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In the complexes cis-[PtCl2(PEt3)L], where L = Cl-, 

C(NPhCH2)2, C(OEt)NEPh, CNPh, CO, PEt3, P(OPh)3 or PF3, 

ligands L exert cis-influence on the Pt-P bond lengths 

(ca. O.O6i),which is almost as large as their trans-influence - 

on the Pt-Cl(trans to L) bond lengths (ca. 0.07%. The two - 

effects are independent of each other and lead to different 

cis- and trans-influence series of L. The trend in 

Pt-Cl(cis to L) distances, displaying a variation of about 

O-03& reflects the change in the length, and presumably 

strength, of the Pt-P bonds- 

The s-ray analysis of cis-[PtC$(PEt3) (CO)] was bdsed on 

diffractometric intensities of 1820 independent reflections. 

The crystal structure was solved by the heavy atom method and 

refined by full-matrix least-squares to g = O-037- The 

crystals are-orthorhombic, space group E21, 5 = 12.777, 

g = 8.587, 2 = 11s424;;, z = 4, They are built of discrete 

monomeric moiecules with cis+quare planar geometry. 

Selected bond lengths'arei Pt-C l-855(14), Pt-P 2.265(3), 

'.pt+Cl<t&&s to+) 2.296(4) iuia P&i(&.ns to P) 2.368(3)& _P_ 

.- _ -_-. : I_ : -- . - .-~;_ 
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Introduction 

In square planar transition metal complexes the effects 

of ligands on the strength of cis-metal-ligand bonds are of 

interest, not only intrinsically, but also because they are 

germane to the much studied phenomenon of trans-influence. 

The existance of cis-influence in platinum(I1) complexes 

has been inferred from spectroscopic results Ill. 

We, however, first noted in 1974 that the bond lengths in 

cis- [PtCl2(PPh3) (CO)], compared with those in other 

cis-[PtC12(PR3)LJ complexes (PR3 = PMe3, PEt3 or PEt2Ph and 

L = PHe 
3' 

carbenoid or isocyanide), indicate that the carbonyl 

group weakens the Pt-P and strengthens the Pt-Cl bonds & 

to itself: this was in conformity with trends displayed by 

lJ(Pt-P) coupling constants and v(Pt-Cl) stretching frequencies 

in analagous complexes (21, While we considered it likely 

that these observations reflect a cis-influence of the 

carbonyl group, we pointed out that since the complexes 

compared contain different PR3 ligands the effects of the 

phosphine substituents may-also be involved [2-41- Variations 

in the Pt-P bond lengths in the complexes cis-_IPtC12(PR3)Ll have 

also been noticed by Russell et al- IS]- 

To investigate variations in the lengths of platinum- 

ligand bonds cis and trans to L, -- originating from change in 

the nature of L only, we have chosen to examine a series of 

triethylphosphine complexes e-[PtC12(PEt31L]. 

Crystallographic studies of such complexes with L = Cl', 

C(OEt)NHPh, C(NPhcH2J2, CNPh, PEt3, PP3 or P(OPhj3 have already 

been carried out in this laboratory and elsewhere [6-121, and 

we report here the results of an-accurate X-. ray analysis of the -. 

compound with L = CO_ The__cryetel structure of this compound . 

was first detemined.by EA. Badley,.using photographicP_ _-....:_ 
: 

diffraction aat+ but:the.resulfs~obtqined az$of $T.-accura&yk[g]; 
_ _- --. _, -,. .- : 

. . .: :- : . , : -:. _.-:,.: _-.-;- .~.- -- 
. ..- 
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Experimental 

Crystals of cis-[PtCl2(PEt3) (CO)] are air-stable 

transparent needles elongated along z 

Crystal data 

c,H15C120PPt, M.W. = 412.2. Orthorhombic,space group 

_Z1. _ a = 12.777, b = 8.587, c = 11.424;, g= 1253.4g3, - - 

3=4,D = 2.184q~m-~, _F(OOO) = 768. MO-~ radiation, 

-1 X = 0.71069;;. u(Mo-K_) = 118.3 cm . 

Measurements 

A crystal of approximate dimensions 0.50 x 0.21 x 0.24 mm 

was selected for the analysis and its principal faces, 

belonging to the forms ElOO), {OlO) and {OOl), were indentified 

by optical goniometry and g-ray measurements. 

The crystal symmetry and preliminary unit cell‘dimensions 

were determined from oscillation and Weissenberg photographs. 

-Systematically absent reflections are consistent with space 

groups EZl (No. 29) and Pcam, the latter being an unconventional 

setting of the space group Pbcm (No. 57). The non-centro- 

symmetric space group w21 was later proved correct by.a 

successful structure analysis. The preliminary unit cell 

dimensions were adjusted by a least-squares treatment of the 

setting angles for 22 reflections, centred on a 'Iiilger and Watts' 

Y290 four-circle diffractometer controlled by a PDP8 computer. 

The intensities of reflections were measured on the Y290 

diffractometer, using molybdenum radiation, a graphite 

monochromator and a pulse-height analyser. The 8-28 scan 

technique was employed. Each reflection was scanned through 

a e range of $.6", wjth a 9ca.n step of 0.02O and a counting 

time of Zs:p& step. ..The. local_background was coun&.for 1% at 

.each end.,of,.the.scan-range.::-. Thq/intensitiqs of,tm strong 
. : .- _ 

._ 



reflections, periodically remeasured throughout the experiment, 

varied by less than f 5% of their mean values. 

The integrated intensities, g, and their standard deviations, 

0 (El. were obtained using relationships described earlier 

(9 = 0.04) [13]. They were corrected for Lorentz, polarisation, 

counting-loss and absorption effects. The transmission factors. 

L 
on , calculated 

6(Mo-$lz 35" 

were measured. Of these, only 1820 (ca. 66%). for which 

2,3a(h), were used in the subsequent calculations. 

Structure analysis 

The position of the platinum atom, at z = l/4, was found 

from a Patterson function. With 2 = 4, - the space group Pcam 

would then require all molecules to lie in mirror planes 

norma; to c. This proved incompatible with the difference 

synthesis phased by the platinum atom, and the space group 

=a1 was therefore adopted in the subsequent analysis. 

Interpretation of tbis synthesis was con;plicated by pseudo- 

symmetry, giving rise to four Possible arrangements for atoms 

co-ordinated to platinum. Each of these arrangements was 

refined and the one which gave an acceptable set of platinum- 

ligand bond lengths and angles, and also the lowest value of R* 

was used in further calculations. The positions of the 

remaining non-hydrogen atoms were determined from subsequent 

difference syntheses. 

The structure was refined by a least-squares minimisation 

of- the function zi(l~r.-l~l_)/~(~))~. The atomic scattering 

factors were takenfrom ref. 14; and the anomalous scattering 

of Platinum, chlorine .and phosphor& latoms was-ackounted: for. % ’ 

u41. -~&&J& a&-w&e. n& l&.&ted; .-:. Refbkn& of; &. .---.:- ‘._ 
: 

1.. .: ._ . . - 
- __ _. : ,, . . : c .:- ;_ . . 

,;. _-. :: --. : .._-- .-. 
-- -. I__- _- ‘-K.- - 

I .:_-z__ --: :_ ..-.- -._ .;,. _-. _,, : ~.. ,.I .- ,‘_. L ,;.-. ~_~~_~_I-~_:.~;:::. .l-.-:.;;.,-__~~r_-. .:. ~. - _; ;.:. .:__~ .:_ ~_ i .:-.-,; :;.:;.. .--;_-.;.-y-:. _r_._:-_-.,l ‘.I:-- ..--.--..I: -._ -..:.:_...,L.. _..__;‘,, : __‘ll.‘-z._ T 



positional and anisotropic vibrational parameters of all non- 

hydrogen atomsconverged at g = 0.037 and F& = 0.047. 

The correctness of the indexing of reflections was then 

verified, by refining the structure with m reflections 

re-indexed as &l -- This refinement converged at g = 0.039 

and R = 0.049, both significantly greater than the values 

obtained with the original indexing. 

In the last cycle of refinement all parameters shifted 

by ~0.05~1. The standard deviation of an observation of unit - 

weight was 1.71. The mean values of (I~l-&\)2/c2(~) 

showed no systematic trends when analysed as a function of 

TABLE 1 

FRACTIONAL ATOMIC COORDINATES 

Atom X Y 2 - - 

Pt O-04379(3) -0-03769 (3) 114 

Cl(I) 0.1001(3) 0.2962(3) 0.2146(3) 

CI<2) 0.1884(3) -0.0513(41 0.1511(4) 

P -0.0024(2) -0.2141(3) 0.2789(3) 

0 -0.1411(8) 0.1743(13) 0.3710(14) 

c (1) -0.0731(11) 0.1187(14) 0.3245(14) 

C(2) 0.1003(9) -0.3213(15) O-3563(12) 

C(3) 0.1231(13) -0.258009) 0.4789(15) 

C(4) -O.l27Q(ll) -0.2363(15) 0.3580(13) 

C(5) -0.1503(13) -0.4099(17) 0.3829(X) 

C(6) -0.0189_(10) -0.3149(13) 0.1414(11) 

C(7) -0.1042(12) -0.2477(17) 0.0656(15) 

. . . . : 
.- - 
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TABLE 2 

THERMALPARAMETERS OPATOMSa 

Atom El1 g22 g33 . El2 El3 c23 

Pt 

Cl (1) 

Cl (2) 

P 

0 

c (1) 

C(2) 

C(3) 

C(4) 

C(5) 

C(6) 

C(7) 

45.1(Z) 33.50) 45-2(2) 

77(2) 

64(2) 

450) 

67(7) 

57(7) 

45(6) 

73(9) 

57(7) 

87ClO) 

61(7) 

62(g) 

38(l) 

58(2) 

340) 

68C6) 

37(5) 

48(6) 

79(9) 

53(7) 

51(6) 

41(5) 

69(g) 

75(2) 

92(3) 

45(l) 

147(12) 

83(g) 

63(7) 

69<9) 

580) 

8OUO) 

50(6) 

69(91 

l-5(1) -O-4(3) -4.1(3) 

-8 (1) -6 (2) 3W 

O(2) 32(21 -10(2) 

-l(l) -1il) -5(l) 

25(6) 25(8) -18(8) 

-6(5) 4(7) -Z(6) 

5(5) -6(5) l(5) 

12(8) -13 (7) -3(a) 

-5(6) 8(6) -4(6) 

-15(7) 6(9) 2(7)- 

-l(5) O(5) -13(5) 

6(7) -17(7) -6(E) 

a Each atom was assigned an anisotropic temperature factor of 

the form exp(-2 x 10m3x2 : z h.h.ata?U..). 
i=l j,~-=-J-~-J-~J 

I%\ or sine.* The extreme function values in the final 

difference synthesis (1.5 and -1.6 eAoe3), were associated 

with the position of the platinum atom. The -final positional 

and vibrational parameters of atoms are presented in Tables 

1 and 2. and a view of the molecular structure is shown in 

Figure 1. 

The computer~~rograms y+d Fe-listed &n ref. 12, . . ,--_ :I __ __;. ..- -=._ . ..- :, ~. 



Figure 1. A perspective view of the molecule,with thermal 

ellipsoids displaying 90% probability- Hydrogen 

atoms are omitted, 

Results and discussion 

Crystal and molecular structure of e-[PtC12(PEt3) (CO) 1 

The crystal structure is built of discrete monomeric 

molecules, The shortest distances between atoms in different 

molecules are close to the sums of-the appropriate van der 

Waals radii. 

The IIlolecules display a cis-square planar coordination 

around the platinum atom and almost ideal C_ symmetry. 

The orientation of the phosphine ligand, evident from 

th.e Cl(Z)-Pt-P-C torsion angles (Table 3), is such as to 

bring the ethyl group involving the atoms C(4) and C(S) into 

the coordination plane of platinum. The arrangement of the 

other t&o ethyl groups is such as to make the planes through 

the atoms.P, C(2) and C(3) and P, C(6) and C(7) nearly coincident 
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by the Pt-P-C-C torsion angles (Table 3). From an inspectionof 

aodels it appears that such a conformation of the PEt3 ligand 

and its orientation, with respect to the coordination plane 

of the metal atom,. are favourable for the minimisation of 

steric repulsions in a square planar molecule. It is therefore 

not surprising that similar PEt3 conformations and orientations 

have been observed in several other cis-[PtC12(PEt3]Ll 

molecules (123. The bond lengths and 

phospb^ine ligand are normal (Table 3). 

angles in the triethyl- 

the Pt-P-C and C-P-C 

from the ideal angles showing the expected deviations 

tetrahedral value (151. 

The non-bonding intramolecular contacts and the angular 

distortions in the Coordination plane of platinum indicate 

that the molecule is subject to some steric strain. Thus the 

C(l) . ..C(4]. Cl(2) . ..C(Z) and Cl(2) . ..c(6) distances are 3.15. _ 

3.48 and 3.49& respectively, and the P-Pt-C(1) and P-Pt-Cl(2) 

angles deviate from 90° by 4.7 and -2.1° (Table 31. The 

individual displacements of the Pt. P, Cl(l) and C1(2] 

atoms from their least-squares plane* do not exceed O-002& 

the displacements of the C(l), 0, C(4) and C(5) atoms from the 

same plane are less-than 0.06;. 

The Pt-Cl(l) and Pt-Cl(Z) distances, 2.368(3) and 

2.296(4]; respectively, show that the triethylphosphine ligand 

exerts a substantially larger trans-influence than the carbonyl 

group. while the Pt-P distance [2.265(3];3 reflects the 

cis-influence of the carbonyl group (see below]. The 

Pt-C distance :1.855(14);] is the same as that [1.858(7];] in 

the analagous compound a-[PtC12(PPh3)(CO)], and indicate; that 



273 

the co-ordinated carbon monoxide possesses appreciable 

n-acceptor properties [4], 

TABLE 3 

SELECTED INTERATOMIC DISTANCES AND ANGLES 

Bond lengths ($ 

Pt-Cl(l) 2.368(3) P-C(6) l-806(13) 

Pt-cl(z) 2.296(4) C(2)-C(3) l-529(21) 

Pt-P 2.265(3) C(4)-C(5) l-546(20) 

Pt-C(1) l-855(14) C(6)-C(7) l-507(20) 

P-C(2) l-830(13) O-C(l) 1.124(19) 

P-C (4) 1.840(14) 

Bond angles (O) 

Cl (l)-Pt-c1(2) 89-O(1) Pt-P-C(Z) 111.4(4) 

Cl(l)--Pt-C(1) 88-4(4) Pt-P-c(4) 113.3(4) 

P-Pt-cl(2) 87-9(l) Pt-P-C(6) 111.2(4) 

P-lx-C(l) 94,7(4) C(2)-P-C(4) 109.3(6) 

Cl(l)-Pt-P 177.0(l) C(2)-P-C(6) 105.3(6) 

c1(2)-Pt-c(1) 176.9(4) C(4)-P-C(6) 106.0(6) 

P-C(2)-C(3) 113.6(9) P-C(6)--C(7) 113,6(g) 

P-C(4)-C(5) 110~9(10) Pt-C(l)-0 176.5(12) 

Torsion angles (“1 

c1(2)-Pt-P-C(2) 58(l) Pt-P-C(2)-c(3) 62(l) 

cl(2~-Pt-P-ccQ) -178(l) Pt-P-c(4)-c(5) -176(l) 

C1(2)-Pt-P-C(6) 
. . 

--59(l) Pt-P-C(~)-C(7) -62(l) 

: 
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cis- And tram-influence of lignnds in cis-[PtC12(PEt3)L) _-- 

complexes 

Accurate crysta~ographic studies are now available for 

eight complexes of the type cis-_CPtC12(PEt3)L], where the 

ligands L display a wide range of electronic properties- 

Both strong and weak o-donors, such as PEt 3 and Cl-, and also 

strong and weak r-acceptors, such as CO and carbenoid, are 

represented- The bond lengths in these complexes are listed 

in Table 4, together with the '$(Pt-PEt3) coupling constants- 

They-enable us to examin e in some detail the dependence of 

metal-ligand bonding upon the nature of the ligands L. 

TABLE 4 

BOND LBNGTEiS (% AND COUPLING CONSTANTS (Hz) in 

CiS- [PtC12 (PEt3)LJ COMPLEXES 

L Pt-P Pt-Cl Pt-Cl 15 
(cis to L) (trans to L) (Pt=PEt3) Ref- 

Cl- 2.215(4) 2.382(4) 2-301(3)a 3704 6 

'=(NphCH2)2 2-234(3) 2,381(3) 2.362(3) 3J20b 8 

CNPh 2.238(8) 2.365(X) 2.333(12) 304gc 9 

C(OEt)NHPh 2,239(8) 2.367(7) 2-361(S) 7 

PEt3 2_259(2)a 2-361(6)a 2.361(6)a 351sd 10 

co 2-265(3) 2.368(3) 2.296(4) 2754= This work 

P(OPh)3 2.269(l) 2.355(2) 2.344(2) . 3210d 12 
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The Pt-Cl(trans to L) bond lengths in Table 4 display 

a variation of about 0.07; and increase.along the series 

cO=c1-= PF3+XJ?h~P(OPh)3~PEt3=C(OEt)NHPh=C(NPhCH2)2. This series 

reflects the increasing a-basicity and decreasing v-acidity 

of the ligands and it is therefore compatible with current 

views on the trans-influence of ligands in transition metal 

complexes [1,18,191 

The platinum-ligand bonds cis to L are also affected by 

the nature of L- The Pt-P distances Vary by about O-06;, 

almost as much as the Pt-Cl(trans to L) distances- The variation 

in Pt-Cl(cis to L) distances is smaller, ca. O.Og, but still - 

statistically significant. In addition, we 'note that the 

t 
2.33 I I I I I I I I I I 

2.20 225 2.30 

Figure 2.. A plot of Pt-Cl(cis to L) versus Pt-P bond 

'lengths in *-[PtClZ(PEt3)L] complexes 

. _- <Jee &&A- 4) _-. 
'The. ligands L and--the unweighted 

::.c .‘~ -;.:_ :.- ._-_._._ 
l&k&$~es’&& l&e tieeshown. --'The errors 

: 
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??t-cl(cis to L) distances display a consistent trend, 

illustrated in Figure 2: they decrease as the Pt-P distances 

increase (linear correlation coefficient -0.9). 

Considering the cis-influence of ligands as their ability 

to weaken the cis-metal-ligand bonds, it is obvious that in 

cis-[PtC12(PEtB)L] complexes the ligands L can be arranged in a 

cis-influence series on the basis of either the Pt-P or 

Pt-Cl(cis to L) bond lengths- The Pt-P distances,-which 

display greater variability, increase along the series 

Cl <C(NPhCH2)2 =CNPh=C(OEt)NHPh<PEt3=CO=P(OPh)3=PF3. This, 

of course, is approximately a reversal of the series of 

increasing Pt-Cl(cis to L) distances. 

The cis-influence of ligands L may arise either from their 

steric or electronic properties. or perhaps from a combination 

ofboth- It is now recognised that in severely overcrowded 

platinum(I1) complexes the steric repulsions between ligands 

can lead to considerable lengthening of Pt-P bonds. Thus in 

trans-[Pt12fP(C6Hll)3~2) (201 the Pt-P bonds are about O-06; 

longer than in trans-[PtBr2(PEt3)2] [211, ind this is attributed 

mainly to the change in steric demands of the ligands in 

the two complexes, In the less crowded cis-[PtC12(PEt3)L] 

molecules discussed here the steric interactions of ligands are 

expected to be considerably weaker. To what extent, if at all, 

they affect the length of the Pt-P bonds is difficult to 

establish, since the force constants.required for molecular 

mechanics calculations are not known- In this predicament we 

note that the observed cis-influence series bears 

little relationship to the size of ligands i&as measured, in 

the absence of a less crude estimate, by Tolman's cone angle 

(95,102,104,130 and 132O for CO, Cl-, PP3, PCyPh13 and pEt3, 

respectively) :[221. -_ _ Ligands of: similar size, such $8 Cl-,:cO 
._- .-_ 

and PP3, occur at opposite ends of the-series, orhileligands ~ 
_-:-_ ‘.. 

__ -,_.I .’ . _- .: 
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of different size, such as CO, PF 3, P(OPh13 and PEt3, exert 

similar cis-influences, Furthermore, on steric grounds one 

might expect both bonds cis to L to lengthen as L becomes larger, 

thus leading to a positive correlation between the Pt-P and 

Pt-Cl(cis to L) distances. The observed correlation is, 

however, negative- We therefore consider that the steric 

properties of L are at most a minor factor in determining their 

position in the cis-influence series and, consequently, that the 

cis-influence of L is predominantly an electronic effect. 

Another important observation emerges from the bond length 

data in Table 4: cist and trans-influence of L are not related 

to each other, for the Pt-P and Pt-Cl(cis to L) distances 

show no correlation with the Pt-Cl(trans to L) distances_ 

This indicates that cis- and trans-influence are transmitted 

through differen: electronic mechanisms in the molecular 

framework. Current theories emphasize that only those ligands 

which are strong a-bases exert high trans-influence [1,18,19]. 

From the observed trans-influence series of ligands L, PEt3 

is expected to be a stronger base than Cl-, P(OPh)3, or PF3. 

The same relative basicities of the three phosphorus-donor 

ligands are evident from i-r. and U.V. spectroscopic data [223. 

The ordering of Cl-, PEt3, P(OPhI3, and PF3 in the cis-influence 

series is then obviously not related to their o-basicities. 

This is consistent with Syrkin's theory [23] , which considers that 

interactions between mutually cis a-bonds are of minor importance, 

and which has been followed in most subsequent discussions of 

trans-influence of ligands. Zumdahl and Drag0 however have 

predicted, on the basis of extended HUckel molecular orbital 

calculations, that cis- and trans-influence transmitted through 

a-bonds .are.of. comparable magnit+e [241, 

~The~1&(Pt-PEt3).;coupling-constants, which are thought 

to measure~.$he_.g-component-of the-Pt-P. u-bond 125l;.display 
-) 



2-78 

a range of cd. 1000 Hz in cis-[PtCIZ (PEt3)LI complexes (Table 41, - 

However, they show only an indifferent correlation with 

the Pt-P bond lengths , which reflect the overall Pt-P bond order, 

In the complexes with L = PEtg and CO, the Pt-P bond lengths 

are equal to within experimental error despite a difference in 

the coupling constants of 761 Hz. It therefore appears that, 

although both the overall and s-electron Pt-P bond orders are 

sensitive to the nature of the cis-ligandthere is no simple 

correspondence between the two quantities. 

In the cis-influence series of L the ordering of ligands 

shows an obvious tendency: ligands which are considered to be 

strong r-acids, notably CO and PF3, occur at the upper end of 

the series, while weak v-acids, such as Cl- and carbenoid, occur 

at the lower end of the series. We therefore- suggest that the 

s-influence of L may reflect its n-acceptor properties- The 

lengthening of ths Pt-P bonds can then be rationalized on the 

basis of an increasing competition between the L and PEt3 ligands 

for the metal atom &-electrons. A necessary assumption here 

is that the PEt3 ligand is a z-acid, albeit a weak one. The 

Pt-Cl(s to L) bond lengths may also be directly affected by 

the ligands L, increased Pt*L backdonation leading to enhanced 

electrostatic attraction between platinum and the chloride 

ligand, Alternatively, it may be considered that the ligand L 

influences the e-Pt-Cl bond only indirectly, by modifying 

the trans-influence of the phosphine. 

In conclusion we note that the Pt-P bond is more sensitive 

to the nature of the cis-ligands than the Pt-Cl bond. It 

then follows that platinum-phosphorus bond lengths,- coupling 

constants or stretching frequencies will-provide a valid 

measure of trans-influence of ligandqonly-if in the complexes ~'- 
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