Journal of Organometallic Chemistry, 129 (1977) C14-C16 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

TRICARBONYL(4--7:10-11-η-3-BENZOXEPIN)METALL-KOMPLEXE DER VI. NEBENGRUPPE*

CORNELIUS G. KREITER* und SAIM ÖZKAR

Anorganisch-Chemisches Institut der Technischen Universität, München, Arcisstrasse 21, D-8000 München 2 (B.R.D.)

(Eingegangen den 3. Februar 1977)

Tricarbonyl-eisen(0)-Komplexe von Derivaten der siebengliedrigen Heterocyclen Oxepin [1] und 1*H*-Azepin [2] sind seit einiger Zeit bekannt. Nun gelan uns vor kurzem die Synthese von Tricarbonyl- η^6 -*N*-carbäthoxyazepin-chrom(0), -molybdän(0) und -wolfram(0) [3], weswegen wir auch Versuche zur Darstellun entsprechender Oxepinkomplexe unternommen haben.

Bei den Umsetzungen von Tricarbonyl-trisacetonitril-chrom(0) und -wolfram([4] bzw. von Tricarbonyl-diglyme-molybdän(0) [5] mit Oxepin-Benzoloxid [6] fallen aber lediglich undefinierte Zersetzungsprodukte an. Wird als potentieller Ligand 3-Benzoxepin [7] eingesetzt, so erhält man in geringen bis mässigen Ausbeuten Tricarbonyl-chrom(0)-, -molybdän(0)- und -wolfram(0)-Komplexe des 3-Benzoxepins in Form gut ausgebildeter, oranger bis roter Kristalle.

(I) $M = Cr \cdot 25\%$ (II) $M = Mo \cdot 5\%$ (III) $M = W \cdot 6\%$

Die IR-, Massen-, ¹H-NMR- und ¹³C-FT-NMR-Spektren wie die Elementaranalysen von I—III beweisen die Zusammensetzung und Struktur der Komplexe. Von den beiden alternativen Bindungsmöglichkeiten, Koordination des 3-Benzoxepins über den Benzol- oder über den Oxepinring, wird die über den Benzolring verwirklicht. Triebfeder hierfür könnte eine weitgehende Erhaltung des aromatischen 6π -Elektronensystems im Komplex sein. Dagegen würde offenbar die

C14

^{*}Sonderdrucke sind nicht erhältlich.

Im ν (CO)-Bereich des IR-Spektrums zeigen I–III jeweils 3 scharfe Banden, die für faciale M(CO)₃-Gruppen, deren lokale $C_{3\nu}$ -Symmetrie gestört ist, typisch sind. Die in Tabelle 1 neben den CO-Frequenzen angegebenen Kraftkonstanten wurden nach der Cotton–Kraihanzel-Näherung [8] berechnet.

Das 3-Benzoxepin zeigt im ¹H-NMR-Spektrum vier gleichintensive Signale. Prinzipiell bilden die Protonen beider Ringe jeweils AA'BB'-Spinsysteme, doch zeigen nur die des benzolischen Rings die typische AA'BB'-Signalstruktur, während die des Oxepinrings ein AB-Spektrum als Folge der kleinen Kopplungskonstanten zwischen H_{2,3} und H_{8,9} aufweisen. Die Signalzuordnung (Tab. 2) beruht auf einer geringfügigen Linienverbreiterung der Signale von H_{3,8} und H_{4,7} im Vergleich zu H_{2,9} und H_{5,6}; der Grund für diese Verbreiterung ist in einer

TABELLE 1

CO-STRECKSCHWINGUNGEN (cm⁻¹) UND CO-KRAFTKONSTANTEN (nm⁻¹) VON I—III IN CYCLOHEXANLÖSUNG

		A	A'	A"	k,	k ₂	k _i	
$Cr(CO)_{3}(C_{10}H_{A}G)$	(1)	1976	1919	1910	1526.	1505.	32.	
Mo(CO) ₃ (C ₁₀ H _a O)	(11)	1979	1915	1909	1520.	1507.	35	
W(CO) ₁₀ H ₈ O)	(111)	1977	1911	1905	1515	1502.	36	

TABELLE 2

NMR-DATEN VON 3-BENZOXEPIN UND DESSEN M(CO)₃-KOMPLEXEN IN δ (ppm) rel. i. TMS. AUFLÖSUNG DER ¹³C-NMR-SPEKTREN ± 0.11 ppm

		H _{2,9}	H3,8	H4.7	Н,,,,	³ J _{2,3} (H	z)	Lösungsmittel
C ₁₀ H ₈ O		5.64	5.02	6.59	6.91	7.4	· <u> </u>	CDCl,
Cr(CO) ₃ (C ₁₀ H ₈ O)	(I)	5.81	4.57	4.90	5.27	8.1		CD,CI,
Mo(CO) ₁ (C ₁₀ H ₈ O)	(II)	5.79	4.62	5.26	5.46	7.9		CD,CI,
W(CO) ₃ (C ₁₀ H ₈ O)	(III)	5.86	4.58	5.12	5.37	8.1		CD ₂ Cl ₂
		C _{2,9}	C,,8	C4,7	C 5, a	C10,11	со	
C, H,O		146.72	113.49	129.78	128.60	136.58		CD,COCD,
Cr(CO) ₃ (C ₁₀ H ₈ O)	(1)	145.43	106.80	94.72	92.89	104.32	234.11	CD,COCD,

schwachen Spin-Spin-Wechselwirkung der α -Protonen beider Ringe zu suchen.

Die Grundstruktur des 3-Benzoxepin-Spektrums ist auch in den Spektren von I-III vorhanden. Man findet jedoch die Signale von $H_{4,7}$ und $H_{5,6}$ deutlich, die von $H_{3,8}$ etwas nach höheren Feldern verschoben, woraus man unmittelbar auf die Koordination der M(CO)₃-Gruppen an den Benzolring schliessen muss [9].

Den gleichen Schluss lassen die ¹³C-FT-NMR-Spektren von 3-Benzoxepin und I zu (Tab. 2). Hier sind die ¹³C-Signale des Benzolrings nach der Komplexbildung um mehr als 30 ppm nach höheren Feldern verschoben. Die Signalzuordnung wurde anhand von selektiv protonenentkoppelten Spektren getroffen.

Versuchsbeschreibung

Die NMR-Spektren wurden mit Geräten der Firmen Jeol (C60 HL) und Bruker (HFX-90) bei 60 (¹H) und 22.63 (¹³C) MHz aufgenommen. Die IR-Messungen erfolgten an einem Gerät der Firma Perkin-Elmer (Modell 21, LiF-Prisma). Massenspektren: Atlas CH 4, Ionenquelle To4 (Ofenschiffchen).

Alle Arbeiten wurden unter trockener N₂-Schutzgasatmosphäre durchgeführt, die verwendeten Lösungsmittel wurden nach den üblichen Verfahren getrocknet und mit Stickstoff gesättigt. Die Ausgangsmaterialien Tricarbonyl-trisacetonitrilchrom(0) [4], Tricarbonyl-diglyme-molybdän(0) [5], Tricarbonyl-trisacetonitrilwolfram(0) [4] und 3-Benzoxepin [7] wurden nach Literaturvorschriften aus handelsüblichen Präparaten synthetisiert.

1. Tricarbonyl(4-7:10-11-n-3-benzoxepin)chrom(0) (I)

1.30 g (5 mmol) Tricarbonyl-trisacetonitril-chrom(0) und 1.44 g (10 mmol) 3-Benzoxepin werden 1 h in 50 ml n-Heptan unter Rückfluss erhitzt. Das Lösung mittel wird im Vakuum entfernt und der Rückstand mit Benzol an Silicagel (Firma Merck, Darmstadt 0.06-0.20 mm) chromatographiert. Das Eluat wird eir geengt und das Rohprodukt aus Methylenchlorid/Pentan (1/5) umkristallisiert. Orange, glänzende Kristalle, 350 mg (25% bez, auf Cr(CO)₃(CH₃CN)₃). Analyse: Gef.: C, 55.64; H, 3.03; Cr, 18.53; Mol.-Gew. massenspektr. 280. C₁₃H₈O₄Cr ber. C, 55.80; H, 2.88; Cr, 18.57%; Mol.-Gew. 280.20.

2. Tricarbonyl(4--7:10 11-n-3-benzoxepin)molybdän(0) (II)

1.97 g (6.3 mmol) Tricarbonyl-diglyme-molybdän(0) und 1.44 g (10 mmol) 3-Benzoxepin werden in 50 ml n-Heptan 10 h am Rückfluss erhitzt. Aufarbeitung wie unter 1. Orange Kristalle, 100 mg (5% bez. auf Mo(CO)₃(C₆H₁₄O₃)). Analyse Gef. C, 47.83; H, 2.45; Mol.-Gew. massenspektr. 326 bez. auf ⁹⁸Mo. C₁₃H₈O₄Mo ber. C, 48.17, H, 2.49%; Mol.-Gew. 324.14.

3. Tricarbonyl(4-7:10-11-n-3-benzoxepin)wolfram(0) (III)

0.95 g (2.4 mmol) Tricarbonyl-trisacetonitril-wolfram(0) und 1.21 (8.4 mmol) 3-Benzoxepin werden in 50 ml n-Heptan 10 h am Rückfluss erhitzt. Aufarbeitung wie unter 1. Rote Kristalle, 60 mg (6% bez. auf W(CO)₃(CH₃CN)₃). Analyse: Gef C, 37.8; H, 1.9; Mol.-Gew. massenspektr. 412 bez. auf ¹⁸⁴W. C₁₃H₈O₄W ber.: C, 37.89; H, 1.96%; Mol.-Gew. 412.05.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit.

Literatur

- 1 E.O. Fischer und H. Rühle, Z. Anorg. Allg. Chem., 341 (1965) 137.
- 2 E.O. Fischer, C.G. Kreiter, H. Rühle und K.E. Schwarzhans, Chem. Ber., 100 (1967) 1905.
- C.G. Kreiter und S. Özkar, Z. Naturforsch. B, (1977) im Druck.
 D.P. Tate, W.R. Knipple und J. Augl, Inorg. Chem., 1 (1962) 433.
- 5 R.P.M. Werner und T.H. Coffield, Chem. Ind., (1960) 936.
- 6 E. Vogel, W.A. Böll und H. Günther, Tetrahedron Lett., (1965) 609.
- 7 K. Dimroth, G. Pohl und H. Follmann, Chem. Ber., 99 (1966) 634. 8 F.A. Cotton und C.S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
- 9 B. Deubzer, E.O. Fischer, H.P. Fritz, C.G. Kreiter, N. Kriebitzsch, H.D. Simmons Jr. und R. Willeford Jr., Chem. Ber., 100 (1967) 3084.