Journal of Organometallic Chemistry, 107 (1976) 9-13

© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

DARSTELLUNG VON DIMETHYLTHALLIUM-, -ZINN- UND -BLEIVERBINDUNGEN DURCH ANIONENAUSTAUSCH MIT THALLIUM(I)-SALZEN

U. KNIPS und F. HUBER *

Lehrstuhl für Anorganische Chemie der Universität Dortmund (B.R.D.) (Eingegangen den 8. September 1975)

Summary

Various dimethylthallium compounds $(CH_3)_2TIX$ (X = OCOCH₃⁻) and $[(CH_3)_2TI]_2X$ (X = malonate, succinate, maleate, fumarate, CO_3^{2-} , $S_2O_3^{2-}$), of which some have not yet been described, were prepared in high yields (>80%) by anion exchange from $(CH_3)_2TIBr$ and the appropriate thallium(I)-compound. With thallium(I)-compounds the exchange reaction led to higher yields and was more convenient than the two-step Ag_2O method, which is normally used for the preparation of the acetate. In the same manner $(CH_3)_2M(OCOCH_3)_2$ (M = Sn, Pb) and $[(CH_3)_2SnOCOCH_3]_2O$ were prepared.

Zusammenfassung

Eine Reihe von teils noch nicht beschriebenen Dimethylthalliumverbindungen $(CH_3)_2TIX$ (X = OCOCH₃⁻) bzw. $[(CH_3)_2TI]_2X$ (X = Malonat, Succinat, Maleat, Fumarat, CO_3^{2-} , $S_2O_3^{2-}$) konnten mit hohen Ausbeuten (>80%) durch Anionenaustausch aus $(CH_3)_2TIBr$ und der entsprechenden Thallium(I)-Verbindung dargestellt werden. Bei Benutzung von Thallium(I)-Verbindungen führt die Austauschreaktion zu höheren Ausbeuten und ist bequemer durchzuführen als die zweistufige Ag₂O-Methode, die üblicherweise zur Darstellung des Acetats angewendet wird. Auf gleiche Weise liessen sich $(CH_3)_2M(OCOCH_3)_2$ (M = Sn, Pb) und $[(CH_3)_2SnOCOCH_3]_2O$ darstellen.

Einleitung

Diorganothalliumverbindungen R_2TIX werden sehr häufig durch Anionenaustausch aus R_2TIHal (Hal = Cl, Br, J) mit AgX dargestellt [1]; dabei wird in den meisten Fällen R_2TIHal zunächst mit feuchtem Silberoxid in R_2TIOH umgewandelt und dieses dann mit der entsprechenden Säure HX neutralisiert. Bei Versuchen, me₂TlOAc (me = CH₃, OAc *) auf diese Weise herzustellen, erhielten wir meist nur unbefriedigende Ausbeuten und fanden daraufhin, dass der Anionenaustausch mittels TlX vollständiger, bequemer und zeitsparender abläuft. Neben me₂TlOAc konnten wir mit diesem im Prinzip schon lange bekannten [2], jedoch nur selten genutzten Verfahren auch einige neue Dimethylthalliumverbindungen gewinnen; es liess sich auf die Darstellung des me₂Sn(OAc)₂ und des in wasserfreier Form bislang unbekannten me₂Pb(OAc)₂ übertragen.

Ergebnisse und Diskussion

Dimethylthalliumacetat, me₂TlOAc, und andere Dimethylthalliumcarboxylate wurden zuerst durch Umsetzung von me₂TlOH (bzw. auch von Carbonat, das durch CO₂-Aufnahme leicht aus me₂TlOH hervorgeht) mit den entsprechenden Carbonsäuren dargestellt [3—5]. me₂TlOH wird aus me₂TlJ [6] gemäss Gl. 1 gewonnen [1,7,8].

$$2 \text{ me}_2\text{TIJ} + \text{Ag}_2\text{O} \xrightarrow{\text{H}_2\text{O}} 2 \text{ me}_2\text{TIOH} + 2 \text{ AgJ}$$
 (1)

Als Gesamtausbeute an me₂TlOAc wurde 69.56% d. Th., bezogen auf me₂TlJ, angegeben [3]; über Ausbeuten bei Verwendung von me₂TlCl bzw. me₂TlBr wurden keine Angaben gemacht. Früher war schon berichtet worden, dass me₂TlCl mit Ag₂O ausserordentlich schlecht [6] bzw. gar nicht [9] reagiert. Wir konnten me₂TlOAc nach der obigen Methode, ausgehend von me₂TlBr, nur in Ausbeuten unter 60% erhalten. Ursachen dieser unbefriedigenden Ausbeuten sind in der Schwerlöslichkeit von me₂TlHal und Ag₂O in Wasser und in den zur Erhöhung der Umsetzungsgeschwindigkeit erforderlichen hohen Temperaturen zu suchen. Diese Schwierigkeiten lassen sich vermeiden und me₂TlOAc lässt sich einfach und sehr rein in einer Stufe darstellen, wenn mann me₂TlHal anstelle mit Ag₂O mit dem in organischen Solventen gut löslichen TlOAc in Methanol umsetzt. Ausgehend von me₂TlBr liessen sich z.B. so Ausbeuten von ca. 90% erzielen.

Ein Überschuss an TlOAc (bei Verwendung des unlöslichen Ag₂O ist bis zum dreifachen der stöchiometrischen Menge erforderlich) ist nicht notwendig; es ist sogar angebracht, me₂TlHal in geringem Überschuss vorzulegen, um die völlige Umsetzung des löslichen TlOAc zu gewährleisten.

Ganz entsprechend gelingt die Darstellung von wasserfreiem und bisher nicht beschriebenem me₂Pb(OAc)₂ aus me₂PbCl₂ und TlOAc in Methanol in ca. 95%iger Ausbeute. Diese Verbindung ist, allerdings nur in Form des Hydrats me₂Pb(OAc)₂ · H₂O, auch durch Neutralisieren des Hydroxids, jedoch mit den oben geschilderten Nachteilen, zugänglich [10].

Dimethylzinndiacetat ist in entsprechender Weise darstellbar, jedoch nur bei völligem Feuchtigkeitsausschluss. Wegen des dazu erforderlichen apparativen Aufwands bietet diese Methode keinen entscheidenden Vorteil gegenüber der bisher verwendeten [11]. Dagegen gestaltet sich die Darstellung von Tetramethyl-1,3-Bisacetoxystannoxan (me₂SnOAc)₂O sehr einfach, wenn man me₂SnCl₂ mit TlOAc in wässrigem Methanol als Lösungsmittel umsetzt.

^{*} $OAc = CH_3COO^-$.

Auch mit Thallium(I)-Verbindungen, die nur eine geringe Löslichkeit in Methanol aufweisen, lässt sich die Austauschreaktion in diesem Lösungsmittel durchführen. So konnten die in Tab. 1 aufgeführten α, ω -Dicarboxylate dargestellt werden. Mit Ausnahme des Fumarats, das schon früher auf analoge Weise in siedendem Wasser in geringer Ausbeute dargestellt werden konnte [5], handelt es sich um bislang nicht beschriebene Verbindungen, die sich ausser in Wasser recht gut in Methanol lösen. Am Ende der Umsetzung liegt daher gemäss Gl. 2 eine reine Lösung des Organothalliumcarboxylats in Methanol vor, aus der sich

$$2\text{me}_2\text{TlBr} + \text{Tl}_2(\text{O}_2\text{C}-\text{R}-\text{CO}_2) \xrightarrow{\text{CH}_3\text{OH}} (\text{me}_2\text{Tl})_2(\text{O}_2\text{C}-\text{R}-\text{CO}_2) + 2\text{TlBr}\downarrow$$
 (2)

dieses in über 80%iger Ausbeute leicht sehr rein kristallisieren lässt.

Die analoge Präparation des Dimethylthalliumcarbonats scheiterte zunächst an der Unlöslichkeit von Tl₂CO₃ in Methanol; die Umsetzung liess sich jedoch in wässriger Lösung bei 60°C hinsichtlich der Ausbeute (82%) in befriedigender Weise durchführen, doch es war eine Abtrennung von nicht umgesetztem Tl₂CO₃ durch Umkristallisation aus Methanol erforderlich. In siedendem Wasser betrug die Ausbeute nur ca. 50%; offensichtlich wird unter diesen Bedingungen die me₂Tl-Gruppierung durch das basische Agens während der Anionenaustauschreaktion nukleophil abgebaut. Die hohen Verluste bei der Ag₂O-Methode und bei der früheren Darstellung des Dimethylthalliumfumarats [5] lassen sich auf gleiche Weise erklären.

Das bisher unbekannte Dimethylthalliumthiosulfat konnte aus Tl₂S₂O₃ und me₂TlBr trotz deren Schwerlöslichkeit bereits beim Rühren in Wasser bei Raumtemperatur erhalten werden. Die Umsetzung war, wie aus NMR-spektroskopischen Untersuchungen hervorging, nahezu vollständig.

Das Dimethylthalliumthiosulfat enthält Kristallwasser, welches über H_2SO_4 im Exsikkator nicht zu entfernen ist. DTA/TG-Untersuchungen ergaben, dass die Verbindung langsam zwischen 62 und 115°C ein Mol H_2O pro Formeleinheit verliert und sich bei 210°C zu zersetzen beginnt. Trotz dieser im festen Zustand beachtlichen thermischen Stabilität führten Darstellungsversuche in kochendem Wasser unter Schwarzfärbung zu merklichem Zerfall. Durch Erhitzen des wasserhaltigen Salzes im Vakuum auf 120°C unter Schutzgas lässt sich die kristallwasserfreie Verbindung darstellen, deren gelbliche Färbung allerdings auf eine teilweise Zersetzung hindeutet. ($me_2Tl)_2S_2O_3$ ist in kaltem Wasser wesentlich besser löslich als $Tl_2S_2O_3$, so dass es als Ausgangsverbindung zur Darstellung empfindlicher löslicher Thiosulfate aus Halogeniden vorteilhaft eingesetzt werden kann.

Die Kopplungskonstanten $J(^{205}\text{Tl}-\text{CH}_3)$ der neu dargestellten Verbindungen (me₂Tl)₂X (X = S₂O₃²⁻, α , ω -dicarboxylat) in D₂O entsprachen mit 408 Hz den bei me₂TlNO₃ und me₂TlClO₄ gefundenen Werten (407 bzw. 406 Hz) [12]. Dies und auch die IR-Daten lassen auf einen ionischen Aufbau mit linearem C-Tl-C-Gerüst schliessen; das Alternativverbot war streng eingehalten, d.h. ν_{as} (TlC₂) war nur IR-aktiv, ν_{sym} (TlC₂) war nur Raman-aktiv. ν_{as} (TlC₂) (555 cm⁻¹, bei allen Verbindungen) lag in dem für ionische me₂Tl-Verbindungen charakteristischen Bereich >550 cm⁻¹ [12].

TABELLE 1
AUSBEUTEN UND C.H-ANALYSEN DER DARGESTELLTEN VERBINDUNGEN

Verbindung (me = CH ₃)	Ausbeute (%) ^a	Fp. (°C)	Analysenwerte gef. (ber.) (%)		
			С	H	
Me ₂ TlOCOCH ₃	90	293 b,c	16.23	3.07	
			(16.37)	(3.09)	
me ₂ Pb(OCOCH ₃) ₂	94	178-180	20.21	3.22	
			(20.28)	(3.40)	
(me ₂ SnOCOCH ₃) ₂ O	91	244 ^{b,d}	22.45	4.24	
			(22.26)	(4.20)	
(me ₂ Tl) ₂ C ₃ H ₃ O ₂	80	235 ^b	14.65	2.30	
$C_3H_3O_2 = Malonat$			(14.73)	(2.47)	
(me ₂ Tl) ₂ C ₄ H ₄ O ₄	85	275 ^b	16.27	2.96	
C ₄ H ₄ O ₄ = Succinat			(16.43)	(2.76)	
(me ₂ Tl) ₂ C ₄ H ₂ O ₄	86	230 ^b	16.13	2.77	
$C_4H_2O_4 = Maleat$		_	(16.48)	(2.42)	
(me ₂ Tl) ₂ C ₄ H ₂ O ₄	90	250 ^b	16.42	2.54	
C ₄ H ₄ O ₄ = Fumarat			(16.48)	(2.42)	
(me ₂ Tl) ₂ CO ₃	82	300 ^b	11.41	2.37	
			(11.37)	(2.29)	
(me ₂ TI) ₂ S ₂ O ₃ · H ₂ O	83	210 ^{b,e}	8.08	2.42	
			(8.02)	(2.36)	

^a Bezogen auf das Ausgangsprodukt me₂TiBr. ^b Zersetzungstemperatur, im abgeschlossenen Röhrchen beobachtet. ^c Lit. [17] Fp. 293°C. ^d Lit. [11] Fp. 236°C. ^e Zers. der wasserfreien Verbindung (vgl. auch Text).

Experimentelles

Darstellung von Dimethylmetallverbindungen durch Anionenaustausch mit Thallium(I)-Salzen

Ausbeuten und Analysendaten vgl. Tab. 1.

Dimethylthalliumacetat. Eine Lösung von TlOAc (13.2 g, 0.05 mol) in 70 ml ca. 40°C warmem Methanol wurde langsam zu einer Aufschlämmung von me₂TlBr [8] (16 g, 0.051 mol) in 50 ml Methanol gegeben. Das Gemisch wurde 1/2 h unter Rückfluss gekocht und heiss von TlBr abfiltriert. Danach wurde die Lösung soweit eingeengt, bis me₂TlOAc in farblosen Nadeln auskristallisierte.

Dimethylbleidiacetat. me₂PbCl₂ [13] (15.6 g, 0.051 mol) und TlOAc (26.3 g, 0.1 mol) wurden in abs. Methanol der obigen Vorschrift entsprechend umgesetzt. Die Reaktionstemperatur soll 40°C nicht überschreiten, um Redistribution des me₂PbCl₂ zu verhindern.

Dimethylzinndiacetat. Lösungen von me_2SnCl_2 [14] (4.39 g, 20 mmol) und TlOAc (10.54 g, 40 mmol) in je 50 ml abs. Methanol wurden unter Feuchtigkeitsausschluss (Ar-Atmosphäre) unter Zusatz einiger Tropfen $HC(OC_2H_5)_3$ umgesetzt. Anschliessend wurde die $me_2Sn(OAc)_2$ -Lösung unter Ar von TlCl getrennt, im Ölpumpenvakuum stark eingeengt und der abgeschiedene Feststoff abgenutscht. Ausbeute 63% d. Th. Sn-Gehalt (colorimetrisch [15]: gef. 45.65, ber. 44.48%.

Tetramethyl-1,3-bisacetoxystannoxan. Lösungen von me₂SnCl₂ (1 g, 4.55 mmol) und TlOAc (2.4 g, 9.1 mmol) in Methanol wurden vereinigt und filtriert.

Nach Zusatz einiger ml Wasser wurde eingeengt und in der Kälte auskristallisiert.

Dimethylthalliummalonat, -succinat, -maleat und -fumarat. me₂TlBr (2.6 g, 8 mmol) und das Thallium(I)-Salz (4 mmol) der entsprechenden Dicarbonsäure wurden in 50 ml Methanol unter Rühren 2—3 h unter Rückfluss gekocht. Aus der heiss filtrierten Lösung scheiden sich beim Abkühlen, ggf. nach Einengen, farblose Kristalle ab.

Die Thallium(I)-Carboxylate wurden ausgehend von TlOAc bei Raumtemperatur aus methanolischer Lösung durch Zugabe der entsprechenden Säure in Methanol ausgefällt.

Dimethylthalliumcarbonat. Tl₂CO₃ (5.5 g, 0.01 mol) und me₂TlBr (7.4 g, 0.02 mol) wurden in 100 ml Wasser 2 h bei 60°C gerührt. Danach wurde heiss filtriert und die wässrige Lösung im Vakuum eingeengt. Der Rückstand wurde aus Methanol umkristallisiert.

Dimethylthalliumthiosulfat. Tl₂S₂O₃ [16] (1.04 g, 2 mmol) und me₂TlBr (1.3 g, 4 mmol) wurden in 50 ml Wasser 2 h bei Raumtemperatur gerührt. Anschliessend wurde filtriert und die Lösung im Vakuum über konz. H_2SO_4 eingeengt. Es bleibt (me₂Tl)₃S₂O₃ · H_2O zurück.

Dank

Dem Fonds der Chemie danken wir für finanzielle Unterstützung.

Literatur

- 1 A.G. Lee, The Chemistry of Thallium, Elsevier, Amsterdam, London, New York, 1971.
- 2 R.C. Menzies, N.V. Sidgwick, E.F. Cutcliffe und J.M.C. Fox, J. Chem. Soc., (1928) 1288.
- 3 A.E. Goddard, J. Chem. Soc., (1922) 36.
- 4 A.E. Goddard, J. Chem. Soc., (1923) 1161.
- 5 R.C. Menzies, J. Chem. Soc., (1947) 1378.
- 6 R.J. Meyer und A. Bertheim, Ber. Deutsch. Chem. Ges., 37 (1904) 2051.
- 7 G.B. Deacon, J.H.S. Green und R.S. Nyholm, J. Chem. Soc., (1965) 3411.
- 8 H. Kurosawa und R. Okawara, Organometal. Chem. Rev. A, 6 (1970) 65.
- 9 F.C. Hartwig, Ber. Deutch. Chem. Ges., 7 (1874) 298.
- 10 L.C. Willemsens, Investigations in the Field of Organolead Chemistry, Lead Zinc Res. Org., New York, 1965.
- 11 Y. Maeda und R. Okawara, J. Organometal. Chem., 10 (1967) 247.
- 12 H. Kurosawa, K. Yasuda und R. Okawara, Bull. Chem. Soc. Japan, 40 (1967) 861.
- 13 G. Grüttner und E. Krause, Ber. Deutsch. Chem. Ges., 49 (1916) 1415.
- 14 K.A. Kocheshkov, Ber. Deutsch. Chem. Ges., 66 (1933) 1661.
- 15 G. Pilloni und G. Plazzogna, Anal. Chim. Acta, 35 (1966) 325.
- 16 H. Euler, Ber. Deutsch. Chem. Ges., 37 (1904) 1074.
- 17 D. Goddard und A.E. Goddard, J. Chem. Soc., (1922) 256.