccon et G. Giacometti, J. Chem. Soc. Chem. Commun., (1972) 1165.
- 19 H.G. Preston Jr. et J.C. Davis Jr., J. Amer. Chem. Soc., 88 (1966) 1585.
- 20 H.L. Retcofsky, E.N. Frankel et H.S. Gutowsky, J. Amer. Chem. Soc., 88 (1966) 2710.
- 21 B.F.G. Johnson et J.A. Segal, J. Chem. Soc. Chem. Commun., (1972) 1312.
- 22 C.G. Kreiter et M. Lang, J. Organometal. Chem., 55 (1973) C27.
- 23 F.W. Randall, E. Rosenberg et L. Milone, J. Chem. Soc. Dalton Trans., (1973) 1672.
- 24 R. Bonnaire, Thèse, Paris, 1973.
- 25 G. Pannetier, R. Bonnaire, P. Fougeroux, L. Davignon et N. Platzer, J. Organometal. Chem., 54 (1973) 313.
- 26 J. Jecny et K. Huml, Acta Crystallogr., B, 30 (1974) 1105.
- 27 M.J.S. Dewar, Bull. Soc. Chim. Fr., (1951) C71.
- 28 J. Chatt et L.A. Duncanson, J. Chem. Soc., (1953) 2939.
- 29 J.W. Moore, Acta Chem. Scand., 20 (1966) 1154.
- 30 J.H. Nelson, K.S. Wheelock, L.C. Cusachs et K.B. Jonassen, Chem. Commun., (1969) 1019.
- 31 C. Potvin, Thèse, Paris, 1975
- 32 L. Pauling, The Nature of The Chemical Bond, Cornell University Press, Ithaca, New York, 1960, p. 172.
- 33 S. Unger et C.G. Swain, Programme LMCL2, Document no. 9970, ADI Auxiliary Publications Project, Library of Congress, Washington D.C., 20540.
- 34 C.G. Swain et E.C. Lupton Jr., J. Amer. Chem. Soc., 90 (1968) 4328.