Journal of Organometallic Cnemistry, 132 (1977) 429-437 © Elsevier Sequoia S A., Lausanne - Printed in The Netherlands

# SYNTHESIS OF MONO- AND BI-NUCLEAR PERHALOPHENYL-PALLADIUM(II) COMPLEXES

R USON \*, J FORNIES and F MARTINEZ Department of Inorganic Chemistry University of Zaragoza (Spain) (Received November 26th, 1976)

#### Summary

New routes for the preparation of the binuclear complexes  $Cl_4Pd_2L_2$  and  $X_2(Ar_X)_2Pd_2L_2$  (X = halide or pseudohalide,  $(Ar_X) = C_6F_5$  or  $C_6Cl_5$ , and L = phosphine or arsine) are described Cleavage of the halogen-bridge by ligands leads to mononuclear complexes of the  $X(Ar_X)PdL_2$  and  $X(Ar_X)PdLL'$ -type

## Introduction

We have recently shown [1] that the reactions of compounds of the  $Cl_2PdL_2$ type with  $BrTl(C_6F_5)_2$  lead to mixtures of neutral mononuclear and binuclear halogen-bridged pentafluorophenyl palladium(II) complexes, which, since the binuclear complexes are less soluble, can be resolved by fractional crystallization The reaction unfortunately is not general, and does not, for example, take place when  $L = PEt_3$ ,  $PBu_3$ ,  $PPh_2Et$ , py or quin

In the present paper we describe the preparation of binuclear organopalladium (II) complexes and their arylation to give complexes of the  $X_2(Ar_X)_2Pd_2L_2$  type. Finally, the cleavage of the halogen-bridge leads to monomeric complexes of the  $X(Ar_X)PdL_2$  or  $X(Ar_X)PdLL'$  type ( $Ar_X = C_6F_5$  or  $C_6Cl_5$ , L or L' are neutral ligands with N, P or As as donor atoms).

#### **Results and discussion**

#### Preparation of chloro-bridged palladium(II) complexes

Complexes of this type are usually prepared by refluxing  $Cl_2PdL_2$  with ammonium [2] or, better, sodium [3] tetrachloropalladate(II) in aqueousalcoholic solution However, we made the binuclear complexes  $Cl_4Pd_2L_2$  (L =  $PEt_3$ ,  $PBu_3$ ,  $PPh_3$  or  $AsPh_3$ ) in 80–90% yield by iefluxing for 30 min mixtures of the corresponding  $Cl_2PdL_2$  in ethanol or acetone solution with  $PdCl_2$  (90% of the theoretic amount) in 2 N HCl solution

$$Cl_2PdL_2 + PdCl_2 \rightarrow Cl_4Pd_2L_2$$

| Com | vəldi                                                                                  | noj sisvlind | ud (caled ) (%) |                                                  |         |         |         |            |
|-----|----------------------------------------------------------------------------------------|--------------|-----------------|--------------------------------------------------|---------|---------|---------|------------|
|     |                                                                                        | C            | = = =           | z                                                | ßr      | CI      | pa      | M p (°C)   |
| _   | Br2(C6+5)2Pd2(PFt3)2                                                                   | ,1131        | 3 09            | an an air an | 16.46   |         | 21 85   | 509        |
|     |                                                                                        | (30 56)      | (191)           |                                                  | (16 92) |         | (22 58) |            |
| п   | Bt2(C6 h 5)2Pd2(PBu3)2                                                                 | 3862         | 545             |                                                  | 1393    |         | 18 5 4  | 141        |
|     |                                                                                        | (0686)       | (486)           |                                                  | (66 17) |         | (1916)  |            |
| Ξ   | Br <sub>2</sub> (C <sub>6</sub> I 5) <sub>2</sub> Pd <sub>2</sub> (PPh 3) <sub>2</sub> | 4748         | 279             |                                                  |         |         |         | 285 (dec.) |
|     |                                                                                        | (4681)       | (243)           |                                                  |         |         |         |            |
| 2   | Cl2(C6Cl5)2Pd2(PLt3)2                                                                  | 2827         | 3 00            |                                                  |         | 40.91   |         | 284 (dec ) |
|     | 6<br>6<br>1<br>1<br>1<br>1                                                             | (2829)       | (967)           |                                                  |         | (11 18) |         |            |
| >   | Br2(C6Cl5)2Pd2(PFt1)2                                                                  | 2671         | 297             |                                                  |         |         |         | 310 (dec ) |
|     |                                                                                        | (26 00)      | (2 10)          |                                                  |         |         |         |            |
| И   | 12(C <sub>6</sub> Cl <sub>5</sub> )2Pd2(Ph13)2                                         | 24 65        | 2 66            |                                                  |         |         |         | 308 (dec ) |
|     | 1<br>-<br>-<br>-                                                                       | (2 1 9 7)    | (249)           |                                                  |         |         |         |            |
| ΝI  | (SCN)2(C6Cl5)2Pd2(PI 11)2                                                              | 2912         | 2 49            | 2 88                                             |         | 12 4 3  |         | 284 (dec ) |
|     |                                                                                        | (2923)       | (787)           | (797)                                            |         | (32 90) |         |            |

ANALYTICAL RESULTS I OR BINUCLI AR COMPLEXI 5 OBTAINI D ACCORDING TO 1 Q5 2, 3, 4

1 LIBLI 1

Process (1) can, of course, not be used in this form when L is an easily protonated ligand, e g a nitrogen ligand.

### Synthesis of chloro-bridged perhalophenyl palladium(II) complexes

The only previous direct alkylation or arylation of binuclear palladium(II) complexes appears to be that by Calvin and Coates [4]. who reported the alkylation of  $(\mu$ -SEt)<sub>2</sub>Cl<sub>2</sub>Pd<sub>2</sub>(PBu<sub>3</sub>)<sub>2</sub> with LiCH<sub>3</sub>, leading to  $(\mu$ -SEt<sub>2</sub>)<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub> - Pd<sub>2</sub>(PBu<sub>3</sub>)<sub>2</sub>. The Cl-bridged binuclear palladium(II) complex  $(\mu$ -Cl<sub>2</sub>)Cl<sub>2</sub>Pd<sub>2</sub> - (PBu<sub>3</sub>)<sub>2</sub> reacted with LiCH<sub>3</sub> to give metallic palladium even at -45° C

We have studied the introduction of  $C_6F_5$  and  $C_6Cl_5$  groups into the binuclear complexes, according to eqs. (2) and (3),

$$Cl_4Pd_2L_2 + BrMgC_6F_5 \rightarrow Cl_2(C_6F_5)_2Pd_2L_2 + MgX_2$$
(2)

$$(L = PEt_3, PBu_3, PPh_3 \text{ or } AsPh_3)$$

$$Cl_4Pd_2(PEt_3)_2 + C_6Cl_6 + Mg \rightarrow Cl_2(C_6Cl_5)_2Pd_2(PEt_3)_2 + MgCl_2$$
 (3)

Process (2) normally leads to a mixture of  $Cl_2(C_6F_5)_2Pd_2L_2$  and  $Br_2(C_6F_5)_2$ -Pd<sub>2</sub>L<sub>2</sub> The terminal halogens are replaced by  $C_6F_5$  groups and the chlorinebridging atoms are partially replaced by bromine atoms. On treating the mixture with LiBr, only the bromine derivative is obtained as the end-product. When  $L = AsPh_3$ , partial cleavage of the chlorine-bridges takes place during process (2), leading to mixtures which were not studied further Process (3) was only studied with  $L = PEt_3$ .

The other binuclear  $C_6Cl_5$  complexes were prepared by substitution reactions (see below).

Analytical data for the new complexes are listed in Table 1

# Synthesis of other binuclear complexes $X_2(C_6Cl_5)_2Pd_2(PEt_3)_2$

Other binuclear complexes were prepared by substitution reactions according to eq. 4 starting from  $Cl_2(C_6Cl_5)_2Pd_2(PEt_3)_2$  The ease of substitution increases

$$Cl_2(C_6Cl_5)_2Pd_2(PEt_3)_2 + 2MX \rightarrow 2MCl + X_2(C_6Cl_5)_2Pd_2(PEt_3)_2$$
 (4)

 $(MX = L_1Br, NaI \text{ or } KSCN)$ 

in the sequence LiBr < NaI < KSCN, i.e. with the increasing nucleophilic character of the anion X, agreeing with results obtained [1] with  $Cl_2(C_6F_5)_2$  -  $Pd_2(PPh_3)_2$  (Analytical data are listed in Table 1)

#### Bridge-cleavage reactions

A major application of the halogen-bridged organo complexes is in reactions in which the bridge is cleaved to give monomeric complexes. The cleavage can



| C         II         N         Br         CI         Mp (C)           VII $BC(a_1^{a_1})^{p_1} M(Pl_1)_1$ $30.4$ $50.4$ $50.4$ $10.4$ $120$ $Mp (C)$ X $BC(a_1^{a_1})^{p_1} M(Pl_1)_1$ $(76.4)$ $(71.6)$ $(71.6)$ $(71.6)$ $(71.6)$ $(71.6)$ $(71.6)$ $(71.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$ $(21.6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Compl | lex                                                                                                 | Analysis found | l (calcd ) ( <sup>c</sup> ?) |                                                                                                                | Alla Annala | a called an allow of any data called and |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------|----------------|------------------------------|----------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------|------------|
| VIII $\mathbb{R}(\mathbb{C}_{0}^{1}\mathcal{F})^{1} \mathbb{Q}(\mathbb{P}(1)^{1}, \mathbb{I})$ $\mathbb{I}_{0}$ $\mathbb{I}_{1}$ <t< th=""><th></th><th></th><th>c</th><th>II</th><th>Z</th><th>Br</th><th>c1</th><th>M p (°C)</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                     | c              | II                           | Z                                                                                                              | Br          | c1                                       | M p (°C)   |
| X $HrG_6F_5 PM(PB_4)_2$ $(7.6)$ $(7.1)$ $(6.6)$ $(11.60)$ $(7.1)$ $(16.6)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(11.60)$ $(21.60)$ $(11.60)$ $(21.60)$ $(11.60)$ $(21.60)$ $(11.60)$ $(21.60)$ $(11.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $(21.60)$ $($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | VIII  | Br(C <sub>6</sub> F5)Pd(P11,1)2                                                                     | 36.04          | 5 04                         | en un malfer a de la de la del | 1361        |                                          | 120        |
| IX $B(C_d_1; j)^{B}(C^{B}(h_1)_2)$ $17, i1$ $6.65$ $10, i5$ $10, i6$ $10, $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       | •                                                                                                   | (30-66)        | (12,09)                      |                                                                                                                | (1356)      |                                          |            |
| X $R(G_6^{1})$ plu( $\Gamma_{1,1}(\Lambda sH_{2})$ ) $(776)$ $(713)$ $(716)$ $(713)$ $(716)$ $(713)$ $(702)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ $(710)$ <th< td=""><td>XI</td><td>Br(C<sub>6</sub>F<sub>5</sub>)Pd(PBu<sub>3</sub>)2</td><td>17 31</td><td>6.85</td><td></td><td>1016</td><td></td><td>84</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | XI    | Br(C <sub>6</sub> F <sub>5</sub> )Pd(PBu <sub>3</sub> )2                                            | 17 31          | 6.85                         |                                                                                                                | 1016        |                                          | 84         |
| X $M(G_6^1; j) M(P(1; j) (\Lambda^*P_1_j))$ 41 %         4.2 h         9.7 h         2.1 h(G_6)           XI $B(G_6^1; j) P(P(1; j) (P(1_j))$ (41 %)         (10 %)         221           XII $B(G_6^1; j) P(P(1; j) (P(1_j))$ (41 %)         (10 %)         221           XII $B(G_6^1; j) P(P(1; j) (P(1_j))$ (41 %)         (10 %)         120           XII $B(G_6^1; j) P(P(1; j) (Q_10)$ (40 %)         (41 %)         (10 %)         120           XII $B(G_6^1; j) P(P(1; j) (Q_10)$ (40 %)         (41 %)         (40 %)         (41 %)         120           XIV $B(G_6^1; j) P(P(1; j) Q_10)$ (40 %)         (41 %)         240         1271         178 (dec)           XVI $G(G_6^1; j) P(P(1; j) Q_10)$ (41 %)         240         1271         178 (dec)           XVI $G(G_6^1; j) P(P(1; j) Q_10)$ (41 %)         240         1271         178 (dec)           XVI $G(G_6^1; j) P(P(1; j) Q_10)$ (41 %)         240         1271         178 (dec)           XVI $G(G_6^1; j) P(P(1; j) Q_10)$ (41 %)         240         1271         120           XVI $G(G_6^1; j) P(P(1; j) Q_10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |                                                                                                     | (17 54)        | (11)                         |                                                                                                                | (10 55)     |                                          |            |
| Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)(\operatorname{Prl}_1)$ (65.2) (3.66) (10.21)<br>Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)(\operatorname{PrOPl}_1)$ (10.10) (10.12)<br>Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)(\operatorname{PrOPl}_1)$ (10.10) (10.12)<br>Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)(\operatorname{ProPl}_1)$ (10.10) (10.12)<br>Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)(\operatorname{Prl}_1)$ (10.10) (10.22)<br>Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)(\operatorname{Prl}_1)$ (10.10) (10.22)<br>Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)(\operatorname{Prl}_1)$ (10.10) (10.22) (10.22)<br>Xi $\operatorname{BrCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)$ (11.10) (10.10) (10.12)<br>Xi $\operatorname{CCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)$ (11.10) (10.10) (10.12)<br>Xi $\operatorname{CCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)$ (11.10) (10.10) (10.10) (10.10)<br>Xi $\operatorname{CCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)$ (10.10) (10.10) (10.10) (10.10)<br>Xi $\operatorname{CCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)$ (10.10) (10.10) (10.10) (10.10)<br>Xi $\operatorname{CCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)$ (10.10) (10.10) (10.10) (2.16) (10)<br>Xi $\operatorname{CCd}(\Gamma_2)\operatorname{Prl}(\operatorname{Prl}_1)$ (10.10) (10.10) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) (2.16) ( | ×     | Br(C <sub>6</sub> I <sup>,</sup> 5)Pd(Pl 1, 1)(AsPh <sub>3</sub> )                                  | 46 35          | 4 26                         |                                                                                                                | 04.0        |                                          | 219 (dec ) |
| XI $Br(G_6\Gamma_5)Pid(Pl1_4)(PPh_3)$ $q^{0}08$ $d^{27}$ $1007$ $221$ XII $Br(G_6\Gamma_5)Pid(Pl1_3)(P(OPh_3))$ $(f^{0}0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                     | (46 32)        | (386)                        |                                                                                                                | (1028)      |                                          |            |
| XII $\operatorname{Irr}(c_6 I_5)\operatorname{Pri}(\operatorname{FrI}_1)$ (19 10)         (10 0)         (10 8 f)         (12 2)         (10 16)         (12 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 1 2 2)         (10 1 2 2)         (10 1 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (10 2 2)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 7 3)         (11 8 3)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (11 3 1)         (12 3 1)         (13 3 10)         (13 3 10)         (13 3 10)         (13 3 10)         (13 3 10)         (13 3 10)         (13 3 10)         (13 3 10)         (13 3 10)         (13 3 10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×     | Br(C <sub>6</sub> F <b>5) Pd(Pf</b> 13)(PPh3)                                                       | 49 08          | 4 27                         |                                                                                                                | 1007        |                                          | 221        |
| XII         Br(G_61 c) Pa(PT t_3) P(QPT t_3) $4579$ $132$ $1016$ $120$ XII $Br(G_61 c) Pa(QP1 t_3) P(S)$ $6803$ $(384)$ $(1022)$ $150$ (dc )           XIV $Br(G_61 c) Pa(QP1 t_3) P(S)$ $6103$ $(384)$ $(177)$ $(163)$ $231$ $1277$ $1277$ $1260$ (dc )           XIV $Br(G_61 c) Pa(PP1 t_3)$ $(1198)$ $(166)$ $2.313$ $(1131)$ $150$ (dc )           XV $SCN(G_6 r_5) Pa(PP1 t_3)$ $(1198)$ $(528)$ $240$ $13271$ $173$ (dc )           XVI $CI(G_6 G_{12}) Pa(PP1 t_3)$ $4141$ $498$ $240$ $3306$ $169$ XVII $Br(G_6 CI_5) Pa(PP1 t_3)$ $(3116)$ $(381)$ $3306$ $169$ XVII $Br(G_6 CI_5) Pa(PP1 t_3)$ $214$ $465$ $240$ $3306$ $169$ XVII $Br(G_6 CI_5) Pa(PP1 t_3)$ $(311)$ $(381)$ $(310)$ $190$ $207$ $203$ XVII $Br(G_6 CI_5) Pa(PP1 t_3)$ $(310)$ $(411)$ $210$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |                                                                                                     | (19 10)        | (4 00)                       |                                                                                                                | (1087)      |                                          |            |
| XII $hr(c_{1}; ph(rPl t_{1})(py))$ (40.0B)         (JB4)         (10.22)           XIV $hr(c_{1}; ph(rPl t_{1})(py))$ (3 B)         3 B)         2 B)         1 A 2?         1 B (G_{1})           XIV $hr(c_{1}; ph(rPl t_{1})(quin))$ (1 B)         (3 G)         (2 B)         2 B)         (1 B (G_{1}))         (1 B (G_{1}))         (1 B (G_{1}))         (1 B (B))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | XII   | Br(C6I 5)Pd(PI 13)[P(OPh)]]                                                                         | 45 79          | 1 32                         |                                                                                                                | 1016        |                                          | 120        |
| XIII $\mathrm{Br}(G_{4}; p)\mathrm{Pl}(\mathrm{Pl}; q)(\mathrm{Ql}(\mathrm{Pl}))$ 16 0.2         3 0.5         2 3.1         14 2?         15 0. (dic.)           XIV $\mathrm{Br}(G_{6}\Gamma_{5})\mathrm{Pl}(\mathrm{Pl}; q)(\mathrm{QlI})$ 4071         (163)         2 3.3         14 7.3         178 (dac.)           XV         5 CN(G_{6}\Gamma_{5})\mathrm{Pl}(\mathrm{Pl}; q)(\mathrm{QlI})         4011         (5 4.9)         (1 3 31)         178 (dac.)           XV         5 CN(G_{6}\Gamma_{5})\mathrm{Pl}(\mathrm{Pl}; q)_{2}         41         4.6         2.13         (1 3 31)         178 (dac.)           XV1         Cl(G_{6}G_{5})\mathrm{Pl}(\mathrm{Pl}; q)_{2}         41         4.9         2.40         33.06         169           XV1         Br(G_{6}G_{1})\mathrm{Pl}(\mathrm{Pl}; q)_{2}         (4 15)         (4 81)         (2 4.0)         33.06         169           XV1         Br(G_{6}G_{1})\mathrm{Pl}(\mathrm{Pl}; q)_{2}         (4 4.0)         2.40         33.06         169           XV1         Br(G_{6}G_{1})\mathrm{Pl}(\mathrm{Pl}; q)_{2}         (4 4.0)         2.07         2.3         190           XV11         Br(G_{6}G_{1})\mathrm{Pl}(\mathrm{Pl}; q)_{1}         2.91         4.45         2.07         2.03         2.04           XV11         Br(G_{6}G_{1})\mathrm{Pl}(\mathrm{Pl}; q)_{1}         2.3         4.45         2.07         2.07         2.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                     | (46-08)        | (1, 84)                      |                                                                                                                | (10.22)     |                                          |            |
| XIV $\operatorname{HrC}_{6}[^{5}]\operatorname{Pl}(\operatorname{Pl}_{1})(\operatorname{Gul})$ (71 07) (71,1) (2 64) (14 73) (14 73)<br>XV $\operatorname{SCNC}_{6}[^{5}]\operatorname{Pl}(\operatorname{Pl}_{1})(\operatorname{Gul})$ (11 93) (11 31) (15 24) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40) (2 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ШХ    | Br(C <sub>6</sub> I 5)Pd(Pl 13)(py)                                                                 | 7698           | 395                          | 233                                                                                                            | 1422        |                                          | 150 (dic ) |
| XIV $\operatorname{BrC}_{G}(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)(\operatorname{Guin})$ 40 71 181 2.49 12 71 171 178 (dec )<br>XV $\operatorname{SCN}(G_6 \Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (198) (3.66) (2.31) (1131) 150 150<br>XV1 $\operatorname{Cl}(G_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (4019) (5.29) (2.41) 33.06 169<br>XV1 $\operatorname{BrC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (4119) (5.29) (2.41) 33.06 169<br>XV1 $\operatorname{BrC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (3.190) (3.190) 190<br>XV1 $\operatorname{BrC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (2.16) (4.10) (3.190) 190<br>XV1 $\operatorname{BrC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (2.16) (4.10) (2.16) (3.190) 190<br>XV1 $\operatorname{BrC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (2.16) (4.10) (2.16) (3.190) 190<br>XV1 $\operatorname{BrC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (2.14) (4.17) (2.16) (3.190) 190<br>XV1 $\operatorname{BrC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)_2$ (3.194) (4.17) (2.16) (2.16) (3.732) 191<br>XX $\operatorname{ClC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)/\operatorname{Arbh}_3$ (4.17) (2.16) (2.16) (2.761) 191<br>XX $\operatorname{ClC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)/\operatorname{Prb}_3$ (4.17) (2.16) (2.16) (2.761) 160<br>XXI $\operatorname{ClC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)/\operatorname{Prb}_3$ (4.17) (2.15) (2.16) (2.761) 160<br>XXI $\operatorname{ClC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)/\operatorname{Prb}_3$ (4.10) (2.15) (2.16) (2.761) 160<br>XXII $\operatorname{ClC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)/\operatorname{Pr}_3$ (3.70) (2.17) (2.61) (2.761) 160<br>XXII $\operatorname{ClC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)/\operatorname{Pr}_3$ (3.90) (4.10) (2.17) (2.761) (2.761) 160<br>XXII $\operatorname{ClC}_6(\Gamma_5)\operatorname{Pd}(\operatorname{Pt}_1)/\operatorname{Pr}_3$ (3.90) (3.70) (2.17) (3.61) (2.761) (2.60) (0.60) (0.60) (2.61) (2.60) (0.60) (2.61) (2.60) (0.60) (2.61) (2.60) (2.61) (2.60) (2.61) (2.60) (2.61) (2.60) (2.61) (2.60) (2.61) (2.60) (2.60) (2.61) (2.60) (2.61) (2.60) (2.61) (2.60) (2.61) (2.61) (2.60) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61) (2.61)                                                                           |       |                                                                                                     | (37 07)        | (3 63)                       | (2 64)                                                                                                         | (1473)      |                                          |            |
| XV $5CN(G_6F_5)Pd(Pt1_1)_2$ $(1198)$ $(16,6)$ $(2.13)$ $(1131)$ XVI $CIC_6G_{15}Pd(Pt_{1})_2$ $(010)$ $549$ $2.11$ $103$ XVI $CIC_6G_{15}Pd(Pt_{1})_2$ $(14,15)$ $(181)$ $(528)$ $(241)$ $3306$ $169$ XVI $Br(G_6G_{15})Pd(Pt_{1})_2$ $(14,15)$ $(181)$ $(34,90)$ $100$ XVII $Br(G_6G_{15})Pd(Pt_{1})_2$ $(2210)$ $(440)$ $(417)$ $207$ $26,35$ $210$ XVIII $CG_6G_{15}Pd(Pt_{1})_2$ $291$ $417$ $207$ $26,35$ $210$ $204$ XXI $CIC_6G_{15}Pd(Pt_{1})(PPh_{3})$ $(411)$ $(215)$ $26,37$ $210$ $2732$ $210$ XXI $CIC_6G_{15}Pd(Pt_{1})(PPh_{3})$ $(411)$ $(215)$ $26,37$ $210$ $2732$ $210$ XXII $CIC_6G_{15}Pd(Pt_{1})(PPh_{3})$ $(411)$ $(215)$ $213$ $210$ $210$ $210$ $210$ $210$ $210$ $210$ $210$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΧIV   | Br(C <sub>6</sub>                                                                                   | 40 71          | 181                          | 2.49                                                                                                           | 1271        |                                          | 178 (dec ) |
| XVSCN(G_6 \Gamma_5)Pd(P1 t_1)_240 405 492 11150XVICl(G_6 \Gamma_5)Pd(P1 t_1)_2(40 1'1)(5 28)(2 4u)33 0u169XVIIBr(G_6 C1_5)Pd(P1 t_1)_2(41 1)(4 1)(5 28)(2 4u)33 0u169XVIIBr(G_6 C1_5)Pd(P1 t_1)_2(3 1 10)(4 10)(3 1 10)(3 1 00)190XVIIIBr(G_6 C1_5)Pd(P1 t_1)_2(2 1u)(4 4u)(3 1 10)204XXIII(1 2 1u)(4 11)2 072b 37210XXIICl(G_6 C1_5)Pd(P1 t_1)(PPh_3)47 404 472 072b 37210XXIICl(G_6 C1_5)Pd(P1 t_1)(A8Ph_1)(4 11)(2 15)2b 37210XXIICl(G_6 C1_5)Pd(P1 t_1)(A8Ph_1)47 404 472 072b 37261XXIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)43 313 70(2 15)2b 33210XXIIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)43 313 70(2 15)2b 100XXIIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)43 313 70(2 15)2b 100XXIIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)43 313 70(2 17)2b 100XXIIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)43 313 70(2 17)2b 100XXIIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)43 313 70(2 17)2b 10XXIIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)43 313 70(2 17)2b 10XXIIICl(G_6 C1_5)Pd(P1 t_1)(P(Dh)_1)41 3190(2 17)2b 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |                                                                                                     | (11 98)        | (3 66)                       | (2.33)                                                                                                         | (181)       |                                          |            |
| XVI $C(C_6C_5)$ $Pa(Pr_{1})_2$ (40 19) (5 28) (2 4h) 33 06 169<br>XVII $B(C_6C_5)$ $Pa(Pr_{1})_2$ (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 96) (34 17) (36 96) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16) (36 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | X۷    | SCN(C <sub>6</sub> F <sub>5</sub> )Pd(PI t <sub>3</sub> ) <sub>2</sub>                              | 40 40          | 5 49                         | 2 31                                                                                                           |             |                                          | 150        |
| XVI $Cl(C_6Cl_5)Pd(Pt_1)_2$ $J_4 J_1$ $4 98$ $J_3 00$ $I69$ $J_3 00$ $J_4 I_5$ $J_5 I_5$ $J_6 I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                                     | (40 19)        | (5 28)                       | (2 46)                                                                                                         |             |                                          |            |
| XVII $Br(C_6Cl_5)Pd(P1 t_3)_2$ $(1415)$ $(411)$ $(45)$ $(33.96)$ XVIII $Br(C_6Cl_5)Pd(Pt_1)_2$ $22.84$ $4.65$ $20.91$ $4.0$ XVIII $(C_6Cl_5)Pd(Pt_1)_2$ $20.71$ $4.29$ $20.7$ $20.3$ XIX $SCN(C_6Cl_5)Pd(Pt_1)_2$ $33.65$ $4.17$ $2.07$ $26.35$ $210$ XIX $SCN(C_6Cl_5)Pd(Pt_1)_2$ $34.65$ $4.17$ $2.07$ $26.35$ $210$ XX $Cl(C_6Cl_5)Pd(Pt_1)_2$ $34.65$ $4.13$ $2.07$ $26.35$ $210$ XXI $Cl(C_6Cl_5)Pd(Pt_1)(AsPh_3)$ $4.749$ $4.7$ $2.07$ $25.32$ $210$ XXI $Cl(C_6Cl_5)Pd(Pt_1)(AsPh_3)$ $4.749$ $4.72$ $4.72$ $2.07$ $25.12$ $191$ XXII $Cl(C_6Cl_5)Pd(Pt_1)(P(OPh))_1$ $4.331$ $3.57$ $2.733$ $26.02$ $210$ $26.00$ XXII $Cl(C_6Cl_5)Pd(Pt_1)(P(OPh))_1$ $4.331$ $3.57$ $2.33$ $3.65.63$ $310 (dec)$ XXII $C(C_6Cl_5)Pd(Pt_1)(P(OPh))_1$ $4.331$ $3.57$ $2.33$ $3.65.63$ $310 (dec)$ XXII $C_6Cl_5)Pd(Pt_1)(P(OPh))_1$ $4.390$ $(3.60)$ $(2.17)$ $(26.00)$ $310 (dec)$ XXIV $C_6Cl_5)Pd(Pt_1)_2$ $38.41$ $9.66$ $(3.70)$ $(2.71)$ $(26.00)$ XXIV $C_6Cl_5)Pd(Pt_1)_2$ $(2.71)$ $(2.71)$ $(2.71)$ $(2.60)$ XXIV $C_6Cl_5)Pd(Pt_1)_2$ $(2.71)$ $(2.71)$ $(2.71)$ $(2.60)$ XXIV $C_6Cl_5)Pd(Pt_1)_3$ <t< td=""><td>ХVI</td><td>Cl(C<sub>6</sub>Cl<sub>5</sub>)Pd(PFt<sub>3</sub>)<sub>2</sub></td><td>3441</td><td>4 98</td><td></td><td></td><td>33 06</td><td>169</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ХVI   | Cl(C <sub>6</sub> Cl <sub>5</sub> )Pd(PFt <sub>3</sub> ) <sub>2</sub>                               | 3441           | 4 98                         |                                                                                                                |             | 33 06                                    | 169        |
| XVII $\operatorname{Br}(\operatorname{Gc}(\operatorname{Gl}_5)\operatorname{Pd}(\operatorname{Pl}_1)_2$ 32 84 465 190 190 (410) (410) (410) (410) (410) (410) (410) (411) (410) (411) (410) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (411) (41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |                                                                                                     | (31 12)        | (481)                        |                                                                                                                |             | (33.96)                                  |            |
| XVIII $(C_6Cl_5)Pd(Pt_1)_2$ (12 16)(4 16)204XIX $SCN(C_6Cl_5)Pd(Pt_1)_2$ 29 314 2920726 35210XIX $SCN(C_6Cl_5)Pd(Pt_1)_2$ (30 05)(4 17)2 0726 35210XX $Cl(C_6Cl_5)Pd(Pt_1)_3$ (35 09)(4 61)(2 15)26 12191XXI $Cl(C_6Cl_5)Pd(Pt_1)(AsPh_1)$ (4 68)(4 21)(2 15)26 92180XXI $Cl(C_6Cl_5)Pd(Pt_1)(P(0Ph)_1)$ (4 18)(3 70)25 92180XXII $Cl(C_6Cl_5)Pd(Pt_1)(P(0Ph)_1)$ 43 313 5725 33310 (dec)XXIII $Cl(C_6Cl_5)Pd(Pt_1)(P(0Ph)_1)$ 3 3572 333563310 (dec)XXIII $Cl(C_6Cl_5)Pd(Pt_1_3)(PP)$ 3 16(2 49)(2 51)116XXIII $Cl(C_6Cl_5)Pd(Pt_1_3)(PP)$ 3 16(3 66)2 333563310 (dec)XXIV $(C_6F_5)C(C_6Cl_5)Pd(Pt_1_3)(PP)$ (3 96)(2 17)(2 17)(2 17)(2 17)XXIV $(C_6F_5)C(C_6Cl_5)Pd(PE1_3)_2$ 3 11(3 96)(2 17)(2 17)(2 17)XXIV $C_6F_5)(C_6Cl_5)Pd(PE1_3)_2$ 3 419 6(2 17)(2 17)(2 17)XXIV $C_6F_5)(C_6Cl_5)Pd(PE1_3)_2$ 3 419 6(2 17)(2 17)(2 16)XXIV $C_6F_5)(C_6Cl_5)Pd(PE1_3)_2$ 3 11(3 96)(2 17)(2 17)(2 17)XXIV $C_6F_5)(C_6Cl_5)Pd(PE1_3)_2$ 3 149 6(2 17)(2 18)(2 16)XXIV $C_6F_5)(C_6Cl_5)Pd(PE1_3)_2$ (3 16)(3 95)(2 17)(2 18)XXIV $C_6F_5)Pd(PE1_3)_2$ (3 16)(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IIVX  | Br(C <sub>6</sub> Cl <sub>5</sub> )Pd(PI t <sub>3</sub> ) <sub>2</sub>                              | 32 84          | 4 65                         |                                                                                                                |             |                                          | 190        |
| XVIII $I(C_6CI_5)Pd(Pt_{1})_2$ 29 11 4 29 204<br>XVIII $I(C_6CI_5)Pd(Pt_{1})_2$ (30 05) (4 17) (2 15) 26 35 210<br>XX $SCN(C_6CI_5)Pd(Pt_{1})_2$ (35 09) (4 61) (2 15) 26 35 210<br>XX $CI(C_6CI_5)Pd(Pt_{1})(PPh_{3})$ 47 49 4 47 (2 15) (2 15) 26 12 191<br>XXI $CI(C_6CI_5)Pd(Pt_{1})(A^{P}h_{3})$ (4 6 8) (4 21) (2 15) (2 15) 26 12 191<br>XXI $CI(C_6CI_5)Pd(Pt_{1})[P(OPh)_{1}]$ (4 18) (3 70) 25 92 180<br>XXII $CI(C_6CI_5)Pd(Pt_{1})[P(OPh)_{1}]$ (4 18) (3 70) (2 15) 26 12 116<br>XXII $CI(C_6CI_5)Pd(Pt_{1})[P(OPh)_{1}]$ (3 3 3 7 2 3 57 (2 10) (2 17) (2 10) (3 16) (2 6 10) (3 167) (3 161) (3 161) (3 161) (3 161) (2 10) (3 167) (3 19) (2 17) (3 19) (2 17) (3 19) (2 17) (2 17) (2 18) (3 10) (4ec) (2 10) (2 17) (2 17) (2 18) (2 17) (2 18) (2 17) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18) (2 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                     | (32 16)        | (4 46)                       |                                                                                                                |             |                                          |            |
| XIX $SCN(C_6Cl_5)Pd(Pt_4)_2$ (30 05) (417)<br>XX $SCN(C_6Cl_5)Pd(Pt_3)_2$ (35 09) (41) (215) (215) (27 32)<br>XX $Cl(C_6Cl_5)Pd(Pt_3)(PPh_3)$ (35 09) (441) (216) (216) (27 61)<br>XX $Cl(C_6Cl_5)Pd(Pt_4)(A_8Ph_4)$ (46 68) (4 21) (216) (25 61) (27 61) (25 61) (25 61) (25 61) (25 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26 61) (26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IIIVX | I(C <sub>6</sub> Cl <sub>5</sub> )Pd(PFt <sub>3</sub> )2                                            | 29 31          | 4 29                         |                                                                                                                |             |                                          | 204        |
| XIX $\text{SCN}(\text{C}_6\text{Cl}_5)\text{Pd}(\text{Pt}_1)_2$ 34 & 5 4 13 2 07 26 35 210<br>XX $\text{Cl}(\text{C}_6\text{Cl}_5)\text{Pd}(\text{Pt}_1)_3$ ) 47 49 447 (215) (27 32) (27 32)<br>XX $\text{Cl}(\text{C}_6\text{Cl}_5)\text{Pd}(\text{Pt}_1)(\text{APh}_3)$ 47 49 447 (21) (216) (27 61) (27 61)<br>XXI $\text{Cl}(\text{C}_6\text{Cl}_5)\text{Pd}(\text{Pt}_1) \text{P}(\text{OPh})_1 $ 44 72 4 02 (26 12) (26 12) (26 12)<br>XXII $\text{Cl}(\text{C}_6\text{Cl}_5)\text{Pd}(\text{Pt}_1) \text{P}(\text{OPh})_1 $ 43 31 3 57 (26 12) (26 12) (26 12) (44 18) (3 60) (217) (26 12) (26 12) (44 18) (3 70) (26 12) (26 12) (26 12) (26 12) (26 12) (26 12) (27 61) (28 00) (28 11) (28 11) (28 01) (28 11) (28 01) (28 11) (28 11) (28 01) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11) (28 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                     | (30 05)        | (417)                        |                                                                                                                |             |                                          |            |
| XX $Cl(C_6Cl_5)Pd(Pl_3)(PPh_3)$ (4 61) (2 15) (2 7 32)<br>XX $Cl(C_6Cl_5)Pd(Pl_4)(Pl_4)(A^{2}Ph_3)$ 4 7 4 9 4 4 7 2 5 12 191 (2 7 61) 25 92 180<br>XXI $Cl(C_6Cl_5)Pd(Pl_4)(Pl_4)(A^{2}Ph_3)$ 4 7 2 4 02 25 92 180<br>XXII $Cl(C_6Cl_5)Pd(Pl_4)(Pl_4)(19)$ 4 3 3 7 3 70) 25 13 116<br>XXII $Cl(C_6Cl_5)Pd(Pl_4)(Pl_4)(19)$ 3 5 7 2 3 3 5 7 2 3 3 3 7 2 3 5 3 3 10 (dec ) (2 6 0)<br>XXII $Cl(C_6Cl_5)Pd(PL_3)(12)$ 3 7 2 3 6 2 2 3 3 3 6 3 3 10 (dec ) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 6 1 0) (3 7 0) (3 7 0) (3 7 0) (3 7 0) (3 7 0) (2 17) (2 17) (2 3 80) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 3 80) (2 17) (2 16) (2 17) (2 16) (2 16) (2 17) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 17) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 17) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 17) (2 17) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 17) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (2 16) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ХІХ   | SCN(C <sub>6</sub> Cl <sub>5</sub> )Pd(Pi <sup>,</sup> t <sub>3</sub> ) <sub>2</sub>                | 34 85          | 4 13                         | 2 07                                                                                                           |             | 2635                                     | 210        |
| XX $C(C_6C(5)Pd(P1_5))(PPh_3)$ 47 49 447 2612 191<br>XXI $C(C_6C(5)Pd(P1_4))(A_8Ph_4)$ 44 72 4 02 (27 61) (27 61)<br>XXI $C(C_6C(5)Pd(P1_4))(A_8Ph_4)$ 44 72 4 02 (26.12) 180<br>XXII $C(C_6C(5)Pd(P1_5))[P(OPh)_1]$ 43 31 3 57 (26.12)<br>XXII $C(C_6C(5)Pd(P1_5))(P(OPh_1)]$ 43 31 3 57 (26.00)<br>XXIII $C(C_6C(5)Pd(P1_5))(P(OPh_3)]$ 33 72 3 52 2 33 35 53 J10 (dec )<br>(31 67) (3 96) (2 17) (2 17) (36.19)<br>XXIV $(C_6F_5)(C_6C(5)Pd(PE1_3)_2$ 38 41 3 96 (2 17) (2 17) (22 82 249)<br>XXIV $(C_6F_5)(C_6C(5)Pd(PE1_3)_2$ (37 98) (3 95) (2 17) (2 3 89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                                                                                                     | (35 09)        | (4 61)                       | (215)                                                                                                          |             | (27 32)                                  |            |
| XXI $Cl(C_6Cl_5)Pd(Pl_{1})(\Lambda_8Ph_{1})$ (466) (421) (2761)<br>XXI $Cl(C_6Cl_5)Pd(Pl_{1})(\Lambda_8Ph_{1})$ (472 402 2592 180<br>XXII $Cl(C_6Cl_5)Pd(Pl_{1})[P(OPh)_{1}]$ 43 31 357 (26.12) (26.12)<br>XXII $Cl(C_6Cl_5)Pd(Pl_{1})[P(OPh)_{1}]$ 43 31 357 (26.0) (26.0)<br>XXII $Cl(C_6Cl_5)Pd(Pl_{1})(DY)$ 3372 352 233 3553 J10 (dec )<br>(3167) (379) (277) (277) (236)<br>(3798) (395) (277) (2389) (2389)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | xx    | Cl(C <sub>6</sub> Cl <sub>5</sub> )Pd(Pl L <sub>3</sub> )(PPh <sub>3</sub> )                        | 47 49          | 4 47                         |                                                                                                                |             | 2612                                     | 191        |
| XXI $Cl(G_6Cl_5)Pd(Pl t_3)(A_8Ph_3)$ 44 72 4 02 25 92 180<br>XXII $Cl(G_6Cl_5)Pd(Pt_3)[P(OPh)_1]$ 43 31 3 57 (26.12)<br>XXII $Cl(G_6Cl_5)Pd(Pt_3)[P(OPh)_1]$ 43 31 3 57 (26.00)<br>XXIII $Cl(G_6Cl_5)Pd(Pt_3)(12Y)$ 33 72 3 52 2 33 35 53 J10 (dec )<br>(31 67) (3 96) (2 17) (2 16) (36.19)<br>XXIV $(G_6F_5)(G_6Cl_5)Pd(PEt_3)_2$ 38 41 3 96 (2 17) (2 17) (22 82 249<br>(37 96) (3 95) (2 17) (2 36) (2 36)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                                     | (46 68)        | (421)                        |                                                                                                                |             | (7 61)                                   |            |
| XXII $Cl(C_6Cl_5)Pd(Pf_{1})[P(OPh)_1]$ (3 70) (26.12)<br>(44 18) (3 70) (3 57 (26.12) 116<br>(41 0) (41 0) (3 6) (3 6) (26 0) (26 0)<br>(26 0) (31 0) (46 0) (3 6) (3 6) (2 33 (2 0) (2 6) (36.19) (36.19) (36.19) (36.19) (36.19) (37 0) (37 0) (37 0) (39 0) (2 7) (2 7) (23 89) (23 89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IXX   | Cl(C <sub>6</sub> Cl <sub>5</sub> )Pd(Pl 1 <sub>1</sub> )(AsPh <sub>1</sub> )                       | 44 72          | 4 02                         |                                                                                                                |             | 26 92                                    | 180        |
| XXII $Cl(C_6Cl_5)Pd(Pfl_3)[P(OPh)_1]$ 43 31 3 57 26 1J 116<br>XXII $Cl(C_6Cl_5)Pd(Pfl_3)[P(OPh)_1]$ 43 94) (3 66) (26 00) (26 00) (26 00)<br>XXIII $Cl(C_6Cl_5)Pd(Pfl_3)$ 33 72 3 52 2 33 35 53 J10 (dec )<br>(31 67) (4 39) (2 17) (36,19) (36,19) (26 19) (2 17) (22 82 249)<br>XXIV $(C_6F_5)(C_6Cl_5)Pd(PEl_3)_2$ 38 41 3 96 (2 17) (2 37) (23 89) (23 89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |                                                                                                     | (4418)         | (3 70)                       |                                                                                                                |             | (26.12)                                  |            |
| XXIII Cl(C <sub>6</sub> Cl <sub>5</sub> )Pd(PT L <sub>3</sub> )(DY) (3 04) (3 06) (26 00) (26 00) (33 72 3 52 2 33 35 53 310 (dec ) (31 67) (3 79) (2 17) (36.19) (36.19) (XXIV (C <sub>6</sub> F <sub>5</sub> )(C <sub>6</sub> Cl <sub>5</sub> )Pd(PEL <sub>3</sub> )2 38 41 3 96 22 82 249 (37 98) (3 95) (2 36) (23 89) (2 38 9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ІІХХ  | Cl(C <sub>6</sub> Cl <sub>5</sub> )Pd(PFt <sub>3</sub> )[P(OPh) <sub>1</sub> ]                      | 43 3 1         | 3 57                         |                                                                                                                |             | 2613                                     | 116        |
| XXIII Cl(C <sub>6</sub> Cl <sub>5</sub> )Pd(PT L <sub>3</sub> )(DY) 33 72 3 52 2 33 35 53 310 (dec )<br>(31 67) (3 79) (2 17) (36.19) (36.19)<br>XXIV (C <sub>6</sub> F <sub>5</sub> )(C <sub>6</sub> Cl <sub>5</sub> )Pd(PEL <sub>3</sub> )2 249<br>(37 98) (3 95) (2 37 98) (3 95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |                                                                                                     | (43 04)        | (3 66)                       |                                                                                                                |             | (26 00)                                  |            |
| (3 1 67) (3 39) (2 37) (3 6.19) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10) (3 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ихх   | Cl(C6Cl <sub>5</sub> )Pd(PT t <sub>3</sub> )(py)                                                    | 33 7 2         | 3 52                         | 2 34                                                                                                           |             | 35 53                                    | J10 (dec ) |
| XXIV (C <sub>6</sub> F <sub>5</sub> )(C <sub>6</sub> Cl <sub>5</sub> )Pd(PEt <sub>3</sub> )2 38 44 3 96 22 82 249 (37 98) (3 95) (2 23 89)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |                                                                                                     | (31 67)        | (6E F)                       | (2 17)                                                                                                         |             | (36,19)                                  |            |
| (37.98) (3.95) (3.95)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | XXIV  | (C <sub>6</sub> F <sub>5</sub> )(C <sub>6</sub> Cl <sub>5</sub> )Pd(PDt <sub>3</sub> ) <sub>2</sub> | 3841           | 968                          |                                                                                                                |             | 22 82                                    | 249        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |                                                                                                     | (37.98)        | (395)                        |                                                                                                                |             | (23 89)                                  |            |

432

TABLL 2

obviously be brought about by the same ligand L which is already present in the binuclear complex to afford complexes of the  $X(Ar)PdL_2$  type (eq 5), or by a different ligand L' which leads to complexes of the X(Ar)PdLL' type (eq 6). Processes (5) and (6) take place under mild conditions The addition of L or L' in some cases does not require any special precautions, but in other cases it is best carried out below room temperature to prevent decomposition and precipitation of metallic palladium These complications were never observed when working at 0°C

Data for the complexes obtained according to eqs 5 and 6 are listed in Table 2.

## Substitution reactions of mononuclear complexes

The ligand X of the mononuclear complexes obtained as described above, may be replaced by other anionic ligands Thus the complexes  $(SCN)(C_6F_5)$ -Pd(PEt<sub>3</sub>)<sub>2</sub> and Y(C<sub>6</sub>Cl<sub>5</sub>)Pd(PEt<sub>3</sub>)<sub>2</sub> (Y = Br, I, SCN) were obtained (For analytical data see Table II)

The preparation of  $(C_6Cl_5)(C_6F_5)Pd(PEt_3)_2$  according to eq 7 is noteworthy

$$Cl(C_6Cl_5)Pd(PEt_3)_2 + L_1C_6F_5 \rightarrow L_1Cl + (C_6F_5)(C_6Cl_5)Pd(PEt_3)_2$$
(7)

It is interesting that a second  $C_6Cl_5$  group cannot be introduced into  $Cl(C_6Cl_5)Pd(PEt_3)_2$  by using  $L_1C_6Cl_5$ .  $C_6Cl_5$  could not be introduced into  $Cl(C_6F_5)Pd(PEt_3)_2$ , by use of either  $LiC_6Cl_5$  or  $ClMgC_6Cl_5$  Furthermore, it was not possible to bring about process (7) with the Grignard compound  $XMgC_6F_5$ , whatever excess was used Although the failure of some of the attempts could arise from steric factors, the main reason must be kinetic effects, since even  $Cl(C_6Cl_5)Pd(PEt_3)_2$  does not undergo reaction with  $XMgC_6H_5$  or with  $LiC_6H_5$ .

Only one complex  $(C_6F_5)(C_6Cl_5)N_1(PPh_2Me)_2$  containing both a  $C_6F_5$  and a  $C_6Cl_5$  group attached [5] to the same metal was previously known. In this complex the M-C distance is shorter for Ni-C<sub>6</sub>Cl<sub>5</sub> than for Ni-C<sub>6</sub>F<sub>5</sub> (1 905 ± 0.010 and 1.978 ± 0.009 Å respectively). This could indicate a stronger bond in the case of M-C<sub>6</sub>Cl<sub>5</sub>.

## Conductivities and melting points

All the complexes are essentially non-conducting, their conductivities (in acetone or chloroform solution, depending on the solubility) are very low  $(\Lambda_M \sim 0-1 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1})$ 

As will be seen from Table 1, the binuclear complexes show a good thermal stability All except two melt at high temperature (> $280^{\circ}$ C) with decomposition, while the two complexes which melt at lower temperatures, do so without decomposition

The mononuclear complexes (see Table 2) generally melt without decomposition.

## IR spectra

Both the binuclear and mononuclear complexes exhibit the bands due to the  $C_6F_5$  group [6] (at 1635, 1505, 950 and 800 cm<sup>-1</sup>) or the  $C_6Cl_5$  group [7] (at 1320, 1295, 1230 and 675 cm<sup>-1</sup>). The complex  $(C_6F_5)(C_6Cl_5)Pd(PEt_3)_2$  shows

both series of vibrations. All the complexes exhibit the bands characteristic of the various ancillary ligands.

The binuclear complex  $(SCN)_2(C_6Cl_5)_2Pd_2(PEt_3)_2$  shows a very clear band at 2145 cm<sup>-1</sup>, i.e. in a zone which is free from other bands and the location of which practically coincides with that found for  $(SCN)_2(C_6F_5)_2Pd_2(PEt_3)_2$  [1] at 2148 cm<sup>-1</sup>. This is to be accepted as a reliable indication of the symmetrical arrangement of the thiocyanato-bridging groups [8].

The mononuclear complexes  $(SCN)(C_6F_5)Pd(PEt_3)_2$  and  $(SCN)(C_6Cl_5)Pd(PEt_3)_2$ , obtained from the corresponding chlorocomplexes by substitution reactions, show the  $\nu(CN)$  vibration below 2100 cm<sup>-1</sup>. This indicates that the SCN group is attached to the metal via the N atom [7]. The same type of binding was also found for  $(SCN)(C_6Cl_5)N1(PPh_3)_2$  [7] and  $(SCN)(C_6Cl_5)-Pd(PPh_3)_2$  [7] as well as for  $(SCN)(C_6F_5)Pd(PPh_3)_2$  [10]

 $(SCN)(C_6Cl_5)Pd(PEt_3)_z$  can also be prepared by adding PEt<sub>3</sub> to acetone solutions of the binuclear complex  $(SCN)_2(C_6Cl_5)_2Pd_2(PEt_3)_2$  The IR spectrum of the resulting complex completely coincides with that prepared by substitution.

#### Experimental

IR spectra were recorded on a Beckman IR 20A spectrophotometer (over the range 4000–250 cm<sup>-1</sup>) using Nujol mulls between polyethylene sheets Conductivities were measured in approx  $5 \times 10^{-4}$  M solutions with a Philips PW 9501/01 conductimeter

The C, H and N analyses were made with a Perkin—Elmer 240 microanalyzer Halogen analyses were performed as described by White [11], a few milligrams of sucrose being added to the sample to facilitate its combustion

For determination of Pd the samples were dissolved first in fuming nitric acid and then in perchloric acid, and the metal was precipitated with dimethyl-glyoxime [12]

# Preparation of $Cl_2PdL_2$ ( $L = PPh_3$ , $PBu_3$ , $AsPh_3$ or $PEt_3$ )

An ethanol solution of the ligand was added dropwise to an aqueous solution of  $K_2PdCl_{\star}$ . The resulting yellow precipitates were recrystallized from dichloromethane (L = PPh<sub>3</sub> or AsPh<sub>3</sub>) or acetone (L = PBu<sub>3</sub>) In the case of L = PEt<sub>3</sub>, the initially formed reddish precipitate redissolved after completion of the addition of the ligand

Upon adding 6 N HCl, a yellow solid precipitated The mixture was stirred for 24 h. and the solid recrystallized from ethanol/water. (approx 90% yield)

# Preparation of $Cl_Pd_2L_2$ ( $L = PPh_3$ , $PEt_3$ , $PBu_3$ or $AsPh_3$ )

An ethanol solution of  $Cl_2PdL_2$  was refluxed for 30 min with 90% of the calculated amount (according to eq 1) of  $PdCl_2$  in 2N HCl solution. The resulting dark-red solution was filtered to remove a small quantity of precipitated metallic Pd. The filtrate was concentrated, and the binuclear complexes separated in 90% or even higher yields.

Preparation of  $Br_2(C_6F_5)_2Pd_2L_2$  (I-III) ( $L = PPh_3$ ,  $PEt_3$ ,  $PBu_3$ ) An (3 5 1) excess of the Grignard compound  $BrMg(C_6F_5)$  was added to an ether solution or suspension of  $Cl_4Pd_2L_2$  The mixture was stirred for 30 min at room temperature and then refluxed for 1 h. After evaporation of the solution to dryness, warm water was added to destroy the Grignard compound The residue was extracted with acetone, and water was added to give a brown product This was extracted with ether After partial evaporation of the ether, yellow crystals were obtained, these were, in every case, a mixture of  $Cl_2(C_6F_5)_2Pd_2L_2$ and  $Br_2(C_6F_5)_2Pd_2L_2$  The mixture was quantitatively transformed into the bromo-derivative by treatment with an acetone solution of LiBr The solution was evaporated to dryness and repeatedly washed with water to remove all the soluble halide (40-50% yields).

For  $L = AsPh_3$  the reaction with the Grignard compound resulted in the cleavage of the halogen-bridge and in the formation of mixtures which were not further studied

## Preparation of $Cl_2(C_6Cl_5)_2Pd_2(PEt_3)_2$ (IV)

Dry N<sub>2</sub> was passed through a 250 ml flask containing 2 5 g (4 4 mmol) of  $Cl_4Pd_2(PEt_3)_2$ , 0.82 g of Mg and 9.64 g (33 8 mmol) of  $C_6Cl_6$  and 40 ml of tetrahydrofuran and 40 ml of benzene were added with stirring The mixture was heated to the reflux temperature, and 2 ml of benzyl chloride were added as initiator. The refluxing was continued until the magnesium was completely dissolved. The solution was evaporated to dryness and the residue hydrolyzed to destroy the Grignard compound. The precipitate was filtered off and washed with n-hexane and then ether. The residue was extracted with dichloromethane and the resulting solution was filtered and evaporated. Pale-yellow crystals of  $Cl_2(C_6Cl_5)_2Pd_2(PEt_3)_2$  were obtained upon addition of benzene (41 2% yield)

# Preparation of $X_2(C_6Cl_5)_2Pd_2(PEt_3)_2$ (V-VII)

To a dichloromethane solution of 0 5 mmol of  $Cl_2(C_6Cl_5)_2Pd_2(PEt_3)_2$  were added 1 1 mmol of MX (LiBr. NaI or KSCN) in 10 ml of acetone The resulting complex was in every case less soluble than the starting complex, so partial precipitation of the former was observed The mixture was evaporated to dryness, the residue was washed with water to remove the halogen of pseudohalogen and the complex was recrystallized from  $CH_2Cl_2/e$ ther (~90% yield)

### Preparation of $Br(C_6F_5)PdL_2$ and $Br(C_6F_5)PdLL'$ (VIII-XIV)

The conditions for each synthesis are summarized in Table 3 The starting complex dissolved in 20 ml of the appropriate solvent After the reaction time shown, the solution was vacuum-concentrated until crystals of the end product were observed. The mononuclear complexes were generally soluble in ether, benzene, acetone, or chloroform, and insoluble in water and, in some cases, in ethanol

#### Preparation of $Cl(C_6Cl_5)PdL_2$ and $Cl(C_6Cl_5)PdLL'$ (XVI, XX-XXIII)

The syntheses were carried out as summarized in Table 3 Suspensions of the starting complex  $Cl_2(C_6Cl_5)_2Pd_2(PEt_3)_2$  in 20–40 ml of the appropriate solvent were completely dissolved during the reaction. The resulting solution was finally vacuum-concentrated to cause crystallization of the mononuclear complexes. These are soluble in benzene, chloroform and acetone, and insoluble in ethanol and water

| RI ACTION CONDITIONS   | FOR THL PRI PA | RATION OF X(Ar <sub>3</sub> | k)PdL2 (or LL ) |         |        |                        |           |
|------------------------|----------------|-----------------------------|-----------------|---------|--------|------------------------|-----------|
| Starting complex       | (lonim)        | ligand                      | (mmol)          | Solvent | T (°C) | Reaction<br>time (mun) | Yield (%) |
| Br2(C6F5)2Pd2(PFt3)2   | 0 44           | PE41                        | 0.96            | ether   | 0      | 1                      | 89        |
| ;<br>;<br>;<br>;       | 049            | PPh <sub>3</sub>            | 1 06            | acetone | 0      | 0.5                    | 76        |
|                        | 0 49           | AsPh3                       | 1 06            | acetone | 0      | 1                      | 97        |
|                        | 0 53           | P(OPh) <sub>3</sub>         | 1 06            | ether   | 0      | 1                      | 52        |
|                        | 080            | ЪУ                          | 1 76            | penzene | 0      | -1                     | 88        |
|                        | 0 52           | umb                         | 114             | pen/one | 0      | -1                     | 60        |
| Br2(C6F5)2Pd2(Phu3)2   | 0 38           | PBu <sub>3</sub>            | 082             | ether   | 18     | 05                     | 76        |
| Cl2(C6Cl5)2Pd2(Pl·t3)2 | 1 66           | PL43                        | 310             | benzone | 18     | 2                      | 72        |
| 1<br>1<br>1<br>1<br>1  | 0 60           | PPh3                        | 1 10            | acetone | 0      | 1                      | 78        |
|                        | 0 50           | AsPh 3                      | 110             | henzone | 0      | 1                      | 75        |
|                        | 0 50           | P(OPh) <sub>3</sub>         | 1 10            | acetone | 0      | 1                      | 31        |
|                        | 0 50           | ЪУ                          | 1 10            | acetone | 0      | 1                      | 49        |

TABLF }

Preparation of  $X(C_6Cl_5)Pd(PEt_3)_2$  (XVII-XIX)

To a solution of 0.8 mmol of  $Cl(C_6Cl_5)Pd(PEt_3)_2$  in 20 ml of acetone were added 0.9 mmol of MX (LiBr, NaI, KSCN), and the mixture was stirred for 1 h at room temperature. After evaporation to dryness, the residue was washed with water to remove the halogen or pseudohalogen and the resulting residue was recrystallized from benzene/ethanol or ether/ethanol (~100% yield)

 $(SCN)(C_6F_5)Pd(PEt_3)_2$  was obtained in the same way (60% yield) starting from  $Cl(C_6F_5)Pd(PEt_3)_2$ .

 $(SCN)(C_6Cl_5)Pd(PEt_3)_2$  was also prepared by bridge-cleavage of  $(SCN)_2 - (C_6Cl_5)_2Pd_2(PEt_3)_2$  with an excess of PEt<sub>3</sub> To 0 10 mmol of the binuclear complex in 10 ml of acetone were added 0 22 mmol of PEt<sub>3</sub> The suspension was stirred at room temperature until the complex completely dissolved After partial evaporation and addition of ethanol, white crystals formed, and were filtered off (50 0% yield)

### Preparation of $(C_6F_5)(C_6Cl_5)Pd(PEt_3)_2$ (XXIV)

2 mmol of  $Cl(C_6Cl_5)Pd(PEt_3)_2$  were added to a solution of 6 mmol of  $LiC_6F_5$ in 25 ml of ether at  $-78^{\circ}C$ , and the mixture was stirred for 30 min at this temperature and for another 3 h at room temperature. The precipitate of lithium halide was separated from the off-white solution by centrifuging. The solution was evaporated to dryness, the residue was extracted with benzene, and the solution filtered. White crystals of the complex were obtained by partially evaporating the solution and adding ethanol (52.9% yield). They are soluble in chloroform, benzene and acetone, and insoluble in ethanol, water, and nitromethane

## References

- 1 R Uson, R Royo J Formes and F Martinez J Organometal Chem 90 (1975) 367
- 2 F G Mann Ann Reports 35 (1938) 148
- 3 J Chatt and L M Venanzi J Chem Soc, (1957) 2351
- 4 G Calvin and G E Coates J Chem Soc, (1960) 2008
- 5 M D Raush and F E Tibbetts, Inorg Chem, 9 (1970) 512, N R Churchill and M V Veidis J Chem Soc Chem Commun, (1970) 1099
- 6 D A Long and D Steele Spectrochim Acta 19 (1965) 1955
- 7 J Casabo J M Coronas and J Sales Inorg Chim Acta 11 (1974) 5
- 8 JL Burmeister and ET Weleski jr Syn Inorg Metal-Org Chem 2 (1972) 295
- 9 FHC Mitchell and R J P Williams, J Chem Soc (1960) 1912 J Lewis R S Nyholm and P N Smith J Chem Soc (1960) 4590
- 10 R Uson P Royo and J Fornies Rev Acad Ciencias Zaragoza XXVIII (1973) 349
- 11 DC White Microchim Acta (1961) 499
- 12 A Vogel Quimica Analitica Cuantitativa, Kapelusz Buenos Aires Vol 1 1960 p 621