TELLURIUM

LITERATURE SURVEY COVERING THE YEAR 1975

•

KURT J. IRGOLIC

Department of Chemistry, Texas A&M University, College Station, Texas 77843

Table of Contents

Ι.	Introduction	413
11.	Reviews	413
III.	Methods for the Introduction of Tellurium into Organic Molecules	414
IV.	Tellurocyanates and Tellurium Derivatives, X=C=Te	417
۷.	Compounds Containing a Single Carbon-Tellurium Bond	419
	A. Tellurenyl Compounds, RTeX	419
	B. Organyl Tellurium Compounds, RTeX ₃	422
	C. Organyl Tellurium Pentahalides, RTeX ₅	423
	D. Tellurinic Acids and Their Derivatives	423
	E. Diorganyl Ditellurides	423
VI.	Compounds Containing a Carbon-Tellurium-Carbon Moiety	425
	A. Diorganyl Tellurides	426
	1. Symmetric diorganyl tellurides	426
	2. Unsymmetric diorganyl tellurides	428
	3. Tellurides with two tellurium atoms in the molecule	433
	B. Diorganyl Tellurium Compounds, R ₂ TeX ₂	436
	C. Diorganyl Telluroxides	437
VII.	Triorganyl Telluronium Compounds, [R ₃ Te] ⁺ X ⁻	437
VIII.	Organic Tellurium Compounds Containing a Tellurium-Metal or	
	a Tellurium-Metalloid Bond	438
<u> </u>	_	

Tellurium, Literature Survey covering the years 1972-1974 see J. Organometal. Chem., 103 (1975) 91-196.

References p. 474

.

	Α.	Organic Compounds of Tellurium with Metals of Group I, II or	III 439
	Β.	Organic Compounds of Tellurium Containing a Tellurium-Seleniu	IM Bond 440
	C.	Organic Compounds of Tellurium Containing a Tellurium-Mercury	/ Bond 440
	D.	Organic Compounds of Tellurium Containing a Tellurium-Transit	tion Element
		Bond	441
IX.	Het	erocyclic Tellurium Compounds	443
	A.	Tetrahydrotellurophene	444
	Β.	Tellurophene	444
	C.	4,5,6,7-Tetrahydrobenzotellurophene	445
	Đ.	Cyclohept-l-eno[1,2-b]tellurophene	445
-	E.	Naphtho[1,2-b]tellurophene	446
	F.	4,5-Dihydronaphtho[1,2-b]tellurophene	446
	G.	1,4-Benzoquinono[c]tellurophene	446
	н.	Dibenzotellurophene	448
	I.	1-Tellura-1,2-dihydronaphthalene	448
	J.	Tellurochromanones and Tellurochromanols	448
	к.	1-Oxa-4-telluracyclohexane and 1-Aza-4-telluracyclohexane	450
	L.	Phenoxtellurine	450
	М.	1-Phospha-4-telluracyclohexane	¥ 51
	N.	1-Thia-4-telluracyclohexane	451
	0.	2,5-Diaza-3,4-dioxa-3a-tellura-3,4-dihydropentalene	452
X.	Phy	sicochemical Investigations of Organic Tellurium Compounds	452
	Α.	Infrared and Raman Spectroscopy	453
	Β.	Ultraviolet-Visible Spectroscopy	457
	C.	Nuclear Magnetic Resonance Spectroscopy	457
		1. ¹ H NMR spectroscopy	457
		2. ¹⁹ F NMR spectroscopy	466
		3. INDOR NMR spectroscopy (¹⁹⁵ Pt- ¹²⁵ Te)	466
	D.	Electron Spectroscopy	467

			413
	E.	¹²⁵ Te-Moessbauer Spectroscopy	467
	F.	Mass Spectroscopy	467
	G.	X-Ray Structure Analyses	472
	н.	Dipole Moment Measurements	473
XI.	Ana	lytical Techniques	474
XII.	Bio	logy of Organic Tellurium Compounds	474

and the company of a club model.

I. Introduction

This annual survey of the organic chemistry of tellurium, a sequel to the tellurium review which last year has appeared for the first time in this journal,¹ covers the literature abstracted in Chemical Abstract Volume 82, No. 1 through Volume 84, No. 9. A few older publications, which have not been covered earlier, are also discussed. Generally, only those compounds have been included which contain at least one tellurium-carbon bond. However, this selection criterium has not been strictly applied. Thus, triorganylphosphine tellurides and similar tellurium compounds are described in these surveys. Tellurium-sulfur compounds, which do not have at least one telluriumcarbon bond, have been excluded. These derivatives are commonly discussed in the context of sulfur compounds.

In this survey the symbol "R" is used for alkyl as well as aryl groups. The term "organyl" denotes any organic group. When reference is made to older results, the original paper is generally not cited; instead the reader is referred to ref. 1 or 2, which will provide excess to the appropriate literature.

The partial financial support for this endeavor by the Robert A. Welch Foundation of Houston, Texas, is gratefully acknowledged.

II. Reviews

The following reviews were published during the survey period.

References p. 474

414

<u>Tellurium</u> (K. J. Irgolic, 1975)¹: A literature survey of organic tellurium chemistry covering the years 1972–1974.

X-Ray Diffraction of Oxygen, Sulfur, Selenium and Tellurium Compounds (M. B. Hursthouse, 1974)³: A review of the molecular structures of inorganic and organic compounds of group VI elements published during the period 1972-1973.

<u>Reactions of Atoms in Ground and Electronically Excited States</u> (R. J. Donovan and H. M. Gillespie, 1975)⁴: A review of reactions of atoms in the ground and electronically excited states. Included are reactions of tellurium atoms with olefins.

Formation of Organometallic Compounds in Organisms (N. Imura, 1975)⁵: Review of the reactions which occur in living organisms and lead to the formation of carbon-arsenic, carbon-selenium, carbon-tellurium or carbon-mercury bonds.

Organic Compounds of Sulphur, Selenium, and Tellurium, Volume 3 (The Chemical Society, Specialist Periodical Reports, 1975)⁶: Review of the organic chalcogen chemistry covering the period April 1972 to March 1974. The following tellurium compounds are discussed: Tellurium Ylides (A. W. Johnson); Tellurophens (S. Gronowitz); Aliphatic Tellurium Compounds (G. C. Barrett).

<u>Organophosphorus Tellurium Compounds</u> (I. A. Nuretdinov, et al. 1972)⁷: A lecture presented in 1972 reviewing organophosphorus tellurium compounds (14 references).

Role of Partially Occupied d-Orbitals of Onium-Type Compounds in the Catalytic Activation of Molecular Oxygen (K. Ohkubo, 1974)⁶: A review , relating the catalytic influence of onium compounds, among them $(CH_3)_3$ Te⁺, on the autoxidation of cumene to the d-orbital participation in the formation of O_2 -onium complexes.

The following reviews are not devoted to organic compounds of tellurium. They might, however, be of interest to organometallic tellurium chemists.

Inorganic Chemistry of Tellurium (A. Engelbrecht and F. Seadky, 1975)⁹.

Chemistry and Technology of Selenium and Tellurium (A. A. Kudryavtsev, 1974)¹⁰.

Analytical Chemistry of Selenium and Tellurium (I. I. Nazarenko and A. N. Ermakov, 1973)¹¹.

<u>The Chemistry of Sulfur, Selenium, Tellurium and Polonium</u> (M. Schmidt, W. Siebert and K. W. Bagnall, 1975)¹².

III. Methods for the Introduction of Tellurium into Organic Molecules

During the time covered by this survey hydrogen telluride, sodium telluride,

tellurium tetrachloride, tellurium tetrabromide, $Te_4(AsF_6)_2$, $Te_6(AsF_6)_2$, $[(C_6H_5)_4 As]_2TeS_4O_6$ and elemental tellurium were employed as reagents to introduce tellurium into organic molecules. Most of these reactions are extensions or modifications of previously reported preparative methods.

Hydrogen telluride passed into vinyl cyanide containing sodium methoxide produced bis(2-cyanoethyl) telluride¹³, a compound first prepared by Kaabak² in 1964. Sodium telluride in methanolic^{14,15} or aqueous dimethylformamide medium¹⁵ interacted with the acetylenes <u>1</u> to form the heterocyclic tellurium derivatives <u>2</u> (eqn. 1).

Zanati¹⁶ converted the dibromide $\underline{3}$ by means of sodium telluride to the tetrahydrotellurophene derivative <u>4</u>.

Sodium telluride treated with β -chlorovinylaldehydes followed by ethyl chloroacetate, chloroacetaldehyde, chloroacetone or chloronitromethane ýielded tellurophenes with the substituent -COOC₂H₅,-CHO,-COCH₃ or NO₂ in the 2-position¹⁷.

Tellurium tetrachloride and tetrabromide combined with trifluoromethyl radicals generated from hexafluoroethane in a glow discharge to give bis(trifluoro-methyl) telluride and bis(trifluoromethyl) ditelluride in low yields¹⁸. Condensa-

References p. 474

tion reactions between tellurium tetrachloride and acetic anhydride¹³ yielded bis(carboxymethyl) tellurium dichloride. 2-Biphenylyl mercuric chloride or 2-lithiobiphenyl and tellurium tetrachloride gave 2-biphenylyl tellurium trichloride¹⁸. Attempts to prepare organic tellurium compounds on a milligram scale employing phenyl magnesium bromide and ¹²⁶Te- or ¹³⁰Te-TeCl₄ failed in the hydrolysis step when too much elemental tellurium precipitated²⁰. The desired diaryl tellurium dihalides were obtained when tellurium tetrachloride or tetrabromide were treated with tetraaryl lead compounds²⁰. Tellurium tetrachloride accepted one phenyl group from tetraphenyl tin or triphenyl tin chloride in toluene at room temperature to form phenyl tellurium trichloride. In refluxing toluene diphenyl tellurium dichloride was obtained²¹.

Albeck²², investigated the reaction of tellurium tetrahalides with anthracene and its 9- and 9,10-chloro or bromo derivatives. Only 9- or 9,10-halogenated anthracenes or products of halogen exchange reactions between tellurium tetrachloride or tetrabromide and haloanthracenes were isolated. The product distribution was found to be solvent and temperature dependent. The halogenation reactions were accelerated by aluminum trichloride. Tellurium tetraiodide did not react with anthracene. Sadekov²³, however, had reported the preparation of bis(5anthryl) tellurium dichloride from anthracene and tellurium tetrachloride in refluxing toluene under the same conditions, which had been employed by Albeck. Benzene, tellurium tetrachloride and aluminum chloride produced diphenyl tellurium dichloride²² as reported earlier¹. Tellurium tetrachloride yielded transient, colored complexes with anthracene, triphenyl phosphine, 1,1-diphenylethylene and many other clefins in toluene, p-xylene. CH₂Cl₂, CHCl₃ or CCl₄ but not in dioxane or diethyl ether

Tellurium tetrachloride yielded transient, colored complexes with anthracene, triphenyl phosphine, 1,1-diphenylethylene and many other clefins in toluene, <u>p</u>-xylene, CH_2Cl_2 , $CHCl_3$ or CCl_4 but not in dioxane or diethyl ether solution²². 1,1-Diphenylethylene in diethyl ether yielded bis(1,1-diphenylethenyl) tellurium dichloride²². A U.S.S.R. patent^{P-1} claims the preparation of dihalides of the heterocyclic tellurium compounds <u>2</u> (X = 0, NH, C₆H₅N) from diolefins and tellurium tetrachloride or bromide.

Elemental tellurium did not react with tetraphenyl tellurium²⁰. Milligramscale reactions of tellurium with phenyl lithium or diphenyl iodonium iodide produced too much diphenyl to be of much utility²⁰.

The well known insertion of tellurium into carbon-lithium, carbon-sodium or carbon-magnesium bonds was used to prepare phenyl lithium telluride^{24,25}, ethyldiacetylenyl sodium telluride²⁶, 4-methylphenyl bromomagnesium telluride²⁴ and 2-biphenylyl iodomagnesium telluride²⁷. These moisture and air sensitive compounds were not isolated but used <u>in-situ</u>.

Freshly precipitated tellurium replaced the $Rh[(C_6H_5)_3P]_2Cl$ -group in the heterocyclic compounds 5 upon heating in absolute xylene yielding tellurophene derivatives^{28,29}.

In continuation of an earlier investigation¹, $Te_4(AsF_6)_2$ and $Te_6(AsF_6)_2$ and tetrafluoroethylene were kept under 15 atm. pressure at 100° for approximately ten days. The tellurium containing products $(C_2F_5)_2Te_n$, $C_4F_9Te_nC_2F_5$ (n = 1, 2) and $(C_4F_9)_2Te$ were obtained. When sulfur dioxide was present in the mixture C_2F_5 -Te- C_3F_6COF was also observed³⁰.

The reactions of organic tellurium compounds which have been used to produce new organic tellurium derivatives are summarized in Fig. 1. All these reactions are discussed in the sections devoted to the appropriate tellurium compounds.

IV. Tellurocyanates and Tellurium Derivatives X=C=Te

Austad³¹ investigated the kinetics of the reaction between telluropenta-

References p. 474

418

Fig. 1: Transformations of Organic Tellurium Compounds

thionate, $\text{TeS}_40_6^-$, and tetraphenyl phosphonium cyanide in acetonitrile medium. The reaction was found to be second order and generated tellurocyanate ion but not elemental tellurium (eqn. 2). Thermodynamic data for this reaction

(2)
$$\text{TeS}_{4}O_{6}^{-} + 6CN^{-} \rightarrow \text{TeCN}^{-} + SCN^{-} + S_{2}O_{3}^{--} + (CN)_{4}^{--}$$

are reported.³¹.

Tellurium dicyanide was converted to tellurocyanate by cyanide ion in

acetonitrile medium. The CN group in TeCN[®] exchanged rapidly with ionic cvanide³².

V. Compounds Containing a Single Carbon-Tellurium Bond

The compounds treated in this section contain only one carbon-tellurium bond. During the survey period organyl tellurium halides and pseudohalides, RTeX, organyl tellurium trihalides, RTeX₃, methyl tellurium pentafluoride, 2-biphenyltellurinic acid and diorganyl ditellurides received attention. No new results were reported for tellurols, RTeH, organyldihalotellurium compounds, [RTeX₂]⁻ or [RTeX₂]⁺, and organyltetrahalotellurates(IV), [RTeX₄]⁻.

Tellurium derivatives, in which the second tellurium valence is satisfied by group I to V element atoms or selenium are discussed in section VIII.

A. Tellurenyl Compounds

Aryl tellurium halides¹ with a stabilizing carbonyl group in <u>ortho</u>position to the tellurium atom, and 2-naphthyl tellurium iodide² are the only tellurenyl derivatives, which have been isolated without a ligand in the molecule. Not ligated organyl tellurium halides were generated from ditellurides and halogens and used <u>in-situ</u>¹. Schulz and Klar^{27,33} have now shown that aryl tellurium bromides and iodides can be isolated when equimolar amounts of halogen and ditelluride are combined in a solvent in which the starting materials are soluble and the tellurenyl compound is insoluble (eqn. 3). Such solvents are

(3) $R_2 Te_2 + X_2 \longrightarrow 2RTeX$

benzene, toluene, hexane, petroleum ether, carbon tetrachloride or glacial acetic acid depending on the nature of the compound. The compounds prepared in this manner are listed in Table 1. The aryl tellurium iodides are blue-violet to black, probably polymeric materials, which are rather insoluble in common organic solvent. The solid iodides are stable for weeks in dry air. The red-brown to black bromide derivatives are not very stable even in the solid state and become discolored after one day. Sodium sulfide reduces these halides to the ditellurides, element halogen converts them to aryl 、 やいこ とうたいちまたちち ちんちちちちち ちろうちち おいちちいい こうちちいい いろうちん ちろいろうちつ

TABLE 1 ORGANYL TELLURIUM HALIDES, RTeX

R	x	<pre>% yield</pre>	dec., ^o C	Ref.
с _{6^H5}	Br	45	70-75	33
	I	70-80	120-5	33
4-CH30C6H4	Br	90	~70	33
	I	70-80	145-150	33
3,4-(CH ₃ O) ₂ C ₆ H ₃	I	50	~95	33
4-C ₆ ^H 5C ₆ ^H 4	Br	55	~250	33
	I	75	~180	33
^{2-C} 6 ^H 5 ^C 6 ^H 4	Br	44	110~5	27
	r	6	115-6	27
	6 6			

tellurium trihalides and base hydrolysis produces a mixture of ditellurides and tellurinic acid derivatives³³.

A number of phenyl tellurium halide compounds, RTeX-L, stabilized by thiourea and selenourea ligands were prepared by the previously developed method^{1,2} of halogenolysis of ditellurides in the presence of the appropriate ligand. Variation of the stoichiometry produced in a few cases adducts of the type RTeX-L₂. Several complexes were obtained through halogen exchange. These reactions are summarized in eqn. 4.

The compounds prepared according to eqn. 4 are listed in Table 2.

Petragnani³⁷ reacted tetrahydrofuran solutions of aryl tellurium bromides with organyl magnesium halides and obtained unsymmetric diorganyl tellurides,

TABLE 2 PHENYL TELLURIUM HALIDE AUDUCTS, C6^H5^{TeX-L}n

x	L	n	yield %	mp.°C	Ref.
C1	[(CH ₃) ₂ N] ₂ CSe	1	73	151-2	34
Br		1	80	162-3	34
C1	[(CH ₃)2N]5cs	1	63	111-3	35
Br		1	82	115-6	35
C1	CSe	2	68	190-1*	34
Br		1	80	163-4	34
I)	1	95	137-9*	36
C1] Cs	1	79	133-6	35
		2	80	166-7	35
Br [†]	}	1	83	142-3	35
I		1	94	116-8*	36
SCN	J	1	70	111-3	35
Br	CSe	1	74	152-3	34
C1		1	71	165-6	35
8r	}`NH	1	86	159-60	35

Ξ

;

*dec.

2 A. A.

- -

[†]This compound exists in two crystalline modifications. References p. 474

R-Te-R'. Phenyl bromomagnesium selenide and the tellurenyl compounds yielded diorganyl selenide tellurides, RTe-SeR.

B. Organyl Tellurium Compounds, RTeX₃

Several new aryl tellurium trihalides were synthesized. Treatment of the appropriate aryl tellurium trichloride in refluxing toluene with silver fluoride produced 4-methoxyphenyl tellurium trifluoride (mp. 176-8°) and 4-ethoxyphenyl tellurium trifluoride (mp. 204°). Yields were not reported³⁸.

2-Biphenyīyl tellurium triodide (dec. 164-5°) was obtained from the ditelluride and iodine in boiling chloroform²⁷. The corresponding trichloride (dec. 157°) was formed in 16% yield from tellurium tetrachloride and 2-lithiobiphenyl, and in 76% yield when 2-biphenylyl mercury chloride was employed¹⁹.

The known compound phenyl tellurium trichloride was prepared in 95% yield from triphenyl tin chloride and tellurium tetrachloride at room temperature in toluene medium²¹. Phenyl tellurium tribromide was formed in almost quantitative yield when diphenyl selenide telluride³⁷ was treated with 2 moles bromine in carbon tetrachloride at 0° .

Aryl tellurium trichlorides behave as Lewis bases in the presence of $AlCl_3$, AsF_5 or $SbCl_5$, but as Lewis acids in the presence of pyridine, ethylenediamine, thiourea or halice ions²².

The reaction of 4-methoxyphenyl tellurium trichloride with anthracene yielded 9-chloro- and 9,10-dichloroanthracenes, elemental tellurium and bis(4-methoxyphenyl) tellurium dichloride. It was suggested that the tellurium dichloride was formed by disproportionation of the trihalide, $RTeCl_3$, to R_2TeCl_2 and $TeCl_4^{22}$. Such a disproportionation reaction was first reported in 1972 by Sadekov¹.

The aryl tellurium trichlorides, $4-RC_{6}H_{4}TeCl_{3}$ (R = H, $CH_{3}O$) produced upon refluxing with triphenyl tin chloride or tetraphenyl tin in toluene the dlaryl tellurium dichlorides²¹. When 2-biphenylyl tellurium trichloride was heated in refluxing nitrobenzene dibenzotellurophene dichloride was formed¹⁹.

C. Organyl Tellurium Pentahalides

A study of the <u>cis</u>-influence in tellurium compounds $XTeF_5$ by molecular orbital calculations confirmed the experimental observations that the fluorine 'atoms in <u>cis</u>-position to the ligand are more labile. Methyl tellurium pentafluoride was included in this investigation. The following order of increasing <u>cis</u>-influence was found³⁹: $H < OH < NH_2 < Cl < CH_3 < Br < SH - PH_2 < SiH_2$.

and a second second

D. Tellurinic Acids and Their Derivatives

When the compound $R_2 Te_2 \cdot I_4$ (R = 2-biphenylyl) was treated with an aqueous sodium acetate solution at 90° for 9 hrs., kept for an additional 12 hrs. at room temperature and then acidified, 2-biphenyltellurinic acid was isolated in 77% yield²⁷.

E. Diorganyl Ditellurides

The first unsymmetric diorganyl ditelluride and several hitherto unknown diaryl ditellurides were reported during this survey period.

Perfluorobutyl pentafluoroethyl ditelluride was formed in trace amounts in reactions between tetrafluoroethylene and $Te_4(AsF_6)_2$ or $Te_6(AsF_6)_2$. The compound was identified by mass spectroscopy³⁰. A major product of this reaction was the previously reported bis(pentafluoroethyl) ditelluride³⁰. The reaction of tellurium tetrachloride or bromide with trifluoromethyl radicals generated from C_2F_6 in a glow discharge gave the known bis(trifluoromethyl) ditelluride in 33% yield¹⁸.

The reaction of 2-biphenylyl magnesium iodide with tellurium in tetrahydrofuran, followed by oxidation of the reaction mixture with air produced the new compound bis(2-biphenylyl) ditelluride (mp. 112-3°) in 28% yield²⁷. The 4-biphenylyl derivative was similarly synthesized and obtained for

References p. 474

the first time in a pure state by extracting the crude product in a Soxhlet under a nitrogen atmosphere, and re-extracting the collected crystals with absolute $acetone^{33}$. An impure product had been synthesized earlier by Haller¹.

Seebach²⁵ developed the reaction of phenyl lithium with tellurium in tetrahydrofuran and the subsequent hydrolysis and oxidation of the reaction mixture into a useful method for the preparation of ditellurides. Diphenyl ditelluride was obtained in quantitative yield. Dereu⁴⁰ using the procedure of Piette⁴¹, which consists of treating the aryl lithium compound in diethyl ether with tellurium, hydrolyzing the reaction mixture with 6<u>N</u> HCl and oxidizing it with air, prepared the following diaryl ditelIurides, R_2Te_2 , in moderate yields (R, % yield): C_6H_5 , 43%; 2-CH₃ C_6H_4 , 50%; 3-CH₃ C_6H_4 , 62% (mp. 32°); 4-CH₃ C_6H_4 , 58%; 2,5-(CH₃)₂ C_6H_3 , -; 3,4-(CH₃)₂ C_6H_3 , -; 2-CH₃ OC_6H_4 , 45% (mp. 82-3°); 1- $C_{10}H_7$, 66% and 2- $C_{10}H_7$, 25%. The compounds marked by an asterisk are new derivatives.

The formation of the known bis(2-carboxyphenyl) ditelluride was observed when 2-carboxyphenyl 2-carboxyethyl telluride was heated⁴⁰.

Ditellurides are cleaved by lithium in tetrahydrofuran forming phenyl lithium telluride, which was reacted <u>in-situ</u> with alkyl halides to produce phenyl alkyl tellurides⁴². The reduction of diaryl ditellurides with sodium borohydride in ethanol/benzene medium and the subsequent reaction of the intermediate aryl sodium tellurides with 3-chloropropionic acids yielded aryl 2-carboxyethyl tellurides⁴⁰. Reactions of diaryl ditellurides with elemental halogens generated aryl tellurium monohalides^{27,33,34,35,37} and aryl tellurium trihalides²⁷.

こうとうちょう いっていていたいでいたがないないないないないないないないないないないないないない

Schulz and Klar²⁷ isolated a compound of the formula $R_2 Te_2 I_4$ (R = 2biphenylyl) as a lilac-brown diamagnetic powder which decomposed at 145-150^c. Its molecular mass determined in benzene solution is in agreement with the proposed formula <u>6</u>.

424

د ا

This substance was obtained in 30% yield as the precipitate when the concentrated reaction mixture with benzene, toluene or CCl_4 as solvent containing equimolar amounts of the ditelluride and iodine was diluted with petroleum ether and cooled. From the reaction between 2 moles of iodine and 1 mole of ditelluride in CCl_4 , R_2TeI_4 was isolated from the mother liquor after the insoluble aryl tellurium triodide was removed by filtration. Reduction of $R_2Te_2I_4$ with sodium sulfide yielded the ditelluride. Hydrolysis lead to a mixture of ditelluride and tellurinic acid²⁷.

Diphenyl ditelluride and diazomethane formed in quantitative yield methylene bis(phenyl telluride)²⁵. Excess methyl iodide converted the ditellurides $(4-RC_6H_4)_2Te_2$ (R = H, CH₃, C₂H₅O) into dimethyl aryl telluronium iodides and aryl methyl tellurium diiodides³⁸. Morgan² had claimed in 1925, that methyl iodide decomposed the bis(4-ethoxyphenyl) ditelluride.

VI. Compounds Containing a Carbon-Tellurium-Carbon Moiety

In this section diorganyl tellurides, diorganyl tellurium dihalides and dicarboxylates and diorganyl telluroxides are discussed. Several new methods for the preparation of some of these compounds were reported and a number of new derivatives were synthesized using procedures developed earlier^{1,2}. No work was done during this survey period with diorganyl tellurones, R_2TeO_2 , and derivatives of the type $[R_2TeX]^+$, $[R_2TeX_3]^-$, R_2TeX_4 and $R_2TeX_2Y_2$ (X,Y = halogen)

References p. 474

A. Diorganyl Tellurides

The discussion of diorganyl tellurides is divided into three parts: symmetric diorganyl tellurides, R₂Te, unsymmetric diorganyl tellurides, R-Te-R', and tellurides with two tellurium atoms in the molecule.

1. Symmetric diorganyl tellurides

Bis(trifluoromethyl) telluride, a yellow-green liquid with a boiling point of -98° and a melting point below -160° , was obtained in 20% yield from tellurium tetrabromide and CF₃ radicals generated from C₂F₆ in a glow discharge¹⁸. This telluride contaminated with CF₃-Te-CH₃ was also isolated when dimethyl telluride and trifluoromethyl iodide were irradiated with 3100 Å light quanta for 20 hours. Similarly, bis(pentafluoroethyl) telluride was prepared using pentafluoroethyl iodide⁴³. There is considerable disagreement about the properties of these fluorinated tellurides. Lagow¹⁸ reported the trifluoromethyl derivative to be extremely air sensitive, whereas Denniston⁴³ claimed it to be odorless and stable in air.

オード・オード かいい ディック・シーン アンド・ファイ いたたい

A more detailed investigation of the reaction between $Te_4(AsF_6)_2$ or $Te_6(AsF_6)_2$ and tetrafluoroethylene³⁰ at 100° and 15 atm. pressure showed that bis(pentafluoroethyl) telluride was formed in approximately 15% yield in addition to several unsymmetric tellurides. Traces of bis(perfluorobutyl) telluride were also detected. The pentafluoroethyl compound has an extrapolated boiling point of 64°.

Anthracene dehalogenated the diaryl tellurium dichlorides, $(4-RC_6H_4)_2TeCl_2$. (R = H, CH₃0), to the diaryl tellurides in refluxing ethyl methyl ketone in the presence of silver nitrate. 9,10-Chloroanthracenes were formed. The chlorinating action of the tellurium dihalides has been attributed to the formation of the [R₂TeCl]⁺ ions²².

Attempts to repeat the preparation of $Te(CH_2COOH)_2$ according to Morgan and Drew [J. Chem. Soc., (1925) 531] failed. The reduction of $(HOOCCH_2)_2TeCl_2$

always produced an impure product and caused the precipitation of tellurium¹³.

Bis(2-cyanoethyl) telluride (mp. 60°) was synthesized in 22% yield by passing hydrogen telluride into vinyl cyanide containing some sodium methoxide Kaabak's² synthesis of this telluride, which employed electrolysis of telluriur in vinyl cyanide, could not be reproduced¹³. Bis(2-cyanoethyl) telluride was hydrolyzed by refluxing 6<u>M</u> HC1. Bis(2-carboxyethyl) telluride (mp. 160°) was isolated in 87% yield. Alkaline hydrolysis gave polytellurides¹³.

The vapor pressure of dimethyl telluride is expressed by the equation $\log p_{torr} = (7.98 \pm 0.26) - (1865 \pm 86)/T (^{\circ}K)$ in the temperature range 25 to 92°C. The Trouton constant, and the enthalpy and entropy of evaporation have values of 23.2, 8.54 ± 0.04 kcal mol⁻¹ and 36 ± 1 cal mol⁻¹ deg⁻¹, respectively⁴⁴. The thermodynamic functions of dimethyl telluride were calculated using the rigid rotor-harmonic oscillator approximation in the range 273.15 to $1500^{\circ}K^{45}$. The orthobaric density and viscosity of dimethyl telluride were determined as a function of temperature⁴⁶. The enthalpy and entropy of hydrogen bonding of dibutyl telluride with benzenethiol and 2,6-di(<u>tert</u>-butyl)phenol were determined by nmr techniques⁴⁸.

The consecutive ionization constants of bis(carboxyalkyl) tellurides were determined¹³: Te(CH₂COOH)₂, $pK_1^{25^\circ}$ = 3.26, $pK_2^{25^\circ}$ = 4.77; Te(CH₂CH₂COOH)₂, $pK_1^{25^\circ}$ = 3.924(2), $pK_2^{25^\circ}$ = 4.767(2).

The following reactions of diorganyl tellurides were reported: alkaline (5M KOH) hydrolysis⁴³ of pentafluoroethyl and trifluoromethyl tellurides to $C_nF_{2n+1}H$; reaction of bis(trifluoromethyl) telluride with benzyl chloride⁴³ at 215° for 44 hrs. to produce a small amount of $C_6H_5CH_2CF_3$; the photolytic reaction of dimethyl telluride with CF_3I and C_2F_5I resulting in replacement of methyl by perfluoroalkyl groups⁴³; the gas phase bromination of $(CF_3)_2Te$ to $(CF_3)_2TeBr_2^{-18}$; the formation of the complex AuBr(CH₃)₂Te⁴⁷ and of silver complexes with Te(CH₂COH)¹³.

References p. 474

2. Unsymmetric diorganyl tellurides

A large number of hitherto unknown unsymmetric diorganyl tellurides were prepared. Petragnani³⁷ reacted aryl tellurium bromides-generated in tetrahydrofuran solution from ditellurides and bromine-with Grignard reagents (eqn. 5). The unsymmetric tellurides listed in Table 3

(5) RTeBr - R'MgX R-Te-R'

were obtained in yields higher than 90%. Phenyl lithium telluride, prepared either from diphenyl ditelluride and lithium⁴² or from phenyl lithium and tellurium²⁵, was found to be a convenient staring material for the preparation of phenyl alkyl tellurides. The products of these reactions (eqn. 6) are

TABLE 3

DIORGANYL TELLURIDES^{*}, R-Te-R', FROM TELLURENYL COMPOUNDS AND GRIGNARD REAGENTS, R'MgBr³⁷

R	R*	bp. °C/torr, mp. °C
с ₆ н ₅	C ₄ H ₉	71-2°/0.01
	<u>-</u> C ₆ H ₁₁	93-4 ⁰ /0.01 .
	с ₆ н ₅ с≡с	115-6°/0.005
4-CH3C6H4	C ₄ H ₉	75-6 ⁰ /0.1
	<u></u> C ₆ H ₁₁	100-1°/0.005
	C ₆ H ₅ C≡C	74~6°
	C ₆ H ₅	88-90 [°] /0.1
4-CH30C6H4	C ₆ H ₅	60-1 ⁰
4-C2H50C6H4	C ₄ H ₉	90-2°/0.01
	<u></u> ⊆-C ₆ H ₁₁	110-1°/0.01
	C ₆ H ₅ C≅C	67-8 [°]
-	C ₆ H ₅	113-5°/ 0.1
	1	

The yields were reported to be higher than 90%.

TABLE 4

R-Te-R' R М R'X yield % δ °C/torr; mp. bp. Ref. C₂H₅C≖C-C≡C Na $101 - 2^{\circ}/3$ CH_1 54 26 C6H5 Li CH2I 62 64°/ 1.1 42 CH2I 43 $57 - 8^{\circ} / 0.7$ 25 940/4 C2H5Br 67 42 C₂H₂Br 88°/1.5 42 81 <u>i</u>-C₃H₇Br 78[°]/1.3 71 42 CH2=CHCH2Br 45 62-3°/0.3 25 H00CCH_CH_C1 Na 80 65~7° 40 Lī CAHoBr 79 108°/2 42 Na HOOCCH_CH(CH_)C1 75 liquid 40 H00CCH(CH3)CH2C1 94 liquid 40 Li C₁₀H₂₁Br 29 oil 25 oil[†] C14H29Br 42 2-CH3C6H4 H00CCH2CH2C1 Na 76 77-8⁰ 40 Na 3-CH3C6H4 HOOCCH2CH2C1 56 31⁰ 40 4-CH3C6H4 Na нооссносност 76 66-8⁰ 40 3,4-(CH₂)₂C₆H₃ нооссн,сн,с1 Na 78 88-90° 40 2,4-(CH₃)₂C₆H₃ HOOCCH_CH_C1 Na 35 85-7⁰ 40 2,5-(CH3)2C6H3 Na HOOCCH_CH_C1 40 78-80^o 40 2-CH30C6H4 Na HOOCCH2CH2C1 104-5° 85 40 2-H00CC6H4 Na HOOCCH_CH_C1 178-82⁰(dec) _ 40 1-C10H7 Na 20 HOOCCH2CH2C1 107-8° 40 ^{2-C}10^H7 Na HOOCCH2CH2C1 67 109-13° 40

UNSYMMETRIC DIORGANYL TELLURIDES, R-Te-R', FROM ORGANYL ALKALI METAL TELLURIDES, R-Te-M, and ALKYL HALIDES, R'X.

^{*}Purified by chromatography on silicagel with cyclohexane as eluent.
[†]This dark colored oil could not be distilled. The telluride was converted to the tellurium diiodide, which was obtained in 70% yield.

References p. 474

(6)
$$C_{6}H_{5}$$
-Te-Li + RX $\xrightarrow{\text{THF}}$ $C_{6}H_{5}$ -Te-R

listed in Table 4 together with pertinent data. The phenyl alkyl tellurides, $C_{6}H_{5}$ -Te- $C_{n}H_{2n+1}$, are yellowish oils²⁵, which are stable when stored in the dark, but decompose in light probably to diphenyl ditelluride⁴². Oxidation of phenyl decyl telluride with oxygen or hydrogen peroxide in alkaline or acidic medium yielded a mixture of compounds, which was not further investigated²⁵. Similarly, aryl sodium tellurides, obtained by reduction of diaryl ditellurides with sodium borohydride in an ethanol/ benzene medium, combined with β -chloropropionic acids to yield aryl 2-carboxyethyl tellurides⁴⁰ (eqn. 7). These compounds are also listed in Table 4.

Treatment of the 2-carboxyethyl tellurides with dichloromethyl butyl ether and anhydrous zinc chloride produced the acid chlorides $\underline{7}$, which were not characterized but converted to the heterocycle $\underline{8}^{40}$.

2-Carboxyethyl 2-carboxyphenyl telluride⁴⁰ was converted to the acid chloride and ethyl ester as shown in eqn. 8.

80% yield; mp. 80-5"

When the 2-carboxyethyl 2-carboxyphenyl telluride was heated cylization did not occur. Only bis(2-carboxyphenyl) ditelluride was obtained. Treatment with polyphosphoric acid precipitated elemental tellurium. The Dieckman condensation attempted with the diester 9 to prepare the heterocycle 8 was unsuccessful⁴⁰.

Vinylacetylenyl methyl telluride added to acetic acid across the triple bond⁴⁹ (eqn. 9), formed an adduct RR'Te-2HgCl₂, an unstable crystalline compound with mercury(II) acetate and C=C-, C=C- and Te- hydrogen-bonded species with phenol, 4-chlorophenol and diphenylamine⁴⁹.

Boiling glacial acetic acid decomposed the vinylacetylenyl methyl telluride to vinylacetylene, methane and carbon dioxide⁴⁹. Methanethiol in a sealed tube at 100° did not add to the triple bond but caused Te-C bond cleavage. <u>tert</u>-Butyl peroxide oxidized the telluride at room temperature⁵⁰.

Boiling 10% sulfuric acid decomposed 1-acetoxybuta-1,3-dien-1-yt methyl telluride to $a-CH_2CH=CHCOOH^{49}$.

Seebach and Beck^{25} investigated the reactions of phenyl lithiomethyl telluride, which was prepared by the interaction between $(C_6H_5Te)_2CH_2$ and lithioalkanes. The new compounds synthesized from phenyl lithiomethyl telluride are summarized in eqn. 10.

References p. 474

 $R = CH_3, C_4H_9, \underline{tert} - C_4H_9$

The phenyl alkly tellurides formed as co-products in addition to the lithiomethyl telluride (eqn. 10) were detected and identified by nmr techniques but not isolated.

Phenyl lithiomethyl telluride²⁵ forms a yellow green tetrahydrofuran/ diethyl ether solution. The solutions were kept at 0° under an inert atmosphere for 24 hrs. without decomposition. The solutions were even stable at 20°.

The following diorganyl tellurides were identified in reaction mixtures obtained from Te₄(AsF₆)₂ or Te₆(AsF₆)₂ and tetrafluoroethylene at 100° and 15 atm³⁰: C₂F₅-Te-C₃F₇; C₂F₅-Te-C₄H₉; C₂F₅-Te-CF₂CF₂CF₂COF.

The photochemical reaction (3100Å) between dimethyl telluride and $CF_{3}I$ and $C_{2}F_{5}I$ produced CF_{3} -Te-CH₃ (11% yield) and $C_{2}F_{5}$ -Te-CH₃ (40% yield), respectively. These new tellurides were reported to be odorless, yellow liquids, which are stable in air, and liberate $C_{n}F_{2n+1}H$ (n=1,2) on treatment with 5 M KOH⁴³.

Petragnani³⁷ obtained the tellurides $\underline{c}-c_6H_{11}$ -Te-R (R = c_6H_5 , 4- $CH_3C_6H_4$, 4- $C_2H_5OC_6H_4$) by reduction of their dichlorides with sodium sulfide, and, similarly, th ^{Compounds} 4-RC₆H₄-Te-C₆H₅ (R = CH₃, C₂H₅O) from the dibromides. The dihalides

used in these reactions were prepared from the tellurides and sulfuryl chloride or $bromine^{37}$.

A German patent^{P-2} reported the preparation of glycerin triether derivatives useful as indicators in the determination of fat absorption containing oxygen, ⁷⁵Se and/or ^{123m}Te.

Phenyl methyl telluride formed a charge-transfer complex with tetracyanoethylene in methylene chloride with $\lambda_{max} = 6500\text{Å}$, from which an ionization potential of 7.82 eV was calculated for the telluride⁵¹. The following reactions of diorganyl tellurides, R-Te-R', in addition to the ones already discussed in this section, were investigated: conversion to diorganyl tellurium dichlorides by $SO_2Cl_2^{37}$, to dibromides^{37,42} and diiodides⁴² by elemental halogens; reaction of $C_2H_5C\equiv C-C\equiv C-Te-CH_3$ with methyl iodide to give [R(CH₃)₂Te] I²⁶; and cleavage of the CF₃-Te bond in CF₃-Te-CH₃ upon heating with $C_6H_5CH_2Cl$ at 215° for 44 hrs. to give $C_6H_5CH_2CF_3^{43}$.

3. Tellurides with two tellurium atoms in the molecules

Seebach and Beck²⁵ prepared methylene bis(phenyl telluride) in 6% yield by refluxing phenyl lithium telluride and methylene iodide, and in 70% yield from diphenyl ditelluride and diazomethane using Petragnani and Schill's method reported in 1970². The yellow compound melted at 35-6°. The following reactions (eqn. 11) were carried out with this telluride.

(Continued on p. 436)

DICARBOXYLATES
AND
DIHAL IDES
TELLURIUM
DIORGANYL

•

TABLE 5

					ć
R	R'	×	reparation	Y1eId %	m.p. ~C
c ₆ H _{5.}	сн ₃ *	1	RR'Te + I ₂	65	146 [†]
	-		R ₂ Te ₂ + CH ₃ I	•	145
	c2H5	1	RR'Te + I ₂	64	96 [†]
	c ₃ H ₇	1	RR'Te + I ₂	62	95 [†]
	<u>1</u> -c ₃ H ₇	1	RR'Te + I ₂	46	96 [†]
	c4H9	Br	RR'Te + Br ₂	35	70 [†]
		,	RR'Te + I ₂	84	79 [†]
	<u>c-c₆H₁₁*</u>	ច	RR'Te + 50 ₂ C1 ₂	8	61
	C14 ^H 29	-	RR'Te + I ₂	20	70 [†]
4-сн ₃ с ₆ н ₄	сн ^з *	14	$R_2 Te_2 + CH_3 I$	•	127
	с-с ₆ н 11	CJ	RR'Te + SO ₂ C1 ₂	06 ~	85
	c ₆ H ₅	Br	RR'Te + Br ₂	>90	181
4-сн ₃ ос ₆ н ₄	ceH5	C1	RIEC1 ₃ + (C ₆ H ₅) ₃ SnC1	80	113
4-c ₂ H ₅ 0C ₆ H ₄	CH ₃ *	1	R ₂ Te ₂ + CH ₃ I	. 34	108

ないのでする。大気にいたす」「大気にいたい」ですのない。

, , , ,

.

	<u>c-c₆H₁₁</u>	5	RR'Te + SO ₂ Cl ₂	34	113	37
	с ₆ н ₅ *	Br	RR'Te + Br ₂	Ŧ	148-51	37
с ₆ н ₅	с ₆ н ₅	5	C ₆ H ₆ + TeCl ₄ /AICl ₃	,	- <u>-</u>	22
		C1	TeCl ₄ + $(C_{G}H_{5})_{4}$ Sn or			
-		•	(c ₆ H ₅) ₃ Snc1	75	159	21
4-сн ₃ ос ₆ н ₄	4-сн ₃ ос ₆ н ₄		R ₂ TeC1 ₂ + AgF	r	121	38
4-c ₂ H5oc ₆ H ₄	4-c ₂ H ₅ 0C ₆ H ₄ *	L.	R ₂ TeC1 ₂ + AgF	7	170	38
(c ₆ H ₅) ₂ c≖cH	(c ₆ H ₅) ₂ c=cH [*]	C1	TeC1 ₄ + $(C_6H_5)_2$ C=CH ₂	с 1	242	22
4-сн ₃ ос ₆ н ₄	4-CH ₃ OC ₆ H ₄	сн ³ соо	R ₂ TeO + (CH ₃ CO) ₂ O	73	139	52
		cF3co0*	$R_2 TeO + (CF_3 CO)_2 O$	82	152	52
-		с ₃ н,соо	$R_{2}Te0 + (c_{3}H_{7}C0)_{2}^{0}$	78	129	52
		с ₆ н ₅ соо*	$R_{2}Te0 + (c_{6}H_{5}C0)_{2}0$	69	212	52
* New compounds	[†] The melting p the corrected	ofnts given I values.	in Ref. 2 are not correct.	This table c	ontains	

•

- - -

.

References p. 474

.

· · ·

.

435

1

•

.

B. Diorganyl Tellurium Compounds, R₂TeX₂

A fair number of new diorganyl tellurium dihalides and dicarboxylates were prepared using mainly well established methods such as the reactions between diorganyl tellurides and sulfuryl chloride³⁷, elemental bromine^{37,42} or elemental iodine⁴², or the cleavage of diaryl ditellurides with excess methyl iodide³⁸ (eqn. 12).

(12)
$$R_2^{Te_2} \xrightarrow{CH_3^{I}} \xrightarrow{R_2^{Te_1}} (RTe(CH_3)_2)^{+I^-}$$

The new compounds and previously prepared compounds, which now have been synthesized by new methods, are listed in Table 5. These new methods are discussed below.

Tetraphenyl tin or triphenyl tin chloride converted tellurium tetrachloride or aryl tellurium trichlorides to diaryl tellurium dichlorides. Further arylation to triorganyl telluronium chlorides was not possible. Diphenyl

Refluxing bis(4-alkoxyphenyl) tellurium dichlorides in dry toluene with silver fluoride yielded diaryl tellurium difluorides³⁸.

The reaction of tetraphenyl or tetrakis(4-methylphenyl) lead with 126 Teor 130 Te-TeCl₄ or TeBr₄ was found to proceed satisfactorily on a milligram scale to yield diaryl tellurium dihalides²⁰.

Bis(4-methoxyphenyl) tellurium dicarboxylates were prepared in good yields by heating the diaryl telluroxide with a carboxylic acid anhydride⁵².

The pertinent data for all these compounds are summarized in Table 5.

Bis(carboxymethyl) tellurium dichloride was synthesized from tellurium tetrachloride and acetic anhydride in chloroform. The dichloride decomposed to tellurium on attempted reduction to the telluride¹³. Attempts to reproduce Morgan and Drew's procedure for the preparation of bis(carboxymethyl) tellurium dichloride were unsuccessful¹³.

The following reactions in addition to the ones already discussed in this section have been carried out with diorganyl tellurium dihalides: reduction to diorganyl tellurides by $Na_2S-9H_2O^{37}$; reaction of $(4-RC_6H_4)_2TeCl_2$ (R=H,CH₃) with anthracene in the presence of silver nitrate to produce diaryl tellurides and 9- or 9,10-chloroanthracenes (no reaction occurred in the absence of AgNO₃)²²; reaction of diaryl tellurium dibromides with 1,1-dimethyl-3,5-cyclohexanedione to yield tellurium ylides⁵³ (see section VII).

The use of $(CH_3)_2 TeI_2$ as a catalyst for the preparation of $RNHCO_2 CH_3$ compounds from nitrobenzenes, methanol and carbon monoxide or from nitrosobenzene and azoxybenzene has been claimed P-3. Bis(benzoylmethyl) tellurium dichloride has been suggested as an imaging material for photomasks and in microphotography.^{P-4}

C. Diorganyl Telluroxides

References p. 474

The reactions of bis(4-methoxyphenyl) telluroxide with carboxylic acid anhydrides to yield diaryl tellurium dicarboxylates⁵² has been discussed in section VI-B. No additional work with telluroxides has been done during the survey period.

VII. Triorganyl Tellurium Compounds, [R₃Te]⁺X⁻

Several new telluronium iodides and nitrosylates were prepared. Methyl iodide and ethyldiacetylenyl methyl telluride kept at 30° gave dimethyl ethyldiacetylenyl telluronium iodide (mp. 89-90°) in 95% yield²⁶. Diaryl ditellurides refluxed with excess methyl iodide produced aryl dimethyl telluronium iodides (eqn. 13)³⁸.

(13)
$$(4-RC_{6}H_{4})_{2}Te_{2} \xrightarrow{CH_{3}I} [4-RC_{6}H_{4}Te(CH_{3})_{2}]^{+}I^{-} + 4-RC_{6}H_{4}(CH_{3})TeI_{2}$$

 $R = H, mp. 168^{\circ}$
 $R = CH_{3}, mp. 154^{\circ}$
 $R = C_{2}H_{5}O, mp. 163^{\circ}$

An anion exchange reaction between triphenyl telluronium chloride and silver nitrosylates yielded telluronium nitrosylates⁵⁴ (eqn. 14).

(14)
$$[(C_{6}H_{5})_{3}Te]^{+}C1^{-} \xrightarrow{+RC(NO)_{2}Ag^{+}/NH_{3}(1)}_{-AqC1} + [(C_{6}H_{5})_{3}Te]^{+} \begin{bmatrix} R-C_{N-G} \end{bmatrix}^{-}$$

 $R=CH_{3}: 654 \text{ yield, mp. 139° (dec)}$
 $R=C_{6}H_{5}: 254 \text{ yield, mp. 57° (dec)}$

These telluronium compounds are ionic in methanol but covalent in benzene. The telluronium iodide synthesized from tellurochromanone 40 is described in section IX-J.

Sadekov⁵³ prepared the tellurium ylides <u>10</u> from diaryl tellurium dibromides and 1,1-dimethyl-3,5-cyclohexanedione in boiling benzene containing triethylamine (eqn. 15).

ちょうごう ちょうちょう ちょうてい くろない やくちょうちょう あいちょう ひんちょう ちょうちょう したちから ちゃくちょうちょう

(15)
$$(4-RC_{6}H_{4})_{2}TeBr_{2} + \bigvee_{O}^{O} \bigvee_{CH_{3}}^{CH_{3}} \xrightarrow{C_{6}H_{6}, Et_{3}N}_{-Et_{3}N+HC1} (4-RC_{5}H_{4})_{2}^{\Theta}Te \bigoplus_{A}^{O} \bigvee_{CH_{3}}^{CH_{3}}$$

$$\xrightarrow{10}_{R=CH_{3}}^{R=CH_{3}}, 75t \text{ yield, mp. 136-7}^{\circ}$$

$$R=CH_{3}O, 88t \text{ yield, mp. 143-4}^{\circ}$$

Compound <u>11</u>, synthesized by Freeman in 1970², is the only other tellurium ylide known. It decomposes slowly in the solid state and more rapidly in solution. Addition of benzaldehyde or nitrosobenzene to a solution of <u>11</u> in carbon tetrachloride caused also decomposition. The ylide is unstable in basic medium⁵⁵.

VIII. Organic Compounds Containing a Tellurium-Metal or a Tellurium-Metalloid Bond

During the period covered by this survey new organic tellurium compounds have been synthesized, which contain a tellurium atom bonded to sodium, selenium, titanium, niobium, molybdenum, tungsten or silver.

A. Organic Compounds of Tellurium with Metals of Group I, II or III

Phenyl lithium telluride was prepared from diphenyl ditelluride and lithium⁴² and from phenyl lithium and tellurium^{24,25}. Reaction of this telluride with alkyl halides yielded phenyl alkyl tellurides^{25,42}. It combined with $(\tau - C_5H_5)_2NbCl_2$ to form $(\tau - C_5H_5)_2Nb(TeC_6H_5)_2^{24}$.

The reduction of the diaryl ditellurides, R_2Te_2 (R=C₆H₅, 2-CH₃C₆H₄, 3-CH₃C₆H₄, 4-CH₃C₆H₄, 2-CH₃OC₆H₄, 3.4-(CH₃)₂C₆H₃, 4.5-(CH₃)₂C₆H₄, 2-HOOCC₆H₄, 1-C₁₀H₇ and 2-C₁₀H₇), with sodium borohydride in ethanol/benzene yielded the compounds RTeNa, which were not isolated but immediately reacted with 3-chloropropionic acids⁴⁰ (see section VI-A2).

Ethyldiacetylenyl sodium telluride was obtained from the sodium acetylide and tellurium in liquid ammonia. It was immediately reacted with methyl iodide²⁶.

The organyl sodium tellurides <u>12</u> were presumably formed as intermediates in a reaction starting with 3-chlorovinylaldehydes and sodium telluride in dimethylformamide (eqn. 16) and leading to tellurophene derivatives¹⁷ (see section [X-B].

12

References p. 474

Phenyl and 4-methylphenyl bromomagnesium tellurides - conventionally prepared from aryl magnesium bromide and tellurium - were used to synthesize tellurium containing transition metal complexes²⁴ (see section VIII-D).

None of these organyl alkali metal tellurides, which are extremely oxygen and water sensitive, were isolated. They were used <u>in-situ</u>.

Siebert⁵⁶ in a review of the bonds formed between boron and sulfur, selenium or tellurium stated that boron-tellurium compounds containing an sp²-hybridized boron atom are unknown. Complexes of the type R_2 Te-BX₃, in which the boron atom employs sp³-type orbitals, have been described².

B. Organic Compounds of Tellurium Containing a Tellurium-Selenium Bond

Three new diorganyl selenide tellurides were prepared from aryl tellurium bromides and phenyl bromomagnesium selenide in tetrahydrofuran³⁷ (eqn. 17).

(17)
$$C_{6}H_{5}$$
-Se-MgBr + 4-RC₆H₄TeBr $\xrightarrow{\text{THF}}$ 4-RC₆H₄-Te-Se-C₆H₅
R = H, 63% yield, mp. 47-8°; R = CH₃, 42% yield, oil;
R = CH₂0, 87% yield, bp. 155-8°/0.01 torr

These compounds were purified by chromatography on silicagel. When diphenyl selenide telluride was treated with 2 moles of bromine at 0° in carbon tetrachloride, phenyl tellurium tribromide precipitated. Phenyl selenium bromide was the selenium containing product.

Bis(pentafluoroethyl) selenide telluride was obtained from $(C_2F_5Te)_2Hg$ and C_2F_5SeCl at room temperature. After two weeks' storage at -18° it had decomposed slightly to $(C_2F_5)_2Te_2$ and $(C_2F_5)_2Se_2^{-30}$.

C. Organic Compounds of Tellurium Containing a Tellurium-Mercury Bond

As reported earlier², $(C_2F_5Te)_2Hg$ was obtained by shaking the ditelluride $(C_2F_5)_2Te_2$ with mercury and extracting the product with acetone. This reaction

has been used to separate $(C_2F_5)_2$ Te from $(C_2F_5)_2$ Te₂. The tellurium-mercury compound reacted with C_2F_5 SeCl. A v.p.c. analysis of the liquid formed showed the presence of C_2F_5 SeTe C_2F_5 (60%), $(C_2F_5)_2$ Se(34%) and $(C_2F_5)_2$ Te(6%)³⁰.

الاس الدي الولد جوارهم المرجوب والربية الراضة الجاريهية حمرش المنصارية المرجور عارية وماد تعاقبهم

D. Organic Compounds of Tellurium Containing a Tellurium-Transition Element Bond

To the already long list of transition element complexes containing covalently or coordinate-covalently bonded tellurium ligands^{1,2}, niobium derivatives were added. The new complexes of this element and of titanium, molybdenum, tungsten, platinum and mercury are summarized in Table 6. The mode of preparation of these complexes and their pertinent data are also listed. The Ti, Nb, Mo and W derivatives have an aryl telluro group, RTe-, covalently bonded to the metal atom.

The structure 13 has been suggested for the complexes $(\pi - C_5H_5)_2Nb(TeC_6H_5)_2-L$ [L = Fe(CO)NO, Co(CO)₂] and for $(\pi - C_5H_5)_2Ti(TeC_6H_5)_2$ ·Fe(NO)₂. These complexes are stable as solids under nitrogen, but decompose in solution and in air⁵⁷.

M = Ti, Nb M^{*} = Co, Fe X, Y = CO, NO

13

The niobium complexes are diamagnetic. Several isomeric forms of these complexes are present in the solution as shown by nmr techniques²⁴.

The complexes $(\pi-C_5H_5)_2M(TeR)_2$ (M = W, Mo; R = C_6H_5 , $4-CH_3C_6H_4$) are quite stable in air. They decompose in methylene chloride solution within a day. The corresponding niobium complex (R = C_6H_5) is unstable in air and decomposes immediately when its benzene solution is brought in contact with air. Treatment of these complexes with concentrated hydrochloric acid or with methyl iodide in benzene cleaved the tellurium ligand forming $(\pi-C_5H_5)_2MCI_2$ and $(\pi-C_5H_5)_2MI_2$, respectively²⁴.

References p. 474

. · · ·

TABLE 6

.

۰.

•

-

ORGANIC COMPOUNDS OF TELLURIUM CONTAINING A TELLURIUM-TRANSITION ELEMENT BOND

Compound [†]	Reactants	Conditions	Yield %	m.p.°C	Ref.
(C ₆ H ₅ Te) ₂ Ti(#-cp) ₂ 'Fe(NO) ₂	(RTe) ₂ Ti(m-cp) ₂ + Hg[Fe(CO) ₃ NO] ₂	acetone, stir 2 hrs.	24	157*	57
(C ₆ H ₅ Te) ₂ Nb(π-cp) ₂	RTeLi + (m-cp) ₂ NbCl ₂	ether/benzene, 0°	80	137-42	24
(C ₆ H ₅ Te) ₂ Nb(m-cp) ₂ .Fe(CO)NO	(RTe) ₂ Nb(<i>m</i> -cp) ₂ + Hg[Fe(CO) ₃ NO] ₂	acetone, stir 1 hr.	80	171*	57
(C ₆ H ₅ Te) ₂ Nb(#-cp) ₂ 'Co(CO) ₂	(RTe) ₂ Nb(m-cp) ₂ + Hg[Co(CO) ₄]	acetone, 3 hrs, r.t.	06	157-60*	57
(c ₆ H ₅ Te) ₂ Mo(π-cp) ₂	RTeMgBr + (m-cp) ₂ MoCl ₂	THF, r.t.	75	198-9	24
(4-CH ₃ C ₆ H ₄ Te) ₂ Mo(cp) ₂	RTeMgBr + (m-cp) ₂ MoCl ₂	THF, r.t.	73	192-4	24
(C ₆ H ₅ Te) ₂ M(π -cp) ₂	RTeMgBr + (m-cp) ₂ WCl ₂	THF, r.t.	71	213	24
(4-CH ₃ C ₆ H ₄ Te) ₂ W(n-cp) ₂	RTeMgBr + (m-cp) ₂ WC1 ₂	THF, r.t.	64	212-4	24
(C4H9)4NE(CH3)2Te.PtX3] ⁺⁺		I	•		59
[(c4H9)4N]2[(CH3)2Te'(PtX3)2]	2 [R ₂ Te·PtX ₃] + Pt ₂ X ₆	t	•		59
[CH2"CH-CEC-TeCH3] 2H9C12	RR'Te + HgCl ₂	diethyl ether	100	76	49
[CH2"CH-CEC-TeCH3]+H9(CH3C00)2	RR'Te + HgX ₂	сн ₃ соон	8	52-4*	49
[†] т-ср = т-сусlopentadienyl (С ₅	H ₅). [*] The compound decomposed o	n melting.			
^{††} X = Cl. Br. I.	** = Cl, Br.				

.

_

.....

. . .

442

-

Cross and coworkers⁵⁸ detected with nmr techniques the exchange between free and coordinated $(C_2H_5)_2$ Te-ligands in the complexes <u>trans</u>- $(C_2H_5)_2$ Te $_2MX_2$ (M = Pd, Pt; X = halogen). The coalescence phenomena shown by these complexes could not unambiguously be distinguished from ligand exchange processes. The fluxional behavior of these molecules remains, therefore, uncertain.

The platinum complexes $[(C_4H_9)_4N]_n[(PtX_3)_n \cdot Te(CH_3)_2]$ (n = 1,2; X = halogen) were reported, but experimental details were not given. The spin-spin coupling constants J_{195}_{Pt-} 125_{Te} were determined⁵⁹.

A mercury(II) acetate and chloride adduct of vinylacetylenyl methyl telluride was prepared by Radchenko⁴⁹ by mixing the components in the appropriate medium.

The metal complex formation constants for the ligand $(HOOCCH_2CH_2)_2$ Te with Mn^{+2} , Co^{+2} , Ni^{+2} , Cu^{+2} , Zn^{+2} , Cd^{+2} , Pb^{+2} and Ag^+ were determined. The complexes are rather weak. Species of the composition M(L), M(HL) and M(H₂L) were detected. It is postulated that chelate formation occurred through the tellurium atom. Thermodynamic data for the silver complexes Ag(HL) and Ag(H₂L) are reported¹³.

IX. Heterocyclic Tellurium Compounds

A number of new heterocyclic, tellurium containing compounds were prepared. These include tetrahydrotellurophene derivatives. C-substituted tellurophenes, derivatives of benzotellurophene, 1-phospha-4-telluracyclohexanes, C-substituted 1-thia-4-telluracyclohexanes and telluracyclohexane derivatives.

References p. 474

A. Tetrahydrotellurophene

The tetrahydrotellurophene derivatives $\frac{14}{m}$ were synthesized $\frac{16}{16}$ according to eqn. 16 (see previous page).

B. Tellurophene

Tellurophenes bearing substituents in the 2- and 5-positions were synthesized in 30% yield by adding a substituted chloroalkane to a solution of β -chlorovinylaldehydes and sodium telluride in dimethylformanide (eqn. 19)¹⁷.

The oximes of the formy] and acetyl derivatives melted at 165.5° and 150.5° , respectively. Eqn. 20 describes the reactions carried out starting with the ethyl ester of 2-carboxy-5-<u>tert</u>-butyltellurophene¹⁷.

90% yield, bp. 88°/16 torr

 $R = (CH_3)_3C$

N,N-Dimethyl-2-tellurophenecarboxamide⁶⁰ was synthesized by heating 2carboxytellurophene with $[(CH_3)_2N]_3PO$ at 180° for 3 hrs. The compound boiled at $114-6^\circ/0.05$ torr and melted at 70° .

Tellurophene formed a charge-transfer complex with tetracyanoethylene in methylene chloride 61 .

C. 4,5,6,7-Tetrahydrobenzotellurophene

Three derivatives of 4,5,6,7-tetrahydrobenzotellurophene 15 with NO₂, COOC₂H₅ or COCH₃ as substituents in the 2-position were synthesized in 25% yield according to eqn. 21. The 2-acetyl derivative was converted to the oxime,

which melted at 205.5°. Acid hydrolysis of the 2-carbethoxy compound yielded the free acid (mp. 199°), which lost carbon dioxide upon heating in quinoline in the presence of copper. 4,5,6,7-Tetrahydrobenzotellurophene boiled at 135°/ 17 torr¹⁷.

D. Cyclohept-1-eno[1,2-b]tellurophene

2-Carbethoxycyclohept-1-eno[1,2-b]tellurophene <u>16</u> was obtained in 25% yield according to eqn. 21 employing 2-chlorocyclohept-1-en-1-carbaldehyde and ethyl chloroacetate. The ester was hydrolyzed in acidic medium to the acid,

which was decarboxylated in pyridine in the presence of copper¹⁷.

References p. 474

E. Naphtho[1,2-b]tellurophene

Dehydrogenation of 4,5-dihydronaphtho[1,2-b]tellurophene with dichlorodicyanobenzoquinone produced naphtho[1,2-b]tellurophene <u>17</u> (mp. 72.5°) in 90% yield.

17

Compound <u>17</u> formed 1:1 adducts with picric acid and 2,4,7-trinitrofluorenone, which melted at 158° and 201° (dec), respectively¹⁷.

F. 4,5-Dihydronaphtho[1,2-b]tellurophene

2-Carbethoxy-4,5-dihydronaphtho[1,2-b]tellurophene <u>18</u> was prepared in 25% yield from sodium telluride, ethyl chloroacetate and 1-chloro-3,4-dihydronaphthalene-2-carbaldehyde. The free acid was obtained by acid hydrolysis of the ester. Heating in pyridine in the presence of copper decarboxylated the acid¹⁷.

R = COOC₂H₅, bp. 195°/0.3 torr R = COOH, mp. 215° R = H, bp. 167°/0.7 torr, mp. 45°

G. 1,4-Benzoquinono[c]tellurophene

The rhodium heterocyclic compounds 19 (R = aryl) were refluxed in xylene under a nitrogen atmosphere with freshly precipitated, amorphous tellurium for 7-10 hrs. Tellurium replaced the RHCl[P(C₆H₅)₃]₂ group (eqn. 22). Aliphatic derivatives (R = CH₃) did not react under these conditions.

-

.....

The following tellurium containing heterocyclic compounds were prepared in this manner^{28,29}:

 $R = C_{6}H_{5}^{28}, 63\% \text{ yield, mp. 215-6°}$ UV; 320.0 nm, log $\varepsilon = 4.361$ $R = 4-CH_{3}C_{6}H_{4}^{28}, 20\% \text{ yield, mp. 160-1°}$ UV: 321.0 nm, log $\varepsilon = 4.334$ $R = C_{6}H_{5}^{28}, 295 \text{ yield, mp. 290°}$ UV: 329.0 nm, log $\varepsilon = 4.487$ 292.0 nm, log $\varepsilon = 4.639$ $R = 4-CH_{3}C_{6}H_{4}^{28}, 105 \text{ yield, mp. 255°}$ UV: 333.0 nm, log $\varepsilon = 4.475$ 291.0 nm, log $\varepsilon = 4.649$

 $R = C_{6}H_{5}^{28}$, 33% yield, mp. 316° UV: 321.0 nm, log = 4.408

 $R = C_6 H_5^{28,29}$, 38% yield, mp. 248° UV: 325.0 nm, log $\varepsilon = 4.539$

.

References p. 474

· -- · · *

447

ι

ι

H. Dibenzotellurophene

McCullough¹⁹ heated 2-biphenylyl tellurium trichloride at 210° (refluxing nitrobenzene) for 20 minutes. Crude dibenzotellurophene 5,5-dichloride 20 was isolated in quantitative yield. The purified product melted at 354° with decomposition. The dichloride was reduced with $K_2S_2O_5$ to dibenzotellurophene (mp. 94.5^o). Chloroform solutions of dibenzotellurophene became turbid upon

20

exposure to air. Addition of bromine and iodine to dibenzotellurophene in carbon tetrachloride caused the quantitative formation of the 5,5-dibromide (mp. 355°, dec) and the 5,5-diiodide (mp. 335°, dec), respectively. Grinding of the dichloride under 2-butanone with potassium iodide gave the diiodide in 83% yield.

I. 1-Tellura-1,2-dihydronaphthalene

1-Tellura-1,2-dihydronaphthalene, boiling at 140°/0.8 torr was obtained in 85% yield upon distillation of 1-tellura-4-hydroxy-1,2,3,4-tetrahydronaphthalene⁴⁰ (eqn. 23).

J. <u>Tellurochromanones</u> and Tellurochromanols

When aryl 2-(chlorocarbonyl)ethyl tellurides 22, were treated with aluminum

chloride in methylene chloride at -70° and the reaction mixtures carefully warmed to -5° , cyclization to tellurochromanones 21 occurred⁴⁰ (eqn. 24).

م بر درمجم خوندر ومارد امیرم

All R's = H except as stated otherwise. Rⁿ, n, yield %, mp. °C: -, -, 60%, 34° (bp. 150°/0.8 torr); CH₃, 2, 60%, 24-5°; CH₃, 3, 55%, 62-3° CH₃, 5, 45%, 48-50°; CH₃, 6, 45%, 48-9°; CH₃, 3, CH₃, 6, 13%, 41-2°: CH₃, 4, CH₃, 5, 2%, 85-8°.

The naphtho [1,2-b]tellurochromanone 23 (mp. 104-6°) was similarly prepared in 66% yield from 2-naphthyl 2-(chlorocarbonyl)ethyl telluride. The aryl 2-(chlorocarbonyl)ethyl tellurides, R-TeCH₂CH₂COC1 ($R = 2-CH_3OC_6H_4$, 4-CH₃C₆H₄, 2,4-(CH₃)₂C₆H₄ and 1-C₁₀H₇) could not be converted to tellurochromanones.

The tellurochromanone 21 ($R^{1}-R^{6} = H$) formed a 2,4-dinitrophenylhydrazone (mp. 215°, dec) and gave with methyl iodide the telluronium salt 24 (mp. 168°).

The tellurochromanones were reduced by sodium borohydride in ethanol to the tellurochromonols <u>25</u>.

References p. 474

่าำ เราหน้ามาให้เมื่อเป็นแสมีปฏิสติสุข ไปให้สุขให้แอนั้นได้เรื่องเราะไหรเป็นเป็นเป็นของเราะสาวา

450

The tellurochromanol prepared from the chromanone 23 melted at $127-8^{\circ}$ and was isolated in 60% yield.

Tellurochromanol distilled over KHSO₄ produced 1-tellura-1,2-dihydronaphthalene (section IX-I).

K. 1-0xa-4-telluracyclohexane and 1-Aza-4-telluracyclohexane

A Russian patent^{P-1} claims the preparation of the heterocyclic compounds <u>26</u> from tellurium tetrachloride or tellurium tetrabromide and diolefins in aqueous/ organic solutions.

Y = 0, NH, C_6H_5N X = C1, Br

L. Phenoxtellurine

Gioaba⁶² reported that tellurium tetrachloride and bis(4-bromophenyl) ether did not condense to 2,8-dibromotellurophene 10,10-dichloride. This compound was successfully synthesized by bromination of phenoxtellurine 10,10dihalides with elemental bromine in the presence of iodine or iron as catalyst. The highest yield (86%) of the 2,8-dibromophenoxtellurine 10,10-dibromide (mp. > 350°) was obtained by bromination of phenoxtellurine 10,10-diiodide. 2,8-Dibromophenoxtellurine $\frac{27}{27}$ (mp. 93-4°), obtained in 96% yield by reduction of its 10,10-dibromide with aqueous $K_2S_2O_5$ solutions, was decomposed to bis(4-bromopheny]) ether by refluxing aqueous 30% potassium hydroxide.

2-Bromophenoxtellurine 10,10-dibromide was formed as a by-product of the bromination reactions. Properties are not reported for this compound⁶².

M. 1-Phospha-4-telluracyclohexane

Sodium telluride and organyldialkynylphosphine oxides combined in aqueous ethanol or dimethylformamide to give the heterocyclic compounds <u>28</u> (eqn. 25)¹⁵. (25) $(\mathbb{R}^{*}\mathbb{C}\cong\mathbb{C})_{2}\mathbb{R}^{p\to0} + \mathbb{N}a_{2}^{Te} \xrightarrow{\mathbb{C}H_{3}^{OH \text{ or DMF}}}{\mathbb{H}_{2}^{O}} \xrightarrow{\mathbb{C}_{6}}{\mathbb{R}} \mathbb{R}^{*}$ R, R', yield*, mp. °C: $\mathbb{C}_{6}^{H_{5}}$, H, 70%, 193-4°; $\underline{\mathbb{C}}$ - $\mathbb{C}_{6}^{H_{11}}$, H, 65%, 181-3°; $\mathbb{C}_{6}^{H_{4}}$, $\mathbb{C}H_{3}$, 71%, 179-82°; $\underline{\mathbb{C}}$ - $\mathbb{C}_{6}^{H_{11}}$, $\mathbb{C}H_{3}$, 58%, 172-3°; $\mathbb{C}_{6}^{H_{5}}$, $(\mathbb{C}H_{3})_{3}\mathbb{C}$, 25%, 169-72°; $\underline{\mathbb{C}}$ - $\mathbb{C}_{6}^{H_{11}}$, $(\mathbb{C}H_{3})\mathbb{C}$, 45%, > 200° (dec).

N. 1-Thia-4-tellurocyclohexane

When the dialkynyl sulfides, RCEC-S-CECH, were treated with sodium telluride in methanol 1-thia-4-telluracyclohexane compounds 29 were obtained in good yields¹⁴ (eqn. 26).

References p. 474

. -

(26) R-CEC-S-CECH + Na₂Te $\xrightarrow{CH_3OH}$ $\xrightarrow{CH_3OH}$ $\xrightarrow{29}_{Te}$ R, yield %, bp. °C/torr or mp. °C: CH₃, 55%, 41°/0.001; C₂H₅, 54%, 49°/0.001; CH₂=C (CH₃), 56%, 55-8°/0.001; (CH₃)₃C, 53%, 37°.

It was postulated that the nucleophile Te^{-2} attacked the -C=CH group leading to RC=C-S-CH=CH-Te⁻ followed by ring closure.

0. 2,5-Diaza-3,4-dioxa-3a-tellura-3,4-dihydropentalene

The diaza-dioxapentalenes shown below were synthesized from tellurous acid anhydride and the dioximes of 1,3-dioxo compounds (eqn. 27).

ちゃ そうかっ だんどうしいかいだんがいし ちゅうちょうかって

X. Physicochemical Investigations of Organic Tellurium Compounds

Infrared, Raman, uv-visible, nmr, electron, Moessbauer and mass spectroscopy, structural analysis and dipole moment measurements were employed to characterize organic tellurium compounds.

A. Infrared and Raman Spectroscopy

Infrared data for a large number of tellurium-containing organic compounds were reported. Most of these data are presented without an attempt of assigning bands to certain vibrations. Many times only bands caused by characteristic groups such as multiple bonded carbon atoms or carbonyl groups are mentioned.

Only a few studies were devoted to a detailed analysis of the infrared spectra of organic tellurium compounds. Rodionov⁶³ interpreted the spectrum of diphenyl telluride on the basis of the experimental data and the results of the calculation of the wave numbers and modes of the in-plane vibrations.

Dance and McWhinnie²⁰ investigated the low frequency ir and Raman spectra of isotopically pure ¹²⁶Te- and ¹³⁰Te-(C_6H_5)₂TeX₂ (X = Cl, Br) and (4-CH₃ C_6H_4)₂ TeBr₂. Some bands in the spectra were shifted by 1 to 2 cm⁻¹, whereas others were completely unaffected by substitution of ¹²⁶Te with ¹³⁰Te. Bands at 270 and 245 cm⁻¹ in the spectrum of (C_6H_5)₂TeCl₂ underwent shifts and are therefore v(TeC). The v(TeCl) modes at 286 and 245 cm⁻¹ were also shifted.

The TeBr-modes did not show a shift. This observation was explained on the basis of the known Br-Te-Br angle of 178° and the large energy difference \cdot of 100 cm⁻¹ between v(TeBr) and v(TeC). A frequency shift of v_{sym} (TeBr) can occur only if v(TeBr) is coupled with v(TeC). Such coupling is weak at best under these conditions. The energies of v(TeC1) and v(TeC) are closer, leading to stronger coupling and a frequency shift on isotopic substitution.

In the compilation of infrared and Raman data the following abbreviations are used:

ir	infrared	n	neat
R	Raman	N	Nujol
1	liquid	soln	solution
s	solid	¥	vapor

The frequency ranges used in the investigations or, if these ranges are not References p. 474

reported, the frequency spans tabulated or discussed in the papers are given.

The association of vinylacetylenyl methyl telluride with phenol, 4chlorophenol and diphenylamine <u>via</u> hydrogen bonds was investigated by determining the v(0H) shift⁴⁹.

$$C_6H_5$$
-Te- $C_{10}H_{21}$: ir²⁵ n, 2960-690 cm⁻¹;
 C_6H_5 -Te- $CH_2C(0H)(C_6H_5)_2$: ir²⁵ KI, 3500-590 cm⁻¹;
 C_6H_5 -Te- $CH(CH_2C_6H_5)$ -Te- C_6H_5 : ir²⁵ n, 3060-690 cm⁻¹;
 C_6H_5 -Te- CH_2 -Te- C_6H_5 : ir²⁵ n, 3050-690 cm⁻¹;

[(CH₃)₂Te-C=CC=CC₂H₅]⁺I[−]: ir²⁶, 2110 cm⁻¹ (C=C-Te);

•

$$(4-R'C_{6}H_{4})_{2}Te \xrightarrow{C}_{O}H_{3}; ir^{53} n, R' = H: 1589, 1545 cm^{-1} v(CO);$$

$$R' = CH_{3}: 1590, 1542 cm^{-1} v(CO);$$

$$R' = CH_{3}0: 1589, 1545 cm^{-1} v(CO);$$

$$({}_{\pi}-C_{5}H_{5})_{2} Ti (TeC_{6}H_{5})_{2} \cdot Fe(NO)_{2}: ir^{57} KBr, 1675, 1708 cm^{-1} v(NO); ({}_{\pi}-C_{5}H_{5})_{2}Nb (TeC_{6}H_{5})_{2} \cdot Fe(NO)CO: ir^{57} KBr, 1623 cm^{-1} v(NO), 1845 cm^{-1} v(CO); ({}_{\pi}-C_{5}H_{5})_{2}Nb (TeC_{6}H_{5})_{2} \cdot Co(CO)_{2}: ir^{57} KBr, 1859, 1911 cm^{-1} v(CO); ({}_{\pi}-C_{5}H_{5})_{2}Nb (TeC_{6}H_{5})_{2} \cdot Co(CO)_{2}: ir^{57} KBr, 1859, 1911 cm^{-1} v(CO); ({}_{\pi}-C_{5}H_{5})_{2}Nb (TeC_{6}H_{5})_{2} \cdot Co(CO)_{2}: ir^{57} KBr, 1859, 1911 cm^{-1} v(CO); ({}_{\pi}-C_{5}H_{5})_{2}Nb (TeC_{6}H_{5})_{2} \cdot Co(CO)_{2}: ir^{49} KBr, 940, 980, 1625 cm^{-1} (C=C), 2150 cm^{-1} (C=C); ({}_{\pi}-C_{5}H_{5})_{2} \cdot Co(CO)_{2}: ir^{49} KBr, 2150 cm^{-1} v(C=C), 1550 cm^{-1} v(C=C);$$

2-formy]tellurophene:
$$ir^{64} C_2 Cl_4 soln, 1691, 1666 cm^{-1} v(CO),$$

1537, 1527, 1443, 1427 cm⁻¹ v(CO);
2-acety]tellurophene: $ir^{64} C_2 Cl_4 soln, 1677, 1656.5 cm^{-1} v(CO),$
1531, 1521.5, 1428 cm⁻¹ v(C=C);

An analysis of the v(CO) doublets⁶⁴ at various temperatures suggested that comparable amounts of the two conformers 30 and 31 of 2-formyl- or 2-acetyltelluro-phene are present in CS₂ solution. These results are in agreement with Lumbroso's

conclusions derived from dipole moment measurements⁶⁵ but not with those of Caccamese⁶⁰ based on nmr results indicating the preponderance of conformer <u>30</u>.

2-(N,N-dimethylaminocarbonyl)tellurophene: ir^{60} CCl₄ soln, 1627 cm⁻¹ v(CO);

tellurochromanone: $ir^{40} CCl_4$, 1679 cm⁻¹ v(CO);

References p. 474

456

.

- --

.

Compound	λ X 10 ⁹ m (log ε) [†]	Solvent	Ref
(CH ₃) ₂ Te	vacuum uv data	1	99
CH ₃ -Te-C ₆ H ₅	330.5(2.865), 269.5(3.702), 254.75h(3.505), 224.5(3.943)	cyclohexane	
c2 ^H 5-Te-C ₆ H5	329.6(2.834), 269.7(3.570), 2533sh(3.354), 227.0(4.107),	cyclohexane	
с ₃ н ₇ -те-с ₆ н ₅	329.3(2.839), 271.1(3.581), 253.3sh(3.354), 225.1(4.097)	cyc1ohexane	
<u>1</u> -c ₃ H,-Te-c ₆ H ₅	333.9(2.785), 270.8(3.400), 252.0sh(3.283), 227.7(4.204)	cyclohexane	4
C4 ^H 9-Te-C ₆ H ₅	328.4(2.860), 270.0(3.584), 253.1sh(3.350), 224.1(4.093)	cyclohexane	
(c ₆ H ₅) ₃ Te ⁺ cH ₃ c(NO) ₂ ⁻	718.3(1.67), 448.5(-), 336.8(4.52) 662.1(1.67), 512.6(1.55), 333.1(4.35)	benzene CH ₃ OH	ۍي
(c ₆ H ₅) ₃ Te [±] c ₆ H ₅ C(NO) ₂ ⁻	717.8(1.74), 460.85h(-), 346.0(4.39) 665.7(1.76), 521.9(1.56), 343.0(4.33)	benzene CH ₃ OH	ດັດ
tellurophene \cdot (CN) $_{2}$ C=C(CN) $_{2}$	530(-), 465(-)	CH ₂ C1 ₂	و
$(c_{eH_5})_2 Te - \sum_{c_{eH_5}}^{c_{eH_5}} c_{eH_5}$	335(-)*, 286sh(-) 347(-) , 280sh(-)	CH_OH beñzene	ۍ دی
	uv-visible data are listed in section IX-G	снст3	~
o tellurochromanone	375(3.816), 246(4.155), 238(3.949)	ethanol	4

. -

B. Ultraviolet-Visible Spectroscopy

The ultraviolet-visible spectral data for organic tellurium compounds which have been reported during this survey period, are summarized in Table 7.

The vapor phase vacuum-ultraviolet spectral data for dimethyl telluride were used to compare its Rydberg term values with those of Xenon. Best agreement was found for the np series⁶⁶.

Alosi⁶¹ measured the light absorption of the charge transfer complex formed between tellurophene and tetracyanothylene (Table 7). The formation constant was found to be 1.20 dm³mol⁻¹ in methylene chloride at 20°. The charge transfer band is a doublet. The ionization potentials of the tellurophone π_2 (8.32 eV) and π_3 (8.76 eV) orbitals were calculated from the charge transfer data. It has been suggested that inner orbitals of the donor in addition to the π_2 orbital are involved in the complex formation.

C. Nuclear Magnetic Resonance Spectroscopy

Nuclear magnetic resonance spectroscopy was widely used to characterize organic tellurium compounds. The following nuclei were employed as probes: ¹H, ¹⁹F, ¹²⁵Te and ¹⁹⁵Pt.

1. ^IH NMR Spectroscopy

The ¹H nmr data, which appeared in the literature during the survey period, are summarized in Table 8. Pertinent ${}^{1}H{}^{-1}H$ and ${}^{1}H{}^{-125}Te$ coupling constants are also listed.

(Continued on p. 466)

Beferences p. 474

. Compound	Solvent	Chemical Shift, ppm [*] TMS = 0 ppm		Coupling Constants	Ref.
c ₆ H ₅ TeCl·[(CH ₃) ₂ N] ₂ CS	снсіз	CH ₃ 3.04 (s)		<u> </u>	35
	CH2C12	CH ₃ 3.01 (s)		ł	35
c ₆ H ₅ TeBr·[(cH ₃) ₂ N] ₂ cs	снс13	CH ₃ 3.05 (s)			35
	CH ₂ C1 ₂	. CH ₃ 3.03 (s)		3	35
4-cH ₃ C ₆ H ₄ Tecl ₃	DMSO-d6	ortho H (to Te) 8.09 (d), meta H	17.18 (d)		38
4-CH ₃ C ₆ H ₄ TeBr ₃	DMSO-d ₆	8.23	7.15		38
4-CH ₃ C ₆ H ₄ TeI ₃	DMSO-d ₆	8.19	7.41		38
4-CH ₃ 0C ₆ H ₄ TeF ₃	DMSO-46	8, 08	7,26		38
4-CH ₃ 0C ₆ H ₄ TeC1 ₃	⁹ r-oswa	8, 35	7.16		38
4-CH ₃ 0C ₆ H ₄ TeBr ₃	DMS0-"16	B, 50	1.01		38
4-CH ₃ 0C ₆ H ₄ TeI ₃	DMSO-46	8.26	6.85		38
4-C2H5OC6H4TeF3	DMSO-46	8.20	7.20	<pre>Jortho-meta⁸⁻⁹</pre>	38
4-C2H50C6H4TeCl3	DMSO-46	8.32	7.13		38
4-C ₂ H ₅ OC ₆ H ₄ TeBr ₃	DMSO-46	8.60	7.20		38
4-C2H50C6H4TeI3	DMSO-46	8.22	6,91		38

•

ייישיר איריום אייישיעאניעריע אוארייעראין אוייישי אויייישי

化化物化学 化化学化学 化化化物化学 化化物化学 化化化物化学

¹H NMR SPECTRAL DATA FOR ORGANIC TELLURIUM COMPOUNDS

TABLE 8

_

458 .

.

Ĩ

38	38	38	43	43	26	42		25	25	42		42		42		25		
			J _{11,125r} 22		t	ł		J _{11,1257,} 21.5	J _{H-D} 1.6	J _{H-H} 7.5		^J CH ₂ CH ₂ ^{7.5}		^J снсн ₅ 7.0	ŋ	^J тесн,сн ^{8.0}	J _{CH₂=CH¹⁰, 16}	7
7.09	6.99	6.78				"m), 7.43-7.75	(2H,m)	7.5 (2H,m)		6.98-7.30 (m)	7.53-7.83 (m)	CH ₂ Te 2.90 (t)	(m) O	.), 7.03-7.33 (m)	7.62-7.90 (m)	6.5 (m),	15.9 (t of d of	H,m)
7.71	7.86	7.64	CH ₃ -2.57 (s)	CH ₃ -2.38 (s)	CH ₃ Te 2.13 (s)	CH ₃ 2.16 (s), 6.96-7.25 (3H		CH ₃ 2.11 (s,d), 7.1 (3H,m),	CH ₂ 2.10 (t)	CH ₃ 1.63 (t), CH ₂ 2.82 (q).		CH ₃ 0.98 (t), CH ₂ 1.75 (m),	/.U2~/.30 (m), /.5/~/.8	CH ₃ 1.58 (d), CH 3.52 (sept		CH2Te 3.52 (d), CH2=CH 4.5-	CH2 ⁼ 4.65 (d), 4.70 (d), CH	d) 7.20 (3H,m), 7.65 (2
DMSO- $d_{\rm e}$	DMSO- <i>d</i> 6	DMSO-d ₆	c ₆ F ₆	C ₆ F ₆	ł	cc14		cc14	CH2C12	cc14		cc، 4		cc14		cc14		
			_	<u></u>														

 $(4-cH_3C_6H_4)_2 Te_2$ $(4-cH_3OC_6H_4)_2 Te_2$ $(4-c_{H_5}OC_6H_4)_2 Te_2$ $cH_3-Te-cF_3$ $cH_3-Te-c_{F_5}$ $cH_3-Te-C_6H_5$ $cH_3-Te-C_6H_5$ $cH_3CH_2-Te-C_6H_5$ $cH_3CH_2-Te-C_6H_5$ $cH_3)_2 CH-Te-C_6H_5$ $cH_3^{-2}CH_2^{-2}CH_5^{-2}C_6H_5$

References p. 474

459

Compound	Solvent	Chemical Shift, ppm TMS = 0 ppm	Coupling Constants Hz	Ref.
cH ₃ CH ₂ CH ₂ CH ₂ -Te-C ₆ H ₅	¢(22)	CH ₃ 0.88 (t), CH ₂ CH ₂ 1.08-2.05 (m), CH ₂ Te 2.88 (t), 7.00-7.28 (m),	^J TeCH ₂ CH ₂ ^{7,0}	42
		7.53-7.80 (m)		
	CC14	CH ₂ Te 2.86 (t)	1	25
(сн ₃) ₃ с-те-с ₆ н ₅	cc14	CH ₃ 1.58 (s)	ł	25
с ₆ н ₅ сн(он)сн ₂ -те-с ₆ н ₅	cc14	CH ₂ 3.15 (d), CH 4.75 (t), 7.15 (BH.m) 7.60 (2H.m)	^J CH ₂ CH ^{6.5}	55
(с ₆ н ₅) ₂ с(он)сн ₂ -те-с ₆ н ₅	cc14	HO 3.15 (s), CH ₂ 3.81 (s,d), 7.2 (13H,m) 7.65 (2H,m)	^J I _H _125 _{Te}	55
c ₁₀ ^H 21 ^{-Te-C6H5}	cc14	CH ₃ 0.88 (t), 7CH ₂ 1.25, TeCH ₂ CH ₂ 1.4-2.0 (m).TeCH ₂ 2.83 (t), 7.1 (3H.m), 7.65 (2H.	JrecH ₂ CH ₂ 7	55
(4-CH ₃ C ₆ H ₄) ₂ Te	DMSO-d ₆		-	38
(4-cH ₃ 0C ₆ H ₄) ₂ Te	DMSO-d ₆	7.75 6.98	Jortho-meta ⁸⁻⁹	38
(4-C ₂ H ₅ OC ₆ H ₄) ₂ Te	DMSO-d ₆	7.73 6.98		38
c ₆ H ₅ Te-CH ₂ -Te-C ₆ H ₅	cc14	CH ₂ 3.80 (s,d), 7.15 (6H,m), 7.65 (4H,m)	J _{1,125} 19	25
с ₆ Н ₅ Те-СН(СН ₂ С ₆ Н ₅)-ТеС ₆ Н ₅	cc14	CH ₂ 3.33 (d), CH 4.53 (t), 7.1 (11H.m), 7.7 (4H.m)	JCHCH ₂ ^{7,5}	52

460

Ç

- - ---- annon a see " · as "nortuna thing thight and the second

i

11 11111

;

:

-

[(ceH ₅) ₂ c=cHJ ₂ Tec1 ₂		CH 7.99 (s), 7.45 (10H,m), 7.	36 (10H,m)	ı	22
4-cH ₃ C ₆ H ₄ (CH ₃)Te1 ₂	DMSO-d	ortho H 7.83 (d), me	ita H 6.67 (d)		38
4-CH ₃ OC ₆ H ₄ (CH ₃)TeI ₂	DMSO-d ₆	8.00	7.08		38
4-c2H50c6H4(CH3)Te12	DMSD-d ₆	7.92	10.7		38
(4-CH ₃ C ₆ H ₄) ₂ TeC1 ₂	⁹ p-OSMO	7.83	7.32		38
(4-CH ₃ C ₆ H ₄) ₂ TeBr ₂	DMSO-d ₆	7.88	7.29		38
(4-CH ₃ C ₆ H ₄) ₂ Te1 ₂	Comso-de	7,89	7.24		38
(4-CH ₃ OC ₆ H ₄) ₂ TeF ₂	DMSO-d ₆	7.93	7.26		38
(4-CH ₃ 0C ₆ H ₄) ₂ TeC1 ₂	DMSD-d ₆	7.98	7.12		38
	coc13	CH ₃ 3.83 (s), 7.95 (2H,d), 6.	98 (2H,d)	о _{н-н} о	22
(4-CH ₃ OC ₆ H ₄) ₂ TeBr ₂	DMSO-46	ortho H 8.14 (d), me	ta H 7.24 (d)	_	, 38
(4-CH ₃ 0C ₆ H ₄) ₂ TeI ₂	DMSO-d6	8.87	7,07		38
(4-C ₂ H ₅ OC ₆ H ₄) ₂ TeF ₂	DMSO-d6	7.92	7.23		38
(4-c ₂ H ₅ Oc ₆ H ₄) ₂ Tec1 ₂	DMSO-d ₆	7.88	2.09		38
(4-C ₂ H ₅ 0C ₆ H ₄) ₂ TeBr ₂	DMSO-46	8.10	7.21	<pre>> Jortho-meta⁸⁻⁹</pre>	38
(4-C ₂ H ₅ OC ₆ H ₄) ₂ Te1 ₂	DMSO-d ₆	8.05	7.16		38
[4-CH ₃ C ₆ H ₄ (CH ₃) ₂ Te] ⁺ 1 ⁻	DMSO-46	7.93	7.56		38
[4-CH ₃ 0C ₆ H ₄ (CH ₃) ₂ Te] [†] 1 [°]	9 p-OSMQ	7.80	7.11		38
[4-c ₂ H ₅ 0c ₆ H ₄ (cH ₃) ₂ Te] ⁺ I ⁻	DMSO-16	7.80	7.05		38
R = H	CH ₂ C1 ₂	CH ₃ 1.05 (s), CH ₂ 2.25 (s),	7.25-7.28	ı	53

.

References p. 474

- -

TABLE 8 (continued)

Ref. 16 5 24 ន ទ 57 5 2 5 2 Coupling Constants Jortho-meta^{7,8} Jortho-meta^{8.3} CH₃ 1.03 (s), CH₂ 2.15 (s), CH₃0 3.75 (s) ortho H (Te) 7.55 (d), meta H (Te) 6.80 (d) ortho H (Te) 7.09 (d), meta H (Te) 7.52 (d) (CD₃)₂S0 | cp 4.69 (s), 4.75 (s), 4.93 (s), 5.10 (s) 5.17 (s), 5.36 (s), C₆H₅ 7.26-7.50 (m) CH₃ 1.02 (s), CH₂ 2.12 (s), CH₃ (arom.) 2.30 (s) CDC1₃ cp 5.31 (s). C₆H₄ 6.98 (d). 7.69 (d) $cDc1_3$ cp 5.32 (s), C_6H_4 6.99 (d), 7.69 (d) (10H,m) (CD₃)₂CO | cp 5.17 (s), 5.29 (s), 5.32 (s); (CD₃)₂S0 cp 4.69 (s), 5.01 (s), 5.27 (s), Chemical Shift, 0 ppm TMS = 0 ppm $(c0_3)_2S0$ cp 5.28 (s), C_6H_5 6.85-7,50 (m) $CDC1_3$ cp 5.34 (s), C_6H_5 7.05-7.90 (m) H (C₁₈) 0.78, H (C₁₉) 0.85 C₆H₅ 7.15-7.55 (m) C₆H₅ 7.16-7.40 (m) Solvent z cc14 cc14 $R = CH_3 O$ R = CH₃ . (#-cp)₂Nb(TeC₆H₅)₂.Fe(NO)₂** (**--**cp)₂Nb(TeC₆H₅)₂·Co(C0)₂** (**a-cp**)₂Ti(TeC₆H₅)₂·Fe(NO)₂** $(\pi-cp)_2MO(Te4-C_6H_4CH_3)_2$ $(\pi - cp)_{2}W(Te4 - CH_{3}C_{6}H_{4})_{2}$ Compound (**m-cp**)₂Mo(TeC₆H₅)₂ (n-cp)₂W(TeC₆H₅)₂ (4-RC₆H₄),Te-

arom. H 7.2-7.6 (m) 3.26, H3 5.31, H4 6.10 J ₂ .	3 3.15, H3 7.84, H4 7.84, H5 9.05 ³ J ₃₄ 4 ⁴ J ₃₅ 1	3 2.55, H3 7.17, H4 6.55, H5 7.60 3.344 4.351	41.1.28	9.50, H3 8.50, H4 8,00, H5 9.43	.72, £ 7.59 9.50, H3 8.50, H4 8.00, H5 9.43 3 ³ 3 ₄ 4.0	.50, 8 7.58 .72, 8 7.59 9.50, H3 8.50, H4 8.00, H5 9.43 3 ³ 3 ₄ 4.0	.77, 8 7.70 .50, 8 7.58 .72, 8 7.59 9.50, H3 8.50, H4 8.00, H5 9.43 ³ J ₃₄ 4.0	.18, ß 2.10 .77, ß 7.70 .50, ß 7.58 .72, ß 7.59 .50, H3 8.50, H4 8.00, H5 9.43 ³ J ₃₄ 4.0	91, ß 1.69 18, ß 2.10 77, ß 7.70 50, ß 7.58 72, ß 7.59 72, ß 7.59 1.50, H3 8.50, H4 8.00, H5 9.43
arom. H 7.2-7.6 (m) 3.26, H3 5.31, H4 6.10	з.15, НЗ 7.84, Н4 7.84, Н5		. 2.55. НЗ 7.17. Н4 6.55. Н5	3.50, H3 8.50, H4 8.00, H5 9 2.55, H3 7.17, H4 6.55, H5	72, ß 7,59 3.50, H3 8.50, H4 8.00, H5 9 .2.55, H3 7.17, H4 6.55, H5	50, 8 7.58 72, 8 7.59 9.50, H3 8.50, H4 8.00, H5 9 .2.55, H3 7.17, H4 6.55, H5	77, 8 7.70 50, 8 7.58 72, 8 7.59 3.50, H3 8.50, H4 8.00, H5 9 3.55, H3 7.17, H4 6.55, H5	18, 8 2.10 77, 8 7.70 50, 8 7.58 72, 8 7.59 3.50, H3 8.50, H4 8.00, H5 9 3.55, H3 7.17, H4 6.55, H5	91, 8 1.69 18, 8 2.10 77, 8 7.70 50, 8 7.58 72, 8 7.59 72, 8 7.69 72, 13 8.50, H4 8.00, H5 9 5.50, H3 8.50, H4 6.55, H5

References p. 474

•

.

463

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

-

TABLE 8 (continued)

464

. .

;

3

s = singlet, d = doublet, t = triplet, q = quartet, sept = septet, m = multiplet

**
 cp = cyclopentadienyl; the various cp-singlet signals are caused by the presence of isomers.

÷

.:

The ¹H nmr spectra of some aryl tellurium derivatives, prepared from tellurium tetrachloride and methyl phenyl ether or ethyl phenyl ether, confirmed the known fact, that the tellurium atom in these compounds is bonded to the ring carbon atom in <u>para-position</u> to the alkoxy groups. The chemical shift difference between the <u>ortho</u> and <u>meta</u> hydrogen atoms (relative to the tellurium atom) in these compounds increases for a particular solvent in the sequence $R_2Te<R_2TeX_2<RTeX_3$ (R = 4-R'C₆H₄, R' = CH₃, CH₃O, C₂H₅O). For a particular compcund in various solvents this difference increases in the order DMSO<CCl₄<C₆H₆³⁸.

and a subsection of the state of the second s

Fringuelli⁶⁷ used the orientational influence between dipolar solutes and the aromatic solvents C_6D_6 and C_6F_6 as expressed by changes of the ¹H-chemical shifts of tellurophene and tetrahydrotellurophene, to confirm that the negative part of the dipole in these heterocycles is located on the tellurium atom.

Computer simulation of the lanthanide $[Eu(fod)_3]$ induced shifts was applied to determine the relative concentrations of the conformers of 2-formyl- and 2acetyltellurophene present in CDCl₃ solutions. It was concluded that 96% of the formyl derivative and 90% of the acetyl derivative were present as the conformer <u>30</u> (section X-A) with the carbonyl group close to the tellurium atom⁶⁰. Different relative conformer concentrations were obtained from ir band analyses of $v(CO)_{-}^{64}$ (section X-A). The torsional barrier about the C-N bond in 2-N,Ndimethylaminocarbonyltellurophene was determined by nmr measurements to be 13.7 - 13.8 kcal mol⁻¹ in the temperature range -11° to + $13.8^{\circ 60}$.

2. ¹⁹F NMR spectroscopy

The 19F chemical shifts of fluroalkyl tellurides and ditellurides are 'summarized in Table 9.

3. INDOR NMR spectroscopy (¹⁹⁵Pt-¹²⁵Te)

Values for the spin-spin coupling constants ${}^{1}J_{195}_{pt}$ in platinumdimethyl telluride complexes were determined. The following values are reported

466

(complex, $J_{195}_{Pt_{-}}125_{Te}$, Hz): M[(PtCl₃)₂L], -1553; M[PtBr₃L], -1092; M[PtI₃L], -400; M₂[(PtCl₃)₂L], 5923; M₂[(PtBr₃)₂L], 5088; M=[(C₄H_q)₄N]⁺, L = (CH₃)₂Te.

D. Electron Spectroscopy

The compounds $(CH_3)_2$ Te, $(SiH_3)_2$ Te and $(GeH_3)_2$ Te were studied by photoelectron spectroscopy to elucidate the role of d-orbital participation in bonding. It was concluded that the Si d-orbitals have only a minor influence on the chemical bond. The following vertical ionization potentials are reported: $(CH_3)_2$ Te, 7.89 eV; $(SiH_3)_3$ Te, 8.63 eV; $(GeH_3)_2$ Te, 8.34 eV⁶⁸. The multi-peak photoelectron spectrum of tellurophene in the C_{1s} region was interpreted as arising from shake up phenomena involving charge transfer from the heteroatom to the carbon atoms. The C_{1s} shake up energy is 4.1 eV. The spin-orbit splittings in the Te_{3d} and Te_{4d} regions are 10.5 eV and 1.4 eV, respectively⁶⁹.

E. <u>125</u>Te Moessbauer Spectroscopy

The 125 Te Moessbauer spectra, which are summarized in Table 10, were obtained at $4.2^{\circ}\kappa^{70,71}$. Enriched 125 Te (91.2%) was used to prepare the dimethyl tellurium compounds⁷¹. The large positive isomer shift values of the aryl tellurium derivatives are indicative of a high s-electron density at the tellurium nucleus⁷⁰. The quadrupole splittings of the organic tellurium halides decrease in the order Cl<Br<I consistent with decreasing sterochemical activity of the non-bonding electrons and increasing symmetry with increasing size of the halide⁷⁰. References to 125 Te Moessbauer work on inorganic tellurium compounds are given in Berry's paper⁷⁰. Moessbauer data for inorganic tellurium compounds were also reported by Mahmud⁷³.

F. Mass Spectroscopy

. ···· -

Mass spectroscopy was used routinely for the characterization of organic References p. 474 (Continued on p. 470)

467

i

~	
ш.	
B	
Σ	-

¹⁹F NMR DATA FOR ORGANIC TELLURIUM COMPOUNDS

Ref. 8 g 43 g 8 8 ę, 43 43 complex splitting J19_{F-}125_{Te}92.6 CF2CF2 Coupling Constants, Hz J_{19F-}125_{Te}22 J_{19F-}125_{Te} | ^JcF₃cF₂^{2.6} J 12.0 J_{F-}F³.3 J_{F-F}3.3 J_{F-F}19 [†]Chemical shift relative to external TFA. <u>CE3</u>(CF₂)₃ 81.9(t.t), CF₃CF₂(CF₂)₂ 126.1(t.q) $CF_3CF_2CF_2$ 116.4 (broad), $C_3F_7CF_2$ 79.2 (broad) CF₃ 84.6(s), CF₂ 84.0(s)^{*} CF₃ 84.8, CF₂ 84.1^{*} CF₃85.0(t), CF₂92.1(q)^{*} CF₃ 83.1(t), CF₂ 86.5(q)^{*} Chemical Shift, ppm CF₃ -49.8(s)[†] 22.7(s)^{*} 27.5(s)^{*} -54(s)[†] Chemical shift relative to CCl₃F. Solvent C6F6 C6F6 C6F6 C6F6 c₆F₆ CF3CF2-Te-CF2CF2CF3 CF3CF2-Te-CF2CF3 Compound cH₃-Te-CF₂CF₃ (CF₃CF₂)₂Te₂ cF₃-Te-cF₃ (CF₃)₂Te₂ CH3-Te-CF3

2

NIC
AF
- BR
~
Ö
~
- 2
à
Ļ
28
ုပ္ပ
- d
~
Ē
ğ
SS
ŭ
¥
്ല
Ϋ́
2
ം
Ц
B
-

¢

-

-

•

	=				
Compound	Source	Chemical Isomer _1 Shift, $\delta(I-Cu)$ nm s ⁻¹	Quadrupole Splitting A, mm s-1	Line Width 2T, mm s ⁻¹	Ref.
C ₆ H5TeI*	1-Cu	0.6	9.5	11.7	20
c ₆ H ₅ TeI ₃	I-cu	0.9	3.9	8.4	70
4-CH ₃ 0C ₆ H ₄ TeCl ₃	PbTe	0.9	9,2	7.4	70
4-c ₂ H ₅ OC ₆ H ₄ TeCI ₃	PbTe	1.1	9.2	6.9	20
4-C ₂ H ₅ OC ₆ H ₄ TeBr ₃	PbTe	1.0	8.0	6.9	20
4-C2H50C6H4Te13	PbTe	1.0	5.2	7.1	70
(4-CH ₃ C ₆ H ₄) ₂ Te ₂	I-Cu	. 9.0	9.9	11.5	20
(4-CH ₃ OC ₆ H ₄) ₂ Te ₂	PbTe	0.3	10.3	6.5	70
(4-c ₆ H ₅ oc ₆ H ₄) ₂ Te ₂	PbTe	0.3	10.3	6.9	70
(4-CH ₃ C ₆ H ₄) ₂ Te	I-Cu	0.7	10.1	10:9	70
(4-CH ₃ 0C ₆ H ₄) ₂ Te	PbTe	0.3	11.3	6.7	70
(CH ₃) ₂ TeCl ₂	SbCu	+0.272**	0.970	7.548	12
(CH ₃) ₂ TeBr ₂	SbCu	+0.241**	8.763	7.480	11
(CH ₃) ₂ TeI ₂	1-Cu	+0.55 ± 0.20		ı	72
	SbCu	+0.248**	7.052	7.884	17
(CH ₃) ₂ TeI ₄	sbCu	+0.209**	7.078	6.966	17
(c ₆ H ₅) ₂ Tec1 ₂	PbTe	0.5	9.2	6.6	20
(C ₆ H ₅) ₂ TeBr ₂	PbTe	0.5	8.1	7.4	20
(c ₆ H ₅) ₂ Te1 ₂	1-Cu	0.7	5.9	6.3	20
(4-CH ₃ C ₆ H ₄) ₂ TeCl ₂	I-Cu	1.6	8.1	12.4	20
(4-CH ₃ C ₆ H ₄) ₂ TeI ₂	PbTe	0.6	6.3	6.5	20
(4-c ₂ H ₅ 0c ₆ H ₄) ₂ Tec1 ₂	PbTe	0.7	9.1	6.4	20

469

.-.

-

-

.

-

_

tellurium compounds. Tellurium containing ions are easily identified through the characteristic pattern generated by the naturally occurring isotopes of tellurium. Such patterns for Te_n^{76,79,80}, Te_nSe_m^{79,80}, TeCl_m^{76,81}, Te_nBr_m^{76,79} were published.

The mass spectral data reported for organic tellurium compounds during the survey period are summarized below. The spectra were obtained by electron impact at an energy of 70 eV unless otherwise stated. For singly charged ions the charge signs are omitted.

Only few detailed investigations of fragmentation pathways were carried out. Fragmentation schemes for diorganyl ditellurides^{75a}, methyl 2-carboxyphenyl telluride^{75a}, methyl 4-acetylphenyl telluride^{75a}, diphenyl tellurium dichloride⁷⁶, bis(4-methoxyphenyl) tellurium dichloride⁷⁶, diorganyl tellurium dicarboxylates⁷⁷ and the heterocyclic ring compounds⁷⁸ <u>32</u> (R = H, CH₃) are reported.

A detailed analysis of the mass spectra of the diorganyl tellurium dicarboxylate $R_2Te(O_2CR')_2$ (R = C_6H_5 , 4-CH₃ C_6H_4 ; R' = CH₃, C_6H_5), $C_6H_5(4-C_2H_5OC_6H_4)Te(O_2CCH_3)_2$ and trimethylene tellurium diacetate and dibenzoate⁷⁷ indicated that the ease of the cleavage of groups bonded to the tellurium atom decreases in the order acetate \sim benzoate > $C_2H_5OC_6H_4 \sim CH_3OC_6H_4 > C_6H_5$. The fragment ions $Ar_2Te(O_2CCH_3)$ lost ketene producing the ion Ar_2TeOH . There was no evidence that the entire acetate group was cleaved in a one step process. Fragments containing the benzoate group expelled carbon dioxide leaving the phenyl groups bonded to the tellurium atom.

 $(CF_3)_2 Te_2^{18}$: base peak CF_3 ; relative abundances of ¹³⁰Te fragments: $C_2F_6Te_2$ (74%), CF_3Te_2 (66%), Te_2 (49%), CF_3Te (56%), CF_2Te (50%), CFTe (7%), FTe (16%) Te (100%).

471 R_2Te_2 (R = C₆H₅, 4-CH₃C₆H₄), 1-C₁₀H₇, 2-C₁₀H₇)^{75a}: R₂Te₂, R₂Te, RTe, R₂, R. (CH2)2Te⁷⁴: R2Te (92%), RTeH (1.9%), RTe (100%), CH2Te (19%), CHTe (23%), H2Te (1%), HTe (20%), Te (44%), R₂Te⁺⁺ (0.8%), RTe⁺⁺ (0.2%), Te⁺⁺ (1.2%); ratio of Te containing ions/CH only ions = 98.7/1.3. CH_3 -Te-CF $_3$ ⁴³: CF $_3$ -TeCH $_3$, CF $_3$ Te, CH $_3$ Te. CF₃-Te-CF₃¹⁸: C₂F₆Te (90%), C₂F₅Te (20%), CF₃Te (100%), CF₂Te (60%), CFTe (11%), FTe (23%), Te (70%). CF₃-Te-CF₃⁴³: (CF₃)₂¹³⁰Te, CF₃Te. CH₃-Te-C₂F₅⁴³: CH₃TeC₂F₅, C₂F₅Te, CH₃Te. $(C_2H_5)_2$ Te and $(\underline{i}-C_3H_7)_2$ Te⁷⁵: 30 eV, 12 eV spectra; R_2 Te⁻⁺ fragments to RTeH⁻⁺ by olefin elimination; $RTe=CHR^+$ (R=H, CH_3) is not formed. $(C_2F_5)_2Te^{43}$: $(C_2F_5)_2Te$, C_2F_5Te . (4-CH₃C₆H₄)₂Te²²: R₂Te. $(2-H0_2CC_6H_4)CH_3Te^{75a}$: R(CH₃)Te, RTe, C₆H₄Te, C₆H₃COTe; (4-CH₃COC₆H₄)CH₃Te^{75a}: R(CH₃)Te, RTe, C₆H₃COTe, C₆H₄Te. [(C₆H₅)₂C=CH]₂TeCl₂²²: R₂TeCl, R₂Te (C6H5)2TeC12⁷⁶: R2TeC1, RTeC1, R2Te, RTe, TeC1, Te, R2, R, no R2TeC12 ion. (4-CH₃0C₆H₄)₂TeCl₂⁷⁶: R₂TeCl, RTeCl, R₂Te, RTe, TeCl, Te, C₆H₄OTe, C₅H₄Te, R₂, R, several other CH and CHO fragments; no R₂TeCl₂-ion. (4-CH₃0C₆H₄)₂TeCl₂²²: R₂TeCl, R₂Te; $(4-RC_6H_4)_2$ Te $(0_2CR')_2$ (R = H, R' = CH₃, C_6H_5 ; R = CH₃0, R' = CH₃)⁷⁷: no molecular ions; R2TeX, RTeX2, R2Te, RTeX, RTe, TeX2, TeX, R2TeOH, RTeOH (X = acetate, benzoate). $Te(Q_2CR')_2(R' = CH_3, C_6H_5)^{77}$: no molecular ion; R_2TeX , R_2Te , CH_2Te , Te, R_2 TeOH (for R' = CH₃); R_2 TeR' (R' = C₆H₅), $C_{g}H_{5}Te$ (for R' = $C_{g}H_{5}$). References p. 474

Í

(relative abundances of 130 Te fragments) 40 : molecular ion (25.9%), base peak at m/e 115; m/e 116 (92.4%).

(relative abundances of 135 Te fragments)⁴⁰: molecular ion (74.4%), m/e 234 (100%), C₆H₄Te (62.8%).

G. X-Ray Structure Analyses

Space groups and unit cell dimensions were reported for the following compounds (L = $\begin{bmatrix} NH \\ C=, L' - \\ NH \\ C=, L' = \begin{bmatrix} (CH_3)_2N]_2G= \end{bmatrix}$: 2-H(0)CC₆H₄TeX (X = Cl, Br, 1)⁸², C₆H₅TeCl·LS³⁵,⁸³, C₆H₅TeCl·(LS)₂³⁵, C₆H₅TeCl·LSe³⁴, C₆H₅TeCl·L'S³⁵ C₆H₅TeCl·L"S³⁵, C₆H₅TeCl·L"Se³⁴, C₆H₅TeBr·LS³⁵,⁸⁴, C₆H₅TeBr·LSe³⁴,⁸³, C₆H₅TeBr·L'S³⁵, C₆H₅TeBr·L'Se³⁴, C₆H₅TeBr·L"S³⁵, C₆H₅TeBr·L"Se³⁴, C₆H₅TeI·LSe³⁶, C₆H₅TeSCN·LS³⁵, [(CH₃)₄N]⁺ [C₆H₅Te(YCN)₂]⁻ (Y = S, Se)⁸⁵, dibenzotellurophene^{19,86} and dibenzotellurophene 5,5-diiodide¹⁹.

Singel crystal X-ray structural analyses of the compounds $C_6H_5TeX\cdot LS$ (X = $C1^{83}$, Br^{84} , I^{36}), $C_6H_5TeX\cdot LSe$ (X = Br^{83} , I^{36}) and of $[(CH_3)_4N]^+ [C_6H_5Te(YCN)_2]^-$ (Y = S, Se)⁸⁵ produced the following bond lengths: Te-C, 2.100-2.124Å; Te-Cl, 2.848Å, Te-Br, 2.835-3.054Å; Te-I, 3.003-3.095Å, Te-S, 2.521-2.702Å; Te-Se, 2.616-2.823Å. The coordination of the tellurium atom in these compounds depicted in structure <u>33</u> can be described as approximately square planar with an almost linear arrangement of the X-Te-S(Se) group. The Te-C bond almost bisects the X-Te-S(Se) angle. The fourth position can be vacant as is the case in $C_6H_5Te(YCN)$ (Y = S, Se)⁸⁵, one crystalline form of C_6H_5TeBr -LS (space group C2/c)⁸⁴ and $C_6H_5TeI\cdotLS(Se)^{36}$ or is occupied by a halogen atom from another molecule.

The Te....X bond lengths⁸³ for X = C1 and Br are 3.740Å and 3.849Å, approximately A longer than the corresponding Te-X bonds.

McCullough⁸⁶ found the dibenzotellurophene molecule to be slightly folded with dihedral angles of 1.4° and 0.6° between the five-membered and sixmembered rings. The Te-C bond distances are 2.084 and 2.089Å and the C-Te-C bond angle is 81.7° .

H. Dipole Moment Measurements

The electric dipole moments of the diaryl ditellurides, $(RC_6H_4)_2Te_2$ $(R = H, 4-F, 4-Br, 4-CH_3, 3-F)$ were measured in benzene solutions⁸⁷ at 25° and 45°. The following values were obtained (R, μ^{25}, μ^{45}) : H, 1.26, 2.82; 4-Br, 0.89, 0.88; 4F, 1.05, 0.36; 4-CH₃, 2.16, 2.17; 3-F, 1.86, 0.66. These data indicate that the ditellurides with R = 4-Br and 4-CH₃ exhibit free rotation about the Te-Te bond at both temperatures. The other three compounds seem to have a more rigid conformation at 25° characterized by dihedral angles between the C-Te-Te planes of 89.7° (R = H), 47.7° (R = 4-F), and 89.7° (R = 3-F). No good explanation is available for the high dipole moment of diphenyl ditelluride at 45°.

References p. 474

Kataeva⁸⁸ determined experimentally and calculated with quantum mechanical methods the dipole moments of the tellurides $4-RC_6H_5$ -Te-C=C-C₆H₅. The results indicated that all bonds in this molecule have multiple bond character and that the tellurium atom acted as π -electron donor to the carbon π -system.

Fringuelli⁶⁷ established by nmr methods (section X-C1) that the tellurium atom is the negative end of the dipole in tetrahydrotellurophene and tellurophene.

XI. Analytical Techniques

A gelatin reference material containing 25 trace elements among them tellurium in the μ g/g range was developed⁸⁹.

The book "Analytical Chemistry of Selenium and Tellurium" by Nazarenko and Ermakov^{II} has a small section devoted to the determination of selenium or tellurium in organic compounds and biological materials.

XII. Biology of Organic Tellurium Compounds

2-Tellura-A-nor-5 α -androstan-17 β -ol was tested for its androgenic activity¹⁶.

Tellurium was found to be ineffective as a protective agent toward methyl mercury poisoning in the Japanese quail⁹⁰.

An attempt to synthesize 1^{23m} Te-telluromethionine by growing baker's yeast in the presence of H_2 TeO₃ was unsuccessful⁹¹. The telluromethionine was intended to be used as an agent for the diagnostic visualization of the pancreas by scintigraphy.

The reactions which occur in living organisms and lead to the formation of a carbon-tellurium bond were reviewed by Imura¹⁰.

REFERENCES

1. Irgolic, K. J., <u>J. Organometal. Chem.</u>, <u>103</u> (1975) 91.

. بایار در از مطلقه به دوره ۲۸۵ میکرده به در ۲۸۵۰ میکر میکر ۲۰۰ میکرد. در از مطلقه میشود و از از از از از از از

- Irgolic, K. H., "The Organic Chemistry of Tellurium", Gordon and Breach, New York, 1974.
- 3. Hursthourse, M. B., Mol. Struct. Diffr. Methods, 2 (1974) 475.
- Donovan, R. J., and Gillespie, H. M., <u>React. Kinet.</u>, <u>1</u> (1975) 14; (for tellurium see pp. 60-65).
- 5. Imura, N., Taisha, 12(3) (1975) 195; Chem. Abstr., 84, 39362.
- The Chemistry Society, London, Specialist Periodical Reports, "Organic Compounds of Sulphur, Selenium, and Tellurium, Volume 3;" D. H. Reid, Senior Reporter, 1975, 805 pp.
- Nuretdinov, I. A., Buina, N. S., Nikonorova, L. K., and Grechkin, N. P., Khim. Primen. Fosfororg. Soedin., Tr. Konf., 5th 1972 (Pub. 1974), 93; Chem. Abstr., 83, 147517.
- Ohkubo, K., Jerusalem Symp. Quantum Chem. Biochem., <u>1974</u>, 6 (Chem. Biochem. React., Proc. Int. Symp., 1973), 243.
- Engelbrecht, A., and Sladky, F., <u>MTP Int. Rev. Sci.; Inorg. Chem., Ser. Two</u> 3 (1975) 137.
- Kudryavtesev, A. A., "Chemistry and Technology of Selenium and Tellurium," Collet's: Wellingborough, Engl. 1974, 273 pp.
- Nazarenko, I. I., and Ermakov, A. N., "Analytical Chemistry of Selenium and Tellurium", Halsted, New York, N. Y. 1973, 281 pp.
- Schmidt, M., Siebert, W., and Bagnall, K. W., "The Chemistry of Sulfur Selenium, Tellurium and Polonium," Pergamon, Elmsford, N. Y., 1975, 214 pp.
- 13. Laing, D. K., and Pettit, L. D., J. Chem. Soc., Dalton Trans., (1975) 2297.
- Zilverschoon, A., Meijer, J., Vermeer, P., and Brandsma, L., <u>Recl. Trav.</u> <u>Chim. Pays-Bas</u>, <u>94</u> (1975) 163.
- Naaktgeboren, A., Meijer, J., Vermeer, P., and Brandsma, L., <u>Recl. Trav.</u> <u>Chim. Pays-Bas</u>, <u>94</u> (1975) 92.
- 16. Zanati, G., Gaare, G., and Wolff, M. E., J. Med. Chem., 17 (1974) 561.
- Cagniant, P., Close, R., Kirsch, G., and Cagniant, D., <u>C. R. Hebd.</u> Seances Acad. Sci. Ser. C, <u>281</u> (1975) 187.
- Lagow, R. J., Gerchman, L. L., Jacob, R. A., and Morrison, J. A., <u>J. Amer.</u> Chem. Soc., <u>97</u> (1975) 518.
- 19. McCullough, J. D., Inorg. Chem., 14 (1975) 2285.
- 20. Dance, N. S., and McWhinnie, W. R., J. Chem. Soc., Dalton Trans., (1975) 43.
- Paul, R. C., Bhasin, K. K., and Chadha, R. K., <u>J. Inorg. Nucl. Chem.</u>, <u>37</u> (1975) 2337.
- 22. Albeck, M., and Shaik, S., J. Chem. Soc., Perkin Trans. I, (1975) 1223.

476	
23.	Sadekov, I. D., Sayapina, L. M., Bushkov, A. Y., and Minkin, V. I., <u>Zh. Obshch. Khim.</u> , <u>41</u> (1971) 2713.
24.	Sato, M., and Yoshida, T., J. Organometal. Chem., 87 (1975) 217.
25. ⁻	Seebach, D., and Beck, A. K., <u>Chem. Ber.</u> , <u>108</u> (1975) 314.
26.	Radchenko, S. I., and Petrov, A. A., <u>Zh. Org. Chim., 11</u> (1975) 1988.
27.	Schulz, P., and Klar, G., Z. Naturforsch, Teil B, 30B (1975) 43.
28.	Mueller, E., Luppold, E., and Winter, W., <u>Synthesis</u> , (1975) 265.
29.	Mueller, E., Luppold, E., and Winter, W., <u>Chem. Ber.</u> , <u>108</u> (1975) 237.
30.	Desjardins, C. D., Paige, H. L., Passmore, J., and Taylor, P., <u>J. Chem.</u> Soc., Dalton Trans., (1975) 488.
31.	Austad, T., <u>Acta Chem. Scand., Ser. A</u> , <u>A28</u> (1974) 927.
32.	Austad, T., and Esperas, S., <u>Acta Chem. Scand., Ser. A</u> , <u>A28</u> (1974) 892.
33.	Schulz, P., and Klar, G., Z. Naturforsch., Teil B, 30B (1975) 40.
34.	Vikane, O., <u>Acta Chem. Scand., Ser. A</u> , <u>A29</u> (1975) 152.
35.	Vikane, O., <u>Acta Chem. Scand., Ser. A</u> , <u>A29</u> (1975) 150.
36.	Vikane, O., <u>Acta Chem. Scand., Ser. A</u> , <u>A19</u> (1975) 787.
37.	Petragnani, N., Torres, L., and Wynne, K. J., <u>J. Organometal. Chem., 92</u> (1975) 185.
38.	Berry, F. J., Kustan, E. H., Roshani, M., and Smith, B. C., <u>J. Organometal.</u> Chem., 99 (1975) 115.
39.	Armstrong, D. R., Fraser, G. W., and Meikle, G. D., <u>Inorg. Chem. Acta</u> , <u>15</u> (1975) 39.
40.	Dereu, N., Piette, J. L., Van Coppenolle, J., and Renson, M., <u>J. Heterocycl.</u> Chem., <u>12</u> (1975) 423.
41.	Piette, J. L., and Renson, M., Bull. Soc. Chim. Belges, 79 (1970) 353.
42.	Irgolic, K. J., Busse, P. J., Grigsby, R. A., and Smith, M. R., <u>J. Organometal.</u> Chem., <u>88</u> (1975) 175.
43.	Denniston, M. L., and Martin, D. R., J. Inorg. Nucl. Chem., 37 (1975) 1871.
44.	Efremov, E. A., Fedorov, V. A., Orlov, V. Yu., Osipova, N. G., Chesnokova, E. V and Tonoyan, L. G., <u>Zh. Fiz. Khim.</u> , <u>49</u> (1975) 1336.
45.	Mosin, A. M., Shaulov, Yu. Kh., and Andreeva, N. I., <u>Zh. Fiz. Khim.</u> , <u>48</u> (1974) 2356.
46.	Efremov, E. A., Orlov, V. Yu., Fedorov, V. A., Osipova, N. G., Efremov, A. A., and Tonoyan, L. G., <u>Zh. Fiz. Khim.</u> , <u>49</u> (1975) 1844.

.

ł

I

477

47. Roulet, P., and R. Favez, Chimia, 29 (1975) 346.

المتحاج الإدارة فالمحمصة فحاد والارتبار المتعدد بواليت يد

- Pogorelyi, V. K., Kukhtenko, I. I., and Lutskii, A. E., <u>Teor. Eksp. Khim.</u>, <u>10</u> (1974) 824.
- Radchenko, S. I., Savich, I. G., and Petrov, A. A., <u>Zh. Org. Khim.</u>, <u>10</u> (1974) 2269.
- Radchenko, S. I., Sulimov, I. G., and Petrov, A. A., <u>Zh. Org. Khim.</u>, <u>10</u> (1974) 2456.
- 51. Chmutova, G. A., and Podkovyrina, T. A., <u>Zh. Obshch. Khim.</u>, <u>45</u> (1975) 158.
- Sadekov, I. D., Maksimenko, A. A., Usachev, A. I., and Minkin, V. I., Zh. Obshch. Khim., 45 (1975) 2562.
- Sadekov, I. D., Usachev, A. I., Maksimenko, A. A., and Minkin, V. I., Zh. Obshch. Khim., 45 (1975) 2563.
- 54. Kopf, J., Vetter, G., and Klar, G., Z. Anorg. Allg. Chem., <u>409</u> (1974) 285.
- 55. Freeman, B. H., Moyd, D., and Singer, M. I. C., Tetrahedron, 29 (1972) 343.
- 56. Siebert, W., Chem. Ztg., 98 (1974) 479.

- - -

- 57. Sato, M., and Yoshida, T., J. Organometal. Chem., 94 (1975) 403.
- Cross, R. J., Green, T. H., Keat, R., and Paterson, J. F., <u>Inorg. Nucl. Chem</u> <u>Lett.</u>, <u>11</u> (1975) 145.
- Goggin, P.L., Goodfellow, R. J., and Haddock, S. R., J. Chem. Soc., Chem. Commun., (1975) 176.
- Caccamese, S., Montaudo, G., Recca, A., Fringuelli, F., and Taticchi, A., Tetrahedron, 30 (1974) 4129.
- 61. Alosi, G. G., Santini, S., and Savelli, G., <u>J. Chem. Soc., Faraday Trans. I</u>, <u>71</u> (1975) 2045.
- 62. Gioaba, A., and Maior, O., An. Univ. Bucuresti, Chim., 22 (1973) 111.
- 62a. Perrier, M., and Vialle, J., Bull. Soc. Chim. France, (1971) 4591.
- Rodionov, A. N., Rogozhin, K. L., Karpova, R. A., Paleeva, I. E., and Shigorin, D. N., <u>Zh. Fiz. Khim.</u>, <u>49</u> (1975) 1416.
- Andieu, C. G., Debruyne, D., and Mollier, Y., <u>C. R. Hebd. Seances Acad.</u> <u>Sci., Ser. C</u>, <u>280</u> (1975) 977.
- 65. Lumbroso, H., Bertin, D. M., Fringuelli, F., and Taticchi, A., <u>C. R. Hebd.</u> <u>Seances Acad. Sci., Ser. C</u>, <u>277</u> (1973) 203.
- Scott, J. D., Causley, G. C., and Russel, B. R., Nato Adv. Study Inst. Ser., Ser. C 1973-4 (Pub. 1974) 8 (Chem. Spectrosc. Photochem. Vac. -Ultraviolet, Proc. Adv. Study Inst., 1973) 403; <u>J. Chem. Phys.</u>, <u>59</u> (1973) 6577.

- Fringuelli, F., Gronowitz, S., Hornfeldt, A. B., and Taticchi, A., J. Heterocycl. Chem., <u>11</u> (1974) 827.
- 68. Ebsworth, E. A. V., Kem. Kozl., <u>42</u> (1974) 1; Chem. Abstr., <u>82</u>, 9776.
- 69. Pignataro, S., and Distefano, G., Z. Naturforsch. A, 30A (1975) 815.
- Berry, F. J., Kustan, E. H., and Smith, B. C., <u>J. Chem. Soc.</u>, <u>Dalton Trans.</u>, (1975) 1323.
- 71. Smith, K. V., Thayer, J. S., and Zabransky, B. J., <u>Inorg. Nucl. Chem. Lett.</u>, <u>11</u> (1975) 441.
- Chan, L. Y. Y., and Einstein, F. W. B., <u>J. Chem. Soc., Dalton Trans.</u>, (1972) 316; personal communication from Cheyne, R., and Jones, C. H. W.
- Nahmud, Y., Boolchand, P., Hanna, S. S., and Triplett, B. B., <u>J. Phys.</u> (Paris) Collog., (1974) 227.
- Druzhkov, O. N., Galliullina, R. F., Postnikova, T. K., Andrianov, Yu. A., and Pavlenko, E. A., <u>Tr. Khim. Khim. Tekhnol.</u>, (1974) 134.
- Kostyanovskii, R. G., Voznesenskii, V. N., Nuretdinov, I. A., Shikhaliev, Sh. M. and Shakhgel'diev, M. A., <u>Izv. Akad. Nauk SSSR, Ser. Khim.</u>, (1975) 481.
- 75a. Buu-Hoi, N. P., Mangane, M., Jacquingnon, P., Piette, J. L., and Renson, M., <u>Bull. Soc. Chim. France</u>, (1971) 925.
- 75. Albeck, M., and Shaik, S., J. Organometal. Chem., 91 (1975) 307.
- 77. Adley, T. J., Pant, B. C., and Rye, R. T., Can. J. Spectrosc., 20 (1975) 71.
- Perrier, M., Pinel, R., and Vialle, J., <u>J. Heterocycl. Chem.</u>, <u>12</u> (1975) 639.
- 79. Irgolic, K. H., and Haller, W. S., Int. J. Sulfur Chem., 2 (1972) 267.
- Grupe, K. H., Hellwig, K., and Kolditz, L., <u>Z. Phys. Chem. (Leipzig)</u>, <u>255</u> (1975) 1015.
- 81. Matsumoto, K., Kiba, N., and Takeuchi, T., <u>Talanta</u>, <u>22</u> (1975) 321.
- Baiwir, M., Llabres, G., and Piette, J. L., <u>J. Appl. Crystallogr.</u>, <u>8</u> (Pt. 3) (1975) 397.
- 83. Vikane, O., Acta Chem. Scand., Ser. A, A29 (1975) 763.
- 84. Vikane, O., Acta Chem. Scand., Ser. A, A29 (1975) 738
- 85. Hauge, S., and Vikane, O., Acta Chem. Scand., Ser. A, A29 (1975) 755.
- 86. McCullough, J. D., Inorg. Chem., 14 (1975) 2639.
- Pappalardo, G. C., Gruttadauria, S., and Irgolic, K. J., <u>J. Organometal.</u> <u>Chem.</u>, <u>97</u> (1975) 173.
- Kataeva, L. M., Podkovyrina, N. S., and Krivosheeva, <u>Zh. Fiz. Khim.</u>, <u>49</u> (1975) 2715.

ł

- 89. Anderson, D. H., Murphy, J. J., and White, W. W., Anal. Chem., 40 (1976) 116.
- 90. Welsh, S. O., Diss. Abstr. Int. B, 36 (1975) 657.
- 91. Kolar, Z., Int. J. Appl. Radiat. Isot., 25 (1974) 330.

PATENTS

- P-1 U.S.S.R. 450,806; Chem. Abstr., 82, 125418.
- P-2 Ger. Offen. 2,451,055; Chem. Abstr., 83, 175163.
- P-3 Neth. Appl. 75 02,156; Chem. Abstr., 84, 30723.
- P-4 Ger. Offen. 2,436,132; Chem. Abstr., 84, 10935.