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The d].t‘ferent courses of the 1nteractlons of cyclopentadxenyl and arene ’
fnvatlves of Group VI and VII transition metal carbonyl and nltrosyl complexe
iw1th Lewis acids, in: solutlons have. been studled by IR spectroscopy
' The formation of adducts mvolvmg the metal atom was observed for
CpRe(CO)zL (L = CO, PRs) with SnCL;, SnBr,, TiCli; AreneM(CO); (M = Cr
"W) with-SnCl,, ’1‘1014, and Ph;PC;H,M(CO); (M = Cr, Mo, W) with ‘TiCl, an "
—-AlCL;. Complexes CpM(CO),NO and CpM(CO)(NO)PPh3, dependmg on their
donor and acceptor nature; form-adducts involving the oxygen ‘atoms.of CO
‘NO groups or the metal atom: ‘CpCr(NO),Cl reacts with Lewis acids via. the
- chlorine atom. The relatlve basmty of the d1fferent sﬂ:es in the complexes mves-‘
tlgated is d1scussed S Ll L e

”_Introductlon

Earher [1] the phosnhme denvatwes of cyclopentadlenylmangan\ etricar:




=The present ork-is concerned w1th the IR study of reactlons of d1fferent

wis acids with the denvatlves ‘of cyclopentadleny]rhemumtncarbonyl (CRT), :
Carbonyls of chromlum, molybdenum and tungsten, cyclopentadrenyhde 2y
: complexes of chromium, molybdenum, tungsten and manganese; cyclopenta- :
: dlenylcarbonylmtrosyl complexes CpM(C0)2N0 CpM(CO)(N O)PPh3 (M Mo

w) ‘and CpCr(NO)zcl
Results and dxscussmn

: I Cyclopentadzenyl and arene carbonyl complexes of rhenzum chromzum, '7
molybdenum and tungsten - :

-The CO stretchmg frequenmes of the complexes lnvestlgated in methylene

_ chlorlde solution, are listed in Table 1. CRT and CMT, studied prev10usly 11,

: do not react with SnCl, in methylene ch_londe. CMT also does not react with
_the stronger acrd TiCla. However, with CRT in the presence of excess TiCly; -
together with the bands due to the initial compound there appeared new bands,
. shifted to- higher frequencxes by more than 100 cm‘1 the latter being spemflc
for meta.l adducts. o

_, ‘.Thls agrees with our prev10us results on the protonation of CMT and CRT
phosphme der1vat1ves that in these complexes the rhenium basicity is hlgher
.i;jgthan that of manganese [4]. Substitution of a CO group by .phosphine, or =
phosph_lte hgands sharply increases the metal basicity [2,4,5]. Thus, CpRe(CO).L -
[ compounds ‘where L = PPhs, P(OEt); or P(OPh); react not only with TiCl, but with
- -SnCl,; and’ SnBr4 as well. The initial complexes are transformed completely into
adducts in the presence of excess SnCl,. Even with a large excess of SnBr, in- -
B complete tl'ansformatlon of the less basic CpRe(CO),P(OPh); complex into f ’
adduct ‘was. observed Thus the Lewis acids form the following series of de- -

o creasmg bas1c1ty in their ablhty ‘to form adducts: TiCl, > SnCl4 > SnBr,. -
7-“Recently it. was found that formation of ¢is and trans isomers, with respect to"
< phosphme hgand is p0s51ble in protonation of CMT phosphme denvatlves [6 7 ]
o Srmﬂar possibrhtr_es ex1st in reactrons w1th Lems ac1ds ‘




HEIR ADDUCT

B Donor s

CPR.e(CO)a -
CDRe(CO)3 + Sn014
CpRe(CO)3 + TlCl4

CpRe(CO), P(OPh)3

.CpRe(CO)2 P(OPh)3 + Snb14“ o
'CDRe(GO);P(OPh)3 +SnBrg |
'CPR&(GO)2P(OPh);3 + '1‘1014 ‘

CPRe(CO),P(OEt)3 =

. CpRe(CO);P(OEt)3 + SnCly
_CPRe(CO), P(OEL)3 + TiCl3
CpRe(CO)FPh3
CpRe(CO)2PPh3 +TiCly

" MzCr(CO)3 @ ,
MzCr(CO)3 + SnCl4
. MzCr(CO)3 + TiCl4 ‘

CsHg &(00)29%3
C6H6CI(CO)2PPh3 + SnCle

MZMO(CO)3 o
. MZMO(CO)3 + SnCly
- MzMo(CO)3 + TiCls -

TMzW(CO)3 . .
" MZW(CO)3 + SnClg
MzW(CO)3 + TiCly

" CpylidCr(CO)3 2

' CpylidCr(CO)3 + cz:-3coon

. in.CH32Cl;3

: CthdCr(CO)s + TiCly

.- CpyldCxr(CO)3. f»AlCl:«;
CpylidMo(CO)3 o

' CpylidMo(CO)3 + - CF3COO0H

.. in CH2Clp ~

CpylidMo(CO)3 + TiCly

CpylidMo(CO)3 + AlCl3

"~ CpyldW(CO)3 -
CpylidW(CO)3 + CF3COOR
CpylidW(CO)3 + TiCly

. prlidW(CO)g + AlCl3

" 10285 2027s
" 1929s 2027s

1928vs 20275

18915 1961s"

. .1891s1961s
+1891m 1961m .
©1./1891m'1961m

1871s 1945s

~1871m 1943m

1859s 1930s

18825 1961s

1881s1961s
18825 1961s

18345 1893s

18815 1963s

18765 1961s

1813s 1918s

1811s1911s

- 1808s 1904s-

' 2082m 2138m

.2010s 2060m
20025 2053m
202152073s -

/20035 2055m

20003 2023(sh) 20615 2083(sh)

1990s 2017m 2051m 2074m

. 20055 2030m 20655 :

1997s (br) 2069s
1958s 2002 sm

20125 2038m 2081s -
(dec.) -
2001s 2023m 20768
1995 2030m 2070s 2091s "

- 19565 1971(sh) 20365 - -

1950s 1963(sh) 2032s
1950s 1964_(sh) 2032s

19585 1970(sh) 20453 e
1962s (br) 2044s :

- 1961s (br) 2043s

1954s(br) 20405 .

'1957s (br) 2040s .

1953s (br) 20408

.a Mz mes:tylene. b prhd ppn,

(OEt)3 the ratlo of optlcal densmes of the bands is 1 28 It 1s 1mporta.nt to r




rand: phosphme hgand Upon coordmatlon with H’ and A1013 the angle
crease is neghglble and no uneqmvocal conclusmn may .be drawn on the adduct -
geometry, although formatlon of the trans isomer seems more probable. : o
reaction of CpRe(CO)zPRa w1th '1‘1014 un.hke other Lewis acids, the IR
spectrum pattern of the adduct in the reglon of »(CO) is more. comphcated

"84 bands are observed instead of 2 v(CO) bands. The addltlonal bandsare less
;-f:,mtenswe and shifted by 20—380 cm ™! towards the higher ﬁ:equences, with respect
“‘to the prmclpal adduct bands. The mtens1ty ratios of the principal and addition-
.al bands changes w1th trme which enables us to ascribe them to different sub-
“stances in solut1on On the addition of -water all four bands disappear and the
;f_.'_ibands of the initial ca.rbonyl complex are observed. A similar pattern has been
':.'.obtamed ear].ler, in reaction of some phosphine CMT derivatives with Lewis
~acids [1]: Add1t10na1 bands may be due either to formation of adducts of dif-
fferent compos1t10n ortoa srmultaneous presence of cis and frans adducts.

“In reaction with: SnCl,; coordination at the metal also takes place for the arene
:denvatlves of Group VI metals, MzM(CO); (Mz = mesitylene. M = Cr, Mo, W),
“which i is obvious from the data of Table 1. With excess SnCl, the Mo and W com-
: plexes are converted entirely into the adduct, while the Cr adduct is at equilib-

- rium ‘with the starting compound This result displays an increase of metal
'.basmlty in the complex with increasing atomic number. This agrees with our re-

~ sults on‘protonation [9] and with the regularities observed for other Group

- 'V—VII metal complexes [2,4]. Introduction of phosphine ligand increases the
;f.transrtron ‘metal basicity, thus CsHscr(CO)zPPhg, converts a.lmost completely

mto the adduct in the presence of an excess of SnCl,.’

" .. Arene complexes of Group VI metals with TiCl, also produce adducts bound
at the ‘metal atom. The molybdenum complex decomposes simultaneously, how-
.- ever, whereas the tungsten derivative shows four (instead of two) bands due to
“the adduct. “The two bands are close to those of the TiCl;—MzCr(CO); adduct -
-and the two additional bands are shifted to the higher frequencies by 20—35
“cm™. The band pairs belong to different substances since their relative intensi-
_ties change with time. All changes in the. spectra are reversible and when the
v.“adducts are decomposed with water the bands of the initial. compounds appear

- again: Thus-additional bands may be explamed by formation of different ad-

" ducts-in solutién. We note that for some tricarbonyl ¢complexes-the adduct

* formation- reduces ‘the local symmetry of the M(CO); fragment, as has been men-
:tioned for AlICl; adducts [3]. As a result, instead of two CO stretchmg modes of
A, and E species (local Csy symmetry) observed in the spectra of initial com-

" plexes, the adducts show three bands due to the sphttmg of the degenerate '
}imodes mto two’ components

2 Cyclopentadzenyllde complexes ( C5,H4PPh3)M(CO)3 ( M= Cr Mo W)
Tt has been demonstrated by IR ‘and NMR methods [10] that’ cyclopenta- :
»dlenyhde complexes (CSH.,PPha)M(CO)a (where M .= Cr, Mo and W) are pro-. .- -
“tonated in': CF;COOH ‘and react with -BF; at the metal atom. Our results on .~ e




o 'act with SnCl, to give the metal adducts. In this case the stretchmg mode fre- :

- protonation (Table 1) agree with this conclusion and show that the metal is ez
- clusively basic ini these complexes prthr(CO)3 is:almost: completely pro---
“tonated in a 1/100 ‘mixture of CFJ‘OOH/CH;CIZ, while for. CGHBCr(CO)zPPhs ,
"the protonatlon is. mcomplete in a 1/ 10 mixture, Thus, replacement of ben— :
" zene by Gpylid - increases- -the basxcxty of the central métal ‘atom’ much more™
‘than carbonyl replacement by tnphenylphosphme, The Lewis’ ac1ds TiCly and .
. AlCl, also'react with ylide complexes in CH,CL, solution with" adduct formatlon o
-at the metal atom. Recently we: ‘have found [8] that: 'AICl; may react- w1th tran
sition metal carbonyls in two ways: at the metal and at the carbonyl oxygen,:. "
depending essentially on the nature of the solvent. In benzene adduct: formatlon S
- at the CO ligand is more favourable than in CHZCIZ solution: prhdMo(CO), SN
gives a solid, oxygen coordinated adduct with AiMe; [11] which is isolated from N
toluene solution. Ylide complexes are poorly soluble but dissolve upon add1t10n ;_:_:'
of AlMe;. The complexes studied are insoluble in benzene even in the presence -
~of AICl;. In CH,C], the coordination with AICl; occurs via the metal, the hlgh
basicity of which favours such a reaction course.
Unlike the neutral ylide complexes of Cr, Mo, and W the cat1omc ylide com-
plex [CpylidMn(CO);] PFs~ reacts with none of the Lewis acids investigated
(SnCl,, TiClL, AlCl;) and is not protonated in CF;COOH. The presence of the
positive charge thereby decreases considerably both the metal and carbonyl
oxygen basicity. :

3. Carbonylnitrosyl complexes CpM( CO)zNO and CpM( CO)(NO)PPh3 (M =
Mo, W) :
Table 2 presents the data on reaction of the carbonylmtrosyl complexes :
CpM(CO),NO (M = Mo, W) and their phosphine derivatives with Lewis acids.
With respect to the compounds described before in this paper these complexes
have an additional basic centre - the nitrosyl oxygen atom.
The interaction of the compounds with complexes of the type Cp3Ln (where
Lnisa lanthamde) has been reported [12]. This occurs via the nitrosyl oxygen
~ which is more basic than that of the carbonyl. We found that, depending on the .
structure of carbonylnitrosyl complexes and the acceptor, interaction may oc- o
cur at the nitrosyl group, central metal atom or the carbonyl oxygen. R
The present and earlier data [1] show that SnCl,; and TiCl, yield the adducts .
with carbonyl complexes at the transition metal atom. The adduct CpMo(CO)z
NO=TiCl, is formed via the nitrosyl oxygen but CpW(C0),NO decomposes inre-- -
action with TiCl,. SnCl,; does not react with' CpMo(CO),NO but gives the = -
- nitrosyl oxygen adduct with the tungsten analogue. This result conﬁrms the hlgher
. basicity of nitrosyl oxygen in the tungsten complex than that in the molybdenum.f
compound. This may be a consequence of the stronger electron dens1ty shift =
“from tungsten towards the nitrosyl Hgand compareu Wlth molybde'lum towards
nitrosyl, owmg to the d,—; v mteractlon

. quencies of CO and NO shift by 150 cm™ towards the higher. values. ‘Ani mcreas
-'in metal basicity upon addition of puusph.me hga.nd ‘makes this process more -

‘favourable than coordination 1 v1a mtrosyl group The complex decomposed m
- reactlon w1th T1014 ‘ : :
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:decre:asés 017 35 cm'1 ‘the v(NO) frequency mcrea es'to 1710 cm™ and the
“:second: v(CO) band mcreases to 2065 cm™ In the case of the mtrosyl adduct

In tnphenylphosphme denvatlves CpM(CO)(NO)PPh3 the metal basmlty is
) ,;.hxgher, resulting in competition between the metal and nitrosyl oxygen atoms
+in.reaction with AlCl;. The tungsten denvatlve shows bands-at 1400 cm™ :
- (»(NO)), 1975 cm™ (»(CO)) due to the oxygen adduct, bands at 1713 cm™

2 (#(NO)),:2070.cm™* (p(CO)) due to the metal adduct together with weak bands’
f the initial complex (»(NO) 1590 cm™, »(CO) 1900 cm“) If only coordina-
fon_w1th the metal was observed for SnCl, then reaction at the oxygen pre-
-yails for AlCls, which-is ev1dent from the ratio of band mten51t1es (Fig. 1). The
molybdenum complex behaves analogously but the metal adduct content is
‘higher than that of the tungsten complex which could be; explamed by some- 7
vhat lower mtrosyl oxygen basicity. No <1gmf1cant dlffel‘ence in behavxour was
Abserved with AlCl;., in.CH,Cl, and benzene. '
-7 Thus,’ dependmg on the relative basicity of the metal carbonyl a.nd mtrosyl
‘oxygens and on the nature of the acceptor in the carbonylmtrosyl complexes;
‘the. dlfferent types of donor-—acceptor interactions may take place with the
“metal or. oxygens of the carbonyl and nitrosyl ligands acting as basicity centres. '
CpCr(NO)ZCl gives with Cp;Ln, in solutions of benzene and CH,Cl,, the
trosyl oxygen adducts [12]. For reactions with SnCl; and AICl; in CH,Cl, we
,ob_served the high-frequency shifts of the D(NO) bands from 1716 and 1820 cm"
101735, _and 1835 cm™ (with SnCL) and 1748 and 1845 cm ™ (with AlCls) The -
—30.cm™* shlft is evidence of acceptor coordination with the halogen atom

o the transmon metal [13].. Such behaviour is specific for the com- -

I¢ 3 _'th a. halogen hgand which was noted prewously, for example w1th

D Re(CO),Brzmreactlon w1th AlCl3 [3] Sl o
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