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Summary

Studies are reported related to the reaction of M(CO); (M = Mn, Re) with
XM(CO);L, XM(CO);, and XRe(CO);(pyridine), (X = Cl, Br, I; M = Mn, Re;
L = 2,2'-bipyridine, 1,10-phenanthroline, 1,2-bis(diphenylphosphino)ethane,
2,2'-biquinoline, 4,7-diphenyl-1,10-phenanthroline, o-phenylenebis(dimethyl-
arsine), and cis-1,2-bis(diphenylphosphino)ethylene) which may yield metal—
metal bonded complexes. Neither XM(CO); nor XRe(CO);(pyridine), react at
25°C, and for XM(CO);L only those complexes which are easily reduced (L
= 2,2'-bipyridine, 1,10-phenanthroline, 4,7-diphenyl-1,10-phenanthroline, and
2,2'-biquinoline) readily yield products of the formula M,(CO);L.. The data
suggest that the metal—metal bond formation is not via a simple nucleophilic
attack mechanism but likely involves prior electron transfer to generate
XM(CO),L".

Synthesis of metal—metal bonded complexes by reaction of a metal carbonyl
anion with a metal carbonyl halide is an accepted procedure [1], and we em-
ployed [2] such a route in preparing Re,(CO)s(1,10-phenanthroline) (reaction
1). Our interest was aroused in this reaction class when we were unable to pre-
pare Re,(CO)s\pyridine), by reaction of Re(CO)s~ with CIRe(CO);(pyridine),.

Re(CO); + CIRe(CO)3(1,10-phenanthroline) ~ CI” + (OC)sRe—Re(CO)5(1,10-
phenanthroline) 1)

It is well established that metal carbonyl anions can behave as straight-forward
nucleophiles in substitution reactions of Group IV halides [3]. Additionally,
metal carbonyl anions are capable of behaving as one-electron reducing agents
in such circumstan‘wi; [4]. In this paper we provide evidence that reaction 1 oc-
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curs via an electron transfer mechanism and not by simple associative nucleo-
philic displacement of the halide. Such a mechanism has precedence from the
work of Dessy and Weissman [5].

Results and discussion

a. Reaction of M(CO); with XM(CO);L. Our main results are for the reaction
of Re(CO); with XRe(CO);L. These will be amplified with some information
for the Mn analogues below. For certain XRe(CO);L complexes we find that
reaction at 25°C with Re(CO); efficiently and rapidly yields metal—metal bond-
ed Re,(CO);L. In other cases we have found no reaction even upon heating the
mixture. In particular, the comparison of the behavior of fac-ClRe(CO)-
(pyridine), (unreactive) with fac-ClRe(CO)3(2,2 -bipyridine) (reactive) is striking.
The fac-ClRe(CO)s(pyridine), can be quantitatively recovered after refluxing it
in THF solutions of excess Re(CO); for several hours, while even at 25°C one
quantitatively generates Re,(CO)s(2,2"-bipyridine) when CIRe(CO);(2,2'-
bipyridine) and Re(CO); are mixed. A comparison of the relative rates of reac-
tive XRe(CO);L: complexes and: a list of non-reactive ones are given in Table 1.
Representative spectral changes accompanying reaction of Re(CO); with
XM(CO);L are shown in Fig. 1, and plots of initial optical density change as a
function of reaction time are given in Fig. 2. We note additionally that Re(CO);
and Mn(CO); react with BrMn(CO);(1,10-phenanthroline) to yield (OC);ReMn-
(C0O)1(1,10-phenanthroline) and Mn,(CO)s(1,10-phenanthroline), respectively.
However, we fail to get reaction of CiRe(CO);(1,10-phenanthroline) and
Mn(CO)s.

b. Reduction of XM(CO),L. The difference in behavior of CIRe(CO);(pyridine),

TABLE 1
RELATIVE REACTIVITY OF METAL CARBONYL HALIDES WITH Re(éO)ga

Metal carbonyl halide Initial Product {expected product])

rela-

tive

rate
CIRe(CO)3(2.2"-bipyridine) - 1.0 Re3(CO)g (2,2 -bipyridine)
ClRe(CO)3(2,2"-biquinoline) 2.6 Re2(CO0)3 (2.2 -biquinocline)
ClRe(CO)3(4,7-diphenyl-1,10-phenanthroline) 2.7 Re2(CO)g(4.7-diphenyl-1,10-phenanthroline)
C1Re(C0C)3(1,10-phenanthroline) 3.2 Re2(CO0O)s (1,10-phenanthroline)
BrRe(C0)3(1.10-phenanthroline) 3.2 Re3(CO)g(1,10-phenanthroline)
1Re(CO)3(1.10-phenanthroline) 2.4 "Re2(CO0)g(1,10-phenanthroline) .
BrMn(CO)3(1.10-phenanthroline) Reaets € (OC)sReMn(CC)3(1,10-phenanthroline)
ClRe(CO)3(pyridine)s s [Re2(CO)g(pyridine)s ]
CIRe(CO)3(diars) £ {Re3(CO)g(diars)}
CIRe(CO)3(diphos) € & [Re2(CO)g(diphas)} <L .
CIRe(CO)3(2-phos) T £ [Rea(CO)g(2-phos)] -
CIRe{TUJ;5 o [Re2(CONof" ~ " - -

2 Reaction in dry, deoxy;enlted THF, at 25°C. The metal carbonyl halh‘!e concentration was 4.3 X 10"‘ M-
and NaRe(CO)s was 5 X105 M. }R.ltes relative to CIRe(C0)3(2,2 bipyridine). Rate = 1.0 corresponds | to
initial rate of 3.7 X 1076 M min~1, This corresponds to a reaction half-time of ~1 b. € Relative rate not
measured. ¥ diars = o-phanyrmeﬁh(dlmzthyhnine), "dinhdssla-hk(dlphmbﬁmhino)ethme. 73 z-phoc -
= cis-1, 2—bls(dgph=nglphosphinq)c&hm. Noresction.” . TR PR -
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Fig. 1. Low energy visible electronic spectral changes accompanying reaction of 5 X 10~3 M Re(CO)z with
43X 10%M ClRe(CO)3(2.2'-biquino'line) in deoxygenated, dry THF at 298 K. The cell path length is
1.0 cm. The product is Re3(C0)3(2.2"-biquinoline); Apay 660 nm (€ 6200 mol™? 1em™).

and species like CIRe(CO)3(2,2'-bipyridine) convince us that a mechanism other
than nucleophilic substitution of the halide by the M(CO); must be responsible
for the net reaction of XM(CO);L and M(CO);. It is possible that the key step

in the reaction is in fact the reduction of XM(CO);L by M(CO)s. To determine
the energetic feasibility of this possibility we measured the reduction E,,, (vs.
SCE) values for pertinent substances, Table 2. The data in Table 2 show that the
XRe(CO);L complexes which are most easily reduced are just the ones that re-
act with Re(CO); to give the Re;(CO)sL products. The non-reactive complexes,
ClRe(CO)i(pyridine),;, Cl1Re(CO);(diars), and CIRe(CO);(2-phos), are all more
difficult to reduce than Re,(CO),, while the reactive complexes are more easily
reduced. These data suggest that Re(CO); is a strong enough reducing agent to
reduce the reactive XM(CO);L complexes. Some ambiguity is introduced because
the reduction potential for Re,(CO),, may not exactly reflect the reducing
power of the moncnuclear Re(CO);. We do see, though, that it is easier to reduce
Mn,(COha t'l}an’ff.ez(CQ) 10, and this correlates with the lack of observable reac-
tion of Mn(CO)s with CIRe(CO);(1;10-phenanthroline).:
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Fig. 2. Plot of optical density at 570 nm as a function of reaction time for THF solution of 5 X 10-3 Af
Re(CO)sand 4.3 X 1073 M XRe(CO)3(1.10-phenanthroline) (X = Cl (0): Br (®): and I (4)). Cell pathlength
is 1.0 cm, and the final product is Re;(CO)g(1.10-phenanthroline). The molar absorptivity at 570 nm is
2670 mol™! 1em™t.

¢. Proposed mechanism for M,(CO)sL formaticn. The energetic feasibility of
reaction 2 does not by itself prove that it is at all important in the overall reac-

Re(CO); + CIRe(CO);(1,10-phenanthroline) -~ [Re(CO)s + ClRe(CO)s(1,10-
phenanthroline)” ] (2)

tion indicated in reaction 1. However, the lack of reaction of ClRe(CO),{pyridine),
and Re(CO);, even at elevated temperatures, suggests that simple nucleophilic
displacement of CI” cannot account for the chemistry in reaction 1. We thus offer

TABLE 2
REDUCTION POTENTIALS FOR PERTINENT MOLECULES

Compound By vs. SCE(V) @
CiIRe(CO)3(1,10-phenanthroline) —1.20
IRe(C0)3(1.10-phenanthroline) —1.03
ClRe(CO0)3(2.2"-bipyridine) —1.46
CiIRe(CO)3(pyridine); —2.04
CIRe(CO)3(diars) —2.42
CIRe(CO)3(2-9hos) —210

Re2(CO)yo —.73%
Mn3(CO)p —1.060%
1.10-Phenanthroline —2.12°
2.2'-Bipyridine —2.24 ¢

Pyridine —2.81 ¢
2.2"-Biquinoline - —1.82¢ - ) . -

© DME solutfon, Ar-purged, 0.1 M[n-BuiN] C104 supporting electrolyte at 25°C. © These are the most
recent values in propylene carbonate with 0.05 MIEt4N)Br [10).€In 0.1 M {n-Bug NII/DMP sqlutidn 11}
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reaction 2 as a logical first step in the mechanism of reaction 1.

Subsequent formation of the final product may occur by concerted formation
of a Re—Re bond and loss of Cl™ or by discrete loss of Cl™ followed by Re—Re bond
formation.In any event, any mechanism involving free Re(CO)s or Re(CO),(1,10-
phenanthroline) 17-electron radicals can be ruled out, since Re,(CO)g(1,10-phenan-
throline) formation is not accompanied by formation of Re.(CO),, or Re.(CO),-
(1,10-phenanthroline),. The Re;(CO),o and Re;(CO)¢(1,10-phenanthroline) are
known products [2] from the coupling of Re(CO)s; and Re(CO)s(1,10-phenanthro-
line) radicals, respectively.

Other than the correlation of reactivity with ease of reduction of the
XM(CO);L species, we have no evidence for the suggested pathway in reaction 2.
We do, however, have ample precedence for our proposal from work of Dessy
and Weissman [5]. Also, the lability of the halide in the one-electron reduced
XM(CO);L species is consistent with the fact that reduction of XM(CO)syields
X~ and M(CO);5 in a two-electron process [6]. Likewise, preliminary results in .
our laboratory show facile loss of halide from XM(CO),L upon Na/Hg or electro-
chemical reduction of XM(CO);L which yields X~ and M(CO);L". We have not
succeeded in isolating or observing the one-electron reduced species XM{CO);L~.

Experimental section

Materials. M,(CO),o (M = Mn, Re) and XM(CO); (X = Cl, Br for M = Re, and
X = Br for M = Mn) were all obtained from Pressure Chemical Co. All ligands
used are commercially available. The IRe(CO)s was prepared by UV-irradiation
of Re,(CO),, in N,-purged solution of I, in isooctane followed by chromatography
on alumina for purification [7]. All derivatives of XM(CO);s were prepared by
heating iscoctane solutions of XM(CO); in the presence of the ligand followed
by chromatography and recrystallization from CH,Cl, by addition of n-pentane
[8]. All compounds were identified by their infrared spectrum in the CO stretch-
ing region: for XM(CO);L bands near 2020, 1915, 1890 cm™ are found. The in-
frared stretching frequencies for most of these complexes are given in ref. 8. The
THF solutions of M(CO); were prepared by Na/Hg reduction of M,(CO),. [92]-
The THF solvent used for preparation and reaction of M(CO)s was distilled
from Na/benzophenone under Ar. The DME electrochemical solvent was distilled
from LiAlH, under Ar. The polarographic quality [n-BusN]ClO,; was obtained
from Matheson.
Synthesis and characterization of M,(CO )sL complexes. The metal—metal
bonded complexes resulting from the interaction of M(CO); and XM(CO):L
(L = 2,2"-bipyridine, 1,10-phenanthroline, 2,2'-biquinoline, and 4,7-diphenyl-1,
10-phenanthroline) all have very similar properties. We outline the synthesis
and characterization of Re;(CO)s(1,10-phenanthroline), since it is representative.
Synthesis of Re,(CO)s(1,10-phenanthroline) was by airless addition (in the
dark) of a tetrahydrofuran solution of NaRe(CO)s [9] to a deoxygenated CIRe-
(CO)1(1,10-phenanthroline) solution. The net displacement of CI” by Re(CO);5
occurs rapidly at 25°C to yield a highly colored solution containing the desired
complex and NaCl precipitate. The colored solution was decanted and reduced
-in volume by rotary evaporation. The Re,(CO)s(1,10-phenanthroline) was puri-
fied by column chromatography on alumina, recrystallization from CH,Cl, by
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addition of n-pentane, and sublimation, it is a red-purple solid which gives a
satisfactory elementary analysis: Found: C, 30.70,H, 1.03, N, 3.74. C,;H,N.O:Re
caled.: C, 30.9; H, 1.03; N, 3.60%. The m.p. is 2562—254°C (corrected), and the
complex has strong IR bands in the CO stretching region at 2075, 1993, 1900,
and 1885 em™ in CHCIl;. The lowest electronic absorption band position is very
solvent sensitive and falls at 516 nm (e 7900 mol~! 1cm™) in THF. In CH,Cl,
the electronic absorption bands are at 527 (0.21); 350 (sh) (G.27); 290 (sh)
(0.64) and 267 nm (0.93) where the numbers in parentheses are the relative ab-
sorbance. The band at 267 nm is the characteristic 1,10-phenanthroline intra-
ligand absorption with an absorbance consistent with one 1,10-phenanthroline
unit per molecule.

The other M,(CO)s;L complexes were prepared using a similar procedure and
were characterized spectroscopically in the IR and UV-vis. Additionally, since
the relative rates were measured in THF, the position and intensity of the low-
est band was measured in THF: Re,(CO)s(2,2 -biquinoline), A,.x 660 nm (e
6200 mol™ 1 cm™'); Re;(CO);(4,7-diphenyl-1,10-phenanthroline), Ay, x 532 nm
(€ 9900 mol™ 1 cm™). These complexes were prepared from reaction of Re(CO);
with ClRe(CO);L.. Infrared spectral features for these Re,(CO)sL: complexes in
CHQ]; include five strong CO stretching absorptions analogous to the prototype
Re,(CO)g(1,10-phenanthroline): Re,(CO)s(2,2"-biquinoline), 2076, 1987, 1970,
1895, 1885 cm}; Re,(CO)s(4,7-diphenyl-1,10-phenanthroline), 2073, 1991, 1961,
1896, 1885 cm™! ; Re,(CO)s(2,2 -bipyridine), 2074, 1990, 1960, 1897, 1885 cm™.
Electronic absorption spectra were recorded in CH,Cl, and band maxima and
relative absorbance in parentheses are given: Re,(CO);(4,7-diphenyl-1,10-phe-
nanthroline), 538 (0.15); 350 (sh) (0.20), 280 nm (0.66); Re,(CO):(2,2'-biquino-
line), 668 (0.10), 460 (0.12), 368 (0.52); 353 (0.48), 295 (sh) (0.47), 268 nm
(0.98).

Reaction of Re(CO); with BrMn(CO),(1,10-phenanthroline) yields Re(CO);-
Mn(CO);(1,10-phenanthroline) with a lowest absorption maximum at 563 nm
(€ 4950 mol* 1 em™) in THF. The complex exhibits five strong CO stretching
absorptions in CHCl, at 2076, 1977, 1966, 1895, 1882 cm™, and electronic ab-
sorptions in CH,Cl; at 570 (0.19); 425 (sh) (0.16); 340 (sh) (0.25); 290 (sh)
(0.45) and 268 nm (0.86), where the numbers in parentheses represent velative
absorbance. )

For compounds of the type M,;(CO);L, where elemental analyses were not
obtained, the purity was established by demonstrating that near-UV irradiation
in the presence of CCl, quantitatively yields the corresponding mononuclear
M(CO);Cl and CIM{CO),L complexes as compared to authentic samples The
photochemistry procedures are described in ref. 2.

Relative rate studies. Relative rates for reaction of Re(CO); with XM(CO);L
were determined by adding a THF solution of Re(CO); to a THF solution of
XM(CO);L under Ar. The initial Re(CO); and XM(CO),L concentratiorns in the
reacting sofution were 5 X 10 Mand 4.3 X 10* M mpecl:wer. Product for-
mation was monitored as a function of time by measuring the vxsibre specﬁ'aI
changes accompanying the generation of Re(CO)s—M(CO)aL, cf- Fxg. Tand 2.
The reactions were Yoliowed to compfetion, and the plots of optical densify of
mmmnmemﬁmm>2§$-sm“é&méﬁe&”e&m
m Table I have been mad‘e for sysiems wﬁere Xﬁd@hﬁ. XM(COI;L,, eoufd be



recovered unchanged from solutions containing M(CO)s.

Polarography. DC polarography was run using a PAR174 A Polarographic
Analyzer with a two compartment cell. A dropping Hg working electrode was
used with a Hg counter electrode and a saturated calomel electrode (SCE) was
the reference electrode. The cell was purged with Ar prior to use and remained
under Ar for the polarographic studies. The complexes wererun at ~2 X 107> M
and the supporting electrolyte was a 0.1 M [n-Bu;N]|CIO,; in DME.
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