Journal of Organometallic Chemistry, 113 (1976) 361-375 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

MALEINSÄURE- UND FUMARSÄUREESTER ALS LIGANDEN IN METALLCARBONYL-KOMPLEXEN

I. MEHRKERNIGE MOLYBDÄNTRICARBONYL-KOMPLEXE MIT π -KOORDINIERTEN MALEINSÄURE- UND FUMARSÄUREESTERN

HARTWIG SCHAPER und HELMUT BEHRENS *

Institut für Anorganische Chemie II der Universität Erlangen-Nürnberg (Deutschland) (Eingegangen den 15. Januar 1976)

Summary

Reactions of cycloheptatrienemolybdenum tricarbonyl, $C_7H_8Mo(CO)_3$, with a number of maleic acid or fumaric acid esters (L) at $60-80^{\circ}C$ do not give the expected mononuclear tricarbonyl derivatives $Mo(CO)_3L_3$ but yield binuclear CO-bridged complexes in which the ester molecules are π -coordinated across the C=C double bond:

$$2 C_7 H_8 Mo(CO)_3 + 4 L \xrightarrow{60-80^{\circ} C} [Mo(CO)_3 L_2]_2 + 2 C_7 H_8$$

At 100° C a polymeric complex with the composition $[Mo(CO)_3(DMFU)_2]_x$, which is also CO-bridged, is obtained with dimethyl fumarate (DMFU). This compound exists in a temperature-dependent equilibrium with the binuclear isomer:

[Mo(CO)₃(DMFU)₂]₂
$$\frac{100^{3} \text{C. cy clohexane}}{20^{3} \text{C. benzene}} \frac{2}{x} [\text{Mo(CO)}_{3}(\text{DMFU})_{2}]_{x}$$
(yellow) (red)

The structures have been confirmed on the basis of molecular weight determinations, IR, Raman, ¹H NMR, ¹³C NMR, and UV spectra. The carbonyl stretching force constants for the binuclear complexes have been calculated using the Cotton—Kraihanzel method and the CO—Mo—CO angles have been estimated.

Zusammenfassung

Bei der Umsetzung von Cycloheptatrienmolybdäntricarbonyl, C₇H₈Mo(CO)₃, mit verschiedenen Maleinsäure- und Fumarsäureestern (L) bei 60—80°C entstehen nicht die erwarteten einkernigen Tricarbonylderivate Mo(CO)₃L₃, sondern zweikernige CO-verbrückte Komplexe, in denen die Estermoleküle über die C=C-Doppelbindung π-koordiniert sind:

$$2 C_7 H_8 Mo(CO)_3 + 4 L \xrightarrow{60-80^{\circ}C} [Mo(CO)_3 L_2]_2 + 2 C_7 H_8$$

Bei 100°C erhält man im Falle des Fumarsäuredimethylesters (DMFU) einen polymeren, ebenfalls CO-verbrückten Komplex der Zusammensetzung [Mo-(CO)₃(DMFU)₂]_x, der mit dem zweikernigen Isomeren in einem temperaturabhängigen Gleichgewicht steht:

$$[Mo(CO)_3(DMFU)_2]_2 = \frac{100^{\circ}C, Cyclohexan}{20^{\circ}C, Benzol} = \frac{2}{x} [Mo(CO)_3(DMFU)_2]_x$$
(gelb) (rot)

Die Strukturen werden durch Molekulargewichtsbestimmungen, IR-, Raman-, ¹H-NMR-, ¹³C-NMR- und UV-Spektren bestätigt. Für die zweikernigen Komplexe wurden die CO-Valenzschwingungskraftkonstanten nach Cotton und Kraihanzel berechnet und die CO-Mo-CO-Winkel abgeschätzt.

Einleitung

Unter den Übergangsmetallkomplexen mit π -gebundenen Olefinen [1] zeichnen sich die Derivate der ungesättigten Dicarbonsäuren Malein- und Fumarsäure, insbesondere die Maleinsäure- bzw. Fumarsäureester und das Maleinsäureanhydrid, durch hohe Akzeptorstärke aus (vgl. [2–16]). Während die Komplexe des Maleinsäureanhydrids [2–11] oft wenig löslich sind, lassen Maleinsäure- und Fumarsäuredialkylester [8–16], die als konjugierte 6π -Elektronensysteme anzusehen sind, wegen ihrer Alkylgruppen bei den gebildeten Komplexen gute Löslichkeit in unpolaren Solvenzien erwarten.

In der vorliegenden Arbeit werden Maleinsäure- und Fumarsäuredialkylester auf ihre Eignung als π -gebundene Liganden in Molybdän(0)tricarbonylkomplexen untersucht. $C_7H_8Mo(CO)_3$ schien als Ausgangsverbindung sehr geeignet, da die leichte Substituierbarkeit des Cycloheptatriens durch zahlreiche Beispiele belegt ist.

I. Neue zweikernige Molybdäntricarbonylkomplexe mit π -koordinierten Maleinsäure- und Fumarsäureestern

(1) Darstellung und Eigenschaften

Cycloheptatrienmolybdäntricarbonyl reagiert mit Maleinsäure- und Fumarsäuredialkylestern in unpolaren Lösungsmitteln unter Eliminierung des Cycloolefins zu gelben, diamagnetischen Komplexen der allgemeinen Zusammensetzung [Mo(CO)₃L₂]₂ (Gl. 1).

$$C_7H_8Mo(CO)_3 + 2 L \xrightarrow{60-80^{\circ}C} [Mo(CO)_3L_2]_2 + C_7H_8$$
 (1)

(L = Maleinsäuredimethylester (DMMA), Maleinsäurediäthylester (DEMA), Maleinsäuredi-n-butylester (DBMA), Fumarsäuredimethylester (DMFU), Fumarsäurediäthylester (DEFU), Fumarsäuredi-n-butylester (DBFU))

Kryoskopische Molekulargewichtsbestimmungen in Benzol ergeben Werte, die eindeutig auf eine dimere Struktur hinweisen. Ferner zeigen die Infrarot- und Ramanspektren das Vorliegen von CO-Brücken an.

Nach den von Bock und tom Dieck [17] aufgefundenen Phosphoriminkomplexen [(Ph₃P=NH)₂Mo(CO)₃]₂ sowie Verbindungen des gleichen Typs mit den N-Heterocyclen 2,2'-Bipyridin (Bipy) bzw. 1,10-Phenanthrolin (Phen) [Mo-(CO)₃Q]₂ (Q = Bipy, Phen), über deren Synthese Behrens, Lindner und Lehnert [18.19] im Jahre 1970 berichteten, sind die jetzt dargestellten Carbonylkomplexe mit Maleinsäure- bzw. Fumarsäureestern weitere Beispiele für CO-verbrückte, zweikernige Typen mit einem Metall der VI. Nebengruppe.

Im Gegensatz zu den violetten, in allen unpolaren Solventien unlöslichen Verbindungen [Mo(CO)₃Bipy]₂ bzw. [Mo(CO)₃Phen]₂ sind die neu dargestellten Komplexe leicht löslich in Benzol, die Dibutylesterderivate sogar in Petroläther.

Während sich die Verbindungen mit den N-Heterocyclen Bipy und Phen mit einem einzähnigen Donorliganden L' (L'= CH₃OH, CH₃CN, THF, etc.) bzw. einzähnig fungierenden Anionen X⁻ (X = Cl, Br, J, CN, NCS, SH) gemäss Gl. 2 und 3

$$[Mo(CO)_3Q]_2 + 2 L' - 2 Mo(CO)_3QL'$$
 (2)

$$[Mo(CO)_3Q]_2 + 2 X^2 \rightarrow 2[Mo(CO)_3QX]^2$$
 (3)

umsetzen [18–21], werden die entsprechenden Komplexe mit Maleinsäure-bzw. Fumarsäureestern in den genannten Lösungsmitteln zersetzt.

Versuche, die Verbindungen $[Mo(CO)_3L_2]_2$ mit überschüssigem Ester zu den einkernigen Komplexen $Mo(CO)_3L_3$ umzusetzen, scheiterten; die Dimeren $[Mo(CO)_3L_2]_2$ lassen sich unverändert aus einer Lösung in reinem Ester wieder isolieren. Offenbar sind hierfür sterische Gründe ausschlaggebend.

(2) Auswertung der IR- und Ramanspektren

(2.1) Allgemeine Diskussion

Die IR-Spektren der als Festkörper bzw. in Lösung vermessenen zweikernigen Komplexe $[Mo(CO)_3L_2]_2$ (L = DMMA, DEMA, DBMA, DMFU, DEFU, DBFU) weisen im Bereich der Valenzschwingungen endständiger CO-Gruppen zwei starke, scharfe Banden auf (Tab. 1 und Fig. 1). An der gleichen Stelle wie im IR-Spektrum treten im Raman-Spektrum ebenfalls zwei Banden auf, die ν (CO)-Schwingungen zugeordnet werden müssen. (Wegen der grossen Empfindlichkeit der zweikernigen Komplexe gegen Laserlichtbelastung konnten keine Ramanspektren von Lösungen erhalten werden.) Im Bereich von 1750 bis 1550 cm⁻¹ erscheinen im IR-Spektrum drei bis vier, im Ramanspektrum vier Banden. Ein Vergleich mit den Spektren der einkernigen Komplexe $Mo(CO)_2QL_2$ (Q = Bipy, Phen) [22] zeigt, dass die starke IR-Bande bei ca. 1715 cm⁻¹ den Carbonylschwingungen der Ester zugeordnet werden muss; sie ist gegenüber den freien Estern um etwa 15–20 cm⁻¹ langwellig verschoben. Aus den Ramanspektren hebt sich bei etwa 1615–1610 cm⁻¹ eine starke Bande hervor; sie dürfte den ν (CC)-Schwingungen der Ester zuzuordnen sein und tritt ebenfalls um 30 bis 40

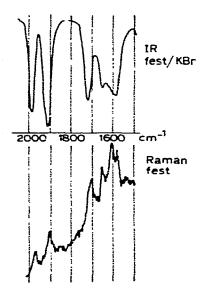


Fig. 1. IR- und Ramanspektrum von [Mo(CO)3(DMMA)2]2 im Bereich von 2000 bis 1500 cm⁻¹.

Wellenzahlen längerwellig verschoben auf. Dieses Ergebnis spricht ebenso wie die 1 H-NMR-Spektren für eine π -Koordination der Ester über die C=C-Bindung an das Zentralatom. Weiterhin treten in den IR- und Ramanspektren zwei Banden bei ca. 1650 und 1585 cm $^{-1}$ auf, die schliesslich den CO-Valenzschwingungen zweier nichtäquivalenter Brücken-Carbonylfunktionen zukommen. Daneben zeigen die IR-Spektren die übrigen bekannten Schwingungen der Maleinsäurebzw. Fumarsäureester; sie unterscheiden sich nur wenig von den Spektren der freien Ester.

(2.2) Strukturermittlung

Für die Verknüpfung der beiden $[Mo(CO)_3L_2]$ -Koordinationspolyeder kommen prinzipiell alle Möglichkeiten in Betracht, bei denen mindestens ein Symmetrieelement die endständigen CO-Liganden ineinander überführt (Fig. 2).

Die Zahl der IR- und Raman-aktiven CO-Valenz-Schwingungen (Tab. 2) ist unter der Voraussetzung angegeben, dass zwischen beiden $[Mo(CO)_2L_2]$ -Gruppen merkliche elektronische Kopplung über die CO-Brücken erfolgt. Wie jedoch die Kraftkonstantenberechnungen zeigen werden, ist die CO(Mo(1))—CO(Mo(2))-Wechselwirkung tatsächlich vernachlässigbar gering. Deswegen treten IR- und Raman-aktive Schwingungen in den Strukturen (1)—(3) jeweils an der gleichen Stelle auf, bzw. die vier Infrarotabsorptionen, die für die Strukturen (4)—(6) zu erwarten wären, fallen zu zwei Banden zusammen.

Da im IR- und im Ramanspektrum zwei Banden beobachtet werden, die den CO-Valenzschwingungen der Brücken-CO entsprechen, kommen nur Strukturen in Frage, in denen die Brücken-Carbonylfunktionen nicht äquivalent sind (Wellenzahldifferenz 60 cm⁻¹); dies ist bei (4) und (6) der Fall. Von diesen erscheint (6) als die wahrscheinlichste, da die Estermoleküle in axialen Positionen transständig angeordnet sind, was angesichts des Raumbedarfs der Ester wesentlich

TABELLE 1

IR- UND RAMANSPEKTREN VON [Mo(CO)₃L₂]₂ IM BEREICH VON 2000 BIS 1500 cm⁻¹ s = schwach; m = mittel; st = stark; sst = sehr stark; (Sch) = Schulter.

L	IR	IR	Raman	
_	(Lsg. Benzol)	(fest/KBr)	(fest)	
	(rel. Int.)			
DMMA	1988.1 (0.71) ^a	1985 sst	1981 m	
	1918.8 (1.00) ^a	1911 sst	1911 m	
	1718 sst	1715 st	1714 st	
	1651 sst	1645 st	1651 m	
	1618 (Sch)	1600 (Sch)	1613 sst -	
	1583 sst	1584 st	1580 st	
DEMA	1983.6 (0.77) ^a	1982 sst		
	1914.8 (1.00) ^a	1908 sst		
	1715 sst	1715 sst		
	1650 st	1650 sst		
	1613 st	1610 sst		
	1576 st	1575 sst		
DBMA	1984.6 (0.65) ^a	1984 sst		
	1912,4 (1.00) ³	1911 sst		
	1719 st ^b	1720 st		
	1650 m ^þ	1651 st		
	1607 st ^b	1607 st		
	1569 st b	1572 st		
DMFU	1987.7 (0.82) ^a	1987 sst	1981 s	
	1918.8 (1.00) ^a	1913 sst	1911 s	
	1718 sst	1720 sst	1714 s	
	1655 sst	1652 sst		
	1598 (Sch)	1600 (Sch)	1608 m	
	1583 sst	1584 sst	1581 m	
DEFU	1984.0 (0.70) ^a	1981 sst	1984 s	
	1915.6 (1.00) ^a	1908 sst		
	1719 sst	1715 st	1714 s	
	1655 st	1650 st		
	1618 st	1611 st	1612 st	
	1583 st	1575 st	1578 m	
DBFU	1985.3 (0.61) ^a	1985 sst	1981 s	
	1913.1 (1.00) ^a	1913 sst	1911 m	
	1718 m ^b	1720 st	1716 s	
	1650 s-m ^b	1650 m-st	1651 s	
	1608 st ^b	1608 st	1612 st	
	1568 st ^b	1570 st	1573 m	

 $[^]a$ Bei verschiedenen Konzentrationen in Xylol gemessen (gegen $\mathrm{H}_2\mathrm{O} ext{-}\mathrm{Dampf}$ geeicht) und auf unendliche Verdünnung extrapoliert. b in n-Hexan.

günstiger als eine cis-Anordnung sein dürfte und Struktur (5) ebenfalls unwahrscheinlich macht.

(2.3) Kraftkonstantenberechnung für die terminalen CO-Gruppen nach Cotton und Kraihanzel [23]

Für die Konstruktion der Kraftkonstantenmatrix F werden zwei Bindungskraftkonstanten k_1 und k_2 der axialen bzw. der äquatorialen CO-Gruppen angenommen, ferner eine "cis"-Wechselwirkungskraftkonstante k_c und eine "trans"-

Fig. 2. Strukturmöglichkeiten für die Verbindungen [Mo(CO)3L2]2.

Wechselwirkungskraftkonstante k_t , die pauschal die elektronische Kopplung zwischen beiden [Mo(CO)₂L₂]-Hälften beschreiben soll (Fig. 3).

$$F = \begin{pmatrix} k_1 & k_c & k_t & k_t \\ k_c & k_2 & k_t & k_t \\ k_t & k_t & k_1 & k_c \\ k_t & k_t & k_c & k_2 \end{pmatrix}$$
(4)

TABELLE 2 IR- UND RAMAN-AKTIVE CO-VALENZSCHWINGUNGEN FÜR DIE STRUKTURMÖGLICHKEITEN (1)—(6)

Struktur	Punkt- gruppe	v(C≡O)(endst.)		r(C=O)(Brücken)	
		IR	Raman	IR	Raman
(1)	D _{2h}	B _{2u} + B _{3u}	Ag + B1g	Blu	Ag
(2)	D_{2h}	$B_{1u} + R_{3u}$	$A_g + B_{2g}$	B_{1u}	$A_{\mathbf{g}}$
(3)	$c_{\rm i}$	$2 A_{\rm u}$	2 A.	$A_{\mathbf{u}}$	A_{g}
(4)	$C_{\mathbf{s}}$	2 A + 2 A"	2A + 2 A"	2 A	2 Å'
(5)	c_2	2A + 2B	2A + 2B	A + B	A + B
(6)	c_2	2A + 2B	2A + 2B	2 A	2 A

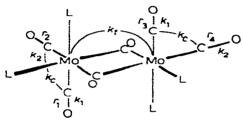


Fig. 3. Kraftkonstanten in den Komplexes [Mo(CO)₃L₂]₂ entsprechend Fig. 2, Struktur (6),

Mit Hilfe der aus den Symmetriekoordinaten

$$S_{1} = \sqrt{\frac{1}{2}}(\Delta r_{1} + \Delta r_{3}) \quad (A)$$

$$S_{2} = \sqrt{\frac{1}{2}}(\Delta r_{2} + \Delta r_{4}) \quad (A)$$

$$S_{3} = \sqrt{\frac{1}{2}}(\Delta r_{1} - \Delta r_{3}) \quad (B)$$

$$S_{4} = \sqrt{\frac{1}{2}}(\Delta r_{2} - \Delta r_{4}) \quad (B)$$
(5)

gebildeten U-Matrix und deren Transponierten \widetilde{U} wird die F-Matrix gemäss $F' = U \cdot F \cdot \widetilde{U}$ diagonalisiert zu:

$$F' = \begin{vmatrix} k_1 + k_t & k_c + k_t & 0 & 0 \\ k_c + k_t & k_2 + k_t & 0 & 0 \\ & & k_1 - k_t & k_c - k_t \\ & & k_c - k_t & k_2 - k_t \end{vmatrix}$$
 (6)

Die Lösungen erhält man mit Hilfe der durch Bor [24] eingeführten " $\cos \beta$ -Methode". Sie lauten:

$$k_1 = \frac{1}{4} \left[y_1 (1 + \cos \beta_1) + y_2 (1 - \cos \beta_1) + y_3 (1 + \cos \beta_2) + y_4 (1 - \cos \beta_2) \right]$$
 (7)

$$k_2 = \frac{1}{4} \left[y_1 (1 - \cos \beta_1) + y_2 (1 + \cos \beta_1) + y_3 (1 - \cos \beta_2) + y_4 (1 + \cos \beta_2) \right]$$
 (8)

$$k_c = \frac{1}{4} \left[(y_1 - y_2) \sin \beta_1 + (y_3 - y_4) \sin \beta_2 \right]$$
 (9)

$$k_t = \frac{1}{4} \left(y_1 + y_2 - y_3 - y_4 \right) \tag{10}$$

$$y = \frac{4 \pi^2 c^2 \nu^2(CO)}{N_L \cdot \mu(CO)} = 40.407 \times 10^{-5} \times \nu^2(CO) \text{ N/m}$$

Aus der im Rahmen der Messgenauigkeit gleichen Lage der Ramanfrequenzen y_1 und y_2 und der IR-Banden y_3 und y_4 folgt sofort:

$$k_t \approx 0 \tag{11}$$

und:

$$\beta_1 = \beta_2 = \beta \tag{12}$$

bzw.:

$$k_1 = \frac{1}{2} \left[y_3 (1 + \cos \beta) + y_4 (1 - \cos \beta) \right] \tag{13}$$

$$k_2 = \frac{1}{2} \left[y_3 (1 - \cos \beta) + y_4 (1 + \cos \beta) \right] \tag{14}$$

$$k_{c} = \frac{1}{2} (y_{3} - y_{4}) \sin \beta \tag{15}$$

Für die Kraftkonstantenberechnungen lassen sich die Valenzschwingungen der

terminalen CO-Gruppen in den zweikernigen Komplexen [Mo(CO)₃L₂]₂, wie aufgrund der Übereinstimmung der IR- und der Ramanfrequenzen zu erwarten, also nach der Methode der lokalen Symmetrie wie die Schwingungen von Dicarbonylverbindungen mit inäquivalenten CO-Liganden behandeln.

Zwischen beiden [Mo(CO)₂L₂]-Molekülhälften besteht nach Aussage der Cotton-Kraihanzel-Methode keine Kopplung über die brückenbildenden CO-Gruppen.

(2.4) Valenzschwingungsnormalkoordinaten der terminalen CO-Gruppen, relative Intensität ihrer IR-Absorptionsbanden und eingeschlossene Winkel

Kopplung zwischen zwei Normalschwingungen gleicher Symmetrie kann nach Bor [24] durch die folgenden Linearkombinationen der Symmetriekoordinaten beschrieben werden (β behält die vorher definierte Bedeutung bei):

$$Q_1 = S_1 - \cos \beta/2 + S_2 - \sin \beta/2 \tag{16}$$

$$Q_7 = -S_1 \cdot \sin \beta/2 + S_2 \cdot \cos \beta/2 \tag{17}$$

Im Falle der zweikernigen Komplexe [$Mo(CO)_3L_2$]₂ mit C_2 -Symmetrie (Struktur(6)) sind beide A- und beide B-Valenzschwingungen der endständigen Carbonylgruppen IR-aktiv. Jeweils eine A- und eine B-Schwingung fallen zusammen. Infolge Kopplung ergibt sich das Intensitätsverhältnis beider Banden zu:

$$b = \left| \frac{I_1}{I_2} \right|^{1/2} = \frac{\frac{\partial p}{\partial S_1} \cdot \frac{\partial S_1}{\partial Q_1} + \frac{\partial p}{\partial S_2} \cdot \frac{\partial S_2}{\partial Q_1} + \frac{\partial p}{\partial S_3} \cdot \frac{\partial S_3}{\partial Q_3} + \frac{\partial p}{\partial S_4} \cdot \frac{\partial S_4}{\partial Q_3}}{\frac{\partial p}{\partial S_1} \cdot \frac{\partial S_1}{\partial Q_2} + \frac{\partial p}{\partial S_2} \cdot \frac{\partial S_2}{\partial Q_2} + \frac{\partial p}{\partial S_3} \cdot \frac{\partial S_3}{\partial Q_4} + \frac{\partial p}{\partial S_4} \cdot \frac{\partial S_4}{\partial Q_4}}$$
(18)

 Q_1 und Q_2 gehen aus den Symmetriekoordinaten S_1 und S_2 hervor, Q_3 und Q_4 aus S_3 und S_4 . Die Kopplungskoeffizienten lauten (vgl. Gl. 12).

$$\frac{\partial S_1}{\partial Q_1} = \frac{\partial S_2}{\partial Q_2} = \frac{\partial S_3}{\partial Q_3} = \frac{\partial S_4}{\partial Q_4} = \cos \beta/2$$

$$\frac{\partial S_2}{\partial Q_1} = \frac{\partial S_4}{\partial Q_3} = -\frac{\partial S_1}{\partial Q_2} = -\frac{\partial S_3}{\partial Q_4} = \sin \beta/2$$
(19)

Die Dipolmomentsgradienten ergeben sich aus der angenommenen Geometrie des Moleküls, wobei α der von zwei CO-Gruppen an einem Molybdänatom eingeschlossene Winkel ist (die Gradienten dp/dr(CO) = p' werden miteinander gleichgesetzt):

$$\frac{\partial p}{\partial S_1} = 0; \frac{\partial p}{\partial S_2} = \sqrt{2} p'$$

$$\frac{\partial p}{\partial S_3} = 2p'; \frac{\partial p}{\partial S_4} = (\sqrt{2} + 2\cos\alpha) \cdot p'$$
(20)

Daraus folgt:

$$b = \frac{[2 + (2\cos\beta/2 + 2\sin\beta/2 \times \cos\alpha)^2]^{1/2}}{[4\cos^2\beta/2 + (2\cos\beta/2 \times \cos\alpha - 2\sin\beta/2)^2]^{1/2}}$$
(21)

bzw.:

$$\cos \alpha \approx \frac{b^2 - 1 + \frac{1}{2}\cos \beta}{(b^2 + 1)\sin \beta} \tag{22}$$

(2.5) Ergebnisse und Diskussion

Die Wahl eines plausiblen Wertebereichs für die eingeführte Hilfsgrösse cos β wird durch die folgenden Argumente ermöglicht:

- (1) Unter der Voraussetzung, dass die Schwingungsamplituden von oszillierenden CO-Gruppen etwa gleich gross sind, gilt nach Bor [24]: $\cos \beta = (n_1 n_2)/(n_1 + n_2)$ (n_1 und n_2 sind die Anzahl der äquivalenten CO-Gruppen in einem Komplex). Im Falle der zweikernigen Komplexe [Mo(CO)₃L₂]₂ ergibt sich ($n_1 = 2$; $n_2 = 2$): $\cos \beta \approx 0$.
- (2) Die Annahme ist begründet, dass Maleinsäure- und Fumarsäureester stärkere π -Akzeptoren als CO sind [22], deshalb sollte $k_1 > k_2$ und $\cos \beta > 0$ gelten.
- (3) Setzt man voraus, dass k_2 weitgehend unbeeinflusst vom jeweiligen Ester bei allen sechs Komplexverbindungen etwa konstant bleiben sollte, so dürfte $\cos \beta$ im Falle der Komplexe mit den Methylestern etwa um 0.1 grösser als im Falle der Äthyl- und der Butylesterkomplexe gewählt werden.

Damit erscheinen die in Tab. 3 aufgeführten Ergebnisse hinreichend plausibel. Das geringfügige Absinken der mittleren CO-Valenzkraftkonstanten jeweils vom Methyl- zum Butylesterkomplex geschieht in der erwarteten Richtung, da die elektronenziehende Wirkung der Methylester als grösser angenommen werden kann als die der Äthyl- oder Butylester. In derselben Richtung, mit steigender Elektronendichte am Metall, sollte die Wechselwirkungskraftkonstante $k_{\rm c}$ steigen.

Das Ergebnis der Winkelberechnung scheint ebenfalls vernünftig: die von den terminalen CO-Gruppen eingeschlossenen Winkel zeigen die erwartete Aufweitung mit steigender Kettenlänge der Alkylgruppen und entsprechen quasi-oktaedrischen Winkeln.

Um der Edelgasregel zu genügen, sollten beide Mo-Zentralatome in den zweikernigen Komplexen [Mo(CO)₃L₂]₂ zusätzlich zu den CO-Brücken noch durch eine Mo-Mo-Doppelbindung verknüpft sein. Zwei Argumente sprechen jedoch dagegen:

- (1) Bei Vorliegen einer Mo-Mo-Doppelbindung sollte zwischen beiden Mole-külhälften eine merkliche Kopplung der CO-Valenzschwingungen stattfinden; beobachtet wurde jedoch eine Wechselwirkungskraftkonstante $k_r = 0$.
- (2) Die gemessenen CO-Brücken-Frequenzen liegen, verglichen mit ähnlichen Verbindungen sehr niedrig. Analog zur Winkelabhängigkeit der Carbonylfrequenzen in Ketonen sollte in den zweikernigen Komplexen [$Mo(CO)_3L_2$]₂ ein ver-

tabelle 3 ergebnisse der kraftkonstanten- und co-winkel-berechnung für [Mo(CO) $_3$ L $_2$] $_2$

L	cos β	k ₁ (N/m)	k ₂ (N/m)	k _c (N/m)	k _t	α (°)
DMMA	0.15 ± 0.05	1550 ± 4	1534 ± 4	54 ± 2	0	97 ± 4
DEMA	0.05 = 0.05	1539 ± 4	1533 : 4	54 ± 2	0	97 : 4
DBMA	0.05 ± 0.05	1538 ± 4	1532 ± 4	57 ± 2	0	99 : 4
DMFU	0.15 ± 0.05	1550 ± 4	1534 ± 4	54 ± 2	0	93 = 4
DEFU	0.05 ± 0.05	1540 ± 4	1534 = 4	54 ± 2	0	99 ± 4
DBFU	0.05 ± 0.05	1539 ± 4	1533 ± 4	57 ± 2	0	103 = 4

$$L_{2}(CO)_{2}MO \longrightarrow MO(CO)_{2}L_{2}$$

$$O = C \longrightarrow MO(CO)_{2}L_{2}$$

$$O = C \longrightarrow MO(CO)_{2}L_{2}$$

$$L_{2}(CO)_{2}MO \longrightarrow MO(CO)_{2}L_{2}$$

$$O = C \longrightarrow MO(CO)_{2}L_{2}$$

Fig. 4. Isocarbonyl-Verbrückung in den zweikernigen Komplexen [Mo(CO)3L2 l2.

hältnismässig grosser Mo—CO—Mo-Winkel, demzufolge auch ein grosser Mo—Mo-Abstand zu erwarten sein, der mit einer Mo—Mo-Doppelbindung unvereinbar ist [25].

Aus diesen Gründen scheint eine Isocarbonyl-Verbrückung im Sinne von Fig. 4 diskutabel.

Die Zahl der bislang dargestellten Isocarbonylkomplexe ist klein [26–28]; charakteristisch für diese Verbindungen ist die extrem niedrige ν (CO)-Frequenz der verbrückenden Isocarbonylliganden (etwa 1650 bis 1550 cm⁻¹). Die IR-Spektren der zweikernigen Komplexe [Mo(CO)₃L₂]₂ stehen damit in guter Übereinstimmung.

(3) Diskussion der ¹H- und ¹³C-NMR-Spektren

Die ¹H-NMR-Spektren der zweikernigen Komplexe $[Mo(CO)_3L_2]_2$ weisen im allgemeinen recht breite Signale auf. Dennoch lässt sich ihnen entnehmen, dass die Resonanzsignale der olefinischen Protonen in den koordinierten Maleinsäurebzw. Fumarsäureestern um ca. 3 ppm zu deutlich höherem Feld verschoben sind. Im Falle des $[Mo(CO)_3(DMMA)_2]_2$ (in C_6D_6) besteht das Protonen-Kernresonanzspektrum aus drei relativ scharfen Peaks: zwei schwächere (δ = 3.28; 3.38 ppm rel. TMS), die den Signalen der olefinischen Protonen zweier nichtäquivalenter Ester entsprechen dürften (Verschiebung von δ = 6.25 ppm im freien Ester) und ein stärkerer (δ = 3.15 ppm) als Resonanzsignal der Methylprotonen (bei δ = 3.65 im freien Liganden). Es ist verständlich, dass sich die Methylprotonen im Gegensatz zu den olefinischen wegen ihrer grösseren Emilia.

Die Hochfeldverschiebung der Signale der olefinischen Protonen bestätigt die Annahme einer π -Koordination der Ester über die C=C-Bindung an das zentrale Molybdänatom.

Im ¹³C-NMR-Spektrum des [Mo(CO)₃(DEFU)₂]₂ * (in C₆D₆) kann man neben den Signalen der Alkyl-C-Atome (CH₃: $\delta = -123$, -118, -113, -108 ppm; CH₂: $\delta = -74$, -68, -62 ppm rel. C₆D₆) und der Ester-Carbonylgruppen ($\delta = 35$

Für Aufnahme und Interpretation des ¹³C-NMR-Spektrums danken wir Herrn Dr. F. Dickert, Institut für Physikalische Chemie I der Universität Erlangen-Nürnberg.

ppm) drei Signale olefinischer C-Atome ($\delta = 1, 2, 8$ ppm) sowie vier schwache Peaks beobachten ($\delta = 44, 64, 75, 95$ ppm), die terminalen CO-Gruppen zukommen dürften. Da für die endständigen CO-Liganden nur zwei Signale zu erwarten sind (vgl. IR-Spektren), ist das Auftreten der anderen zwei Peaks eine weitere Bestätigung für die Nichtäquivalenz der Brücken-Carbonylfunktionen.

II. Ein neuer polymerer Molybdäntricarbonylkomplex mit π -koordiniertem Fumarsäuredimethylester

(1) Darstellung und Eigenschaften

Bei der Umsetzung von C₇H₈Mo(CO)₃ mit Fumarsäuredimethylester (DMFU) konnte eine interessante Isomerie beobachtet werden. Während sich bei 60—80°C der gelbe zweikernige, in Benzol leichtlösliche Komplex [Mo(CO)₃-(DMFU)₂]₂ bildet, entstehen bei 100°C, ebenfalls in Cyclohexan und unter sonst gleichen Bedingungen, rote, in Benzol schwerlösliche Kristalle, die aus polymeren Ketten aufgebaut sein dürften:

$$\cdots$$
 -Mo(CO)₂(DMFU)₂-CO-Mo(CO)₂(DMFU)₂-CO- \cdots

Die rote und die gelbe Verbindung haben die gleiche analytische Zusammensetzung und sind beide diamagnetisch.

Die IR- und Ramanspektren der beiden Isomeren sind einander sehr ähnlich, sie unterscheiden sich lediglich durch eine geringfügige Verschiebung der Banden im Bereich von 1750 bis 1580 cm⁻¹. Aufgrund der Übereinstimmung mit den Spektren der zweikernigen Isomeren liegen im polymeren Komplex möglicherweise ebenfalls Isocarbonylbrücken vor.

Bemerkenswerterweise stehen die beiden Isomeren in einem temperaturabhängigen Gleichgewicht miteinander:

$$[Mo(CO)_3(DMFU)_2]_2 = \frac{100^{\circ}C_{\circ}C_{\circ}C_{\circ}C_{\circ}C_{\circ}C_{\circ}}{20^{\circ}C_{\circ}Benzol} = \frac{2}{x} [Mo(CO)_3(DMFU)_2]_x$$
(gelb) (rot)

Um weiteren Aufschluss über die Struktur des polymeren roten Komplexes zu erhalten, wurden Weissenberg-Drehkristallaufnahmen hergestellt *. Ihre Auswertung ergab folgende Eigenschaften der Elementarzelle: Kristallsystem: monoklin; mögliche Raumgruppen: $Cc = C_s^4$; $C2/c = C_{2h}^6$; Gitterkonstanten: $a = 2730 \pm 15$ pm, $b = 822 \pm 2$ pm, $c = 1665 \pm 10$ pm; $\beta = 105 \pm 1^\circ$; $V = 3532.8 \times 10^6$ pm³; Dichte: $\rho = 1.62$ g/cm³ (20°C).

Damit befinden sich 8 [Mo(CO)₂(DMFU)₂—CO]-Einheiten in der Elementarzelle. Da die Zähligkeit der allgemeinen Punktlage 4 bzw. 8 beträge und eine Verknüpfung zu Zweiereinheiten aufgrund der Schwerlöslichkeit ausgeschlossen werden kann, erscheint eine Kettenstruktur wahrscheinlich.

Die UV-Spektren von [Mo(CO)₃(DMFU)₂]₂ und [Mo(CO)₃(DMFU)₂]₃ (vgl. Fig. 5) lassen die erwartete bathochrome Verschiebung der Absorption im sicht-

^{*} Für Erstellung und Interpretation der Weissenberg-Aufnahmen danken wir Herrn Dr. D. Messer, Institut für Anorganische Chemie I der Universität Erlangen-Nürnberg.

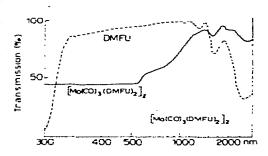


Fig. 5. UV-Spektren von DMFU, {Mo(CO)3(DMFU)2 l2 und {Mo(CO)3(DMFU)2 lx (Reflexion).

baren Bereich des Spektrums beim Übergang von der zweikernigen zur polymeren Verbindung erkennen.

Polymere Carbonylkomplexe dieser Art mit olefinischen Liganden wurden bislang noch nicht dargestellt. Dagegen synthetisierten Tate et al. [29] einen Molybdäncarbonyl-acrolein-Komplex der Zusammensetzung $Mo(CO)_2(Acrolein)_2$, in dem der ungesättigte Aldehyd als zweizähniger Ligand fungiert (π -Koordination über die C=C- und die C=O-Doppelbindung). Beim Stehenlassen lagert sich diese Verbindung zu einem polymeren Komplex um, in dem sich das Acrolein offenbar in Brückenposition zwischen den Mo-Atomen befindet.

CO-freie Komplexe der Zusammensetzung Ni(L)Br (L = DMMA, DMFU), die ebenfalls polymeren Charakter haben, wurden 1966/1967 beschrieben [30,31]. In diesen Verbindungen liegen die koordinierten Ester als Brücken zwischen den Metallen vor.

(2) Diskussion der Infrarot- und Ramanspektren

Die IR- und Ramanspektren von [Mo(CO)₃(DMFU)₂]_x (vgl. Tab. 4, Fig. 7) sind denen des zweikernigen Komplexes sehr ähnlich. Man erkennt wiederum zwei endständige Carbonylgruppen in cis-Anordnung; im Doppelbindungsbereich enthält das IR-Spektrum drei separate starke Banden, das Ramanspektrum vier, von denen diejenige bei 1618 cm⁻¹ C=C-Valenzschwingungen der Ester zugeordnet werden soll. Im Vergleich mit den Spekten des zweikernigen Isomeren fallen zahlreiche Schultern, insbesondere auch an beiden Absorptionsbanden der endständigen Carbonylgruppen, auf. Berücksichtigt man jedoch die polymere Struktur der Verbindung, so lassen sich diese durchaus als Folge von Symmetrieerniedrigungen im Festkörper erklären.

Eine Verknüpfung der Koordinationspolyeder im Sinne von Fig. 6 wäre mit den Schwingungsspektren in Einklang zu bringen.

III. Beschreibung der Versuche

Die beschriebenen Umsetzungen wurden unter N_2 -Atmosphäre mit N_2 -gesättigten und absolutierten Lösungsmitteln durchgeführt. Die Molekulargewichtsbestimmungen erfolgten kryoskopisch in Benzol.

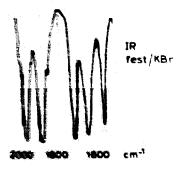
Für die Aufnahme der Spektren wurden folgende Geräte verwendet: IR: Beckman, Modeil IR 12; Raman: Cary, Modell 82; UV: Beckman. Modell DK-2 A;

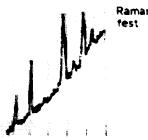
THE CARD INTEREST				
IR (fest/KBr)	Raman (fest)	Zuordnung		
1983 sst 1947 Sch	1976 m	ν(C=O)		
1893 sst 1852 (Sch)	1893 st	r(C≅O)		
1715 sst	1710 sst	ν(C=O)		
1647 sst	1659 s 1618 st	ν(C=O) ν(C=C)		
1560 sst	1558 m	r(C=O)		

TABELLE 4 IR- UND RAMAN-SPEKTRUM VON [Mo(CO)3(DMFU)2]_x IM BEREICH VON 2000 BIS 1500 cm⁻¹

¹H-NMR: Jeol, Modell JNM-C-60 HL; und ¹³C-NMR: Jeol, Modell JNMPS-100 mit Nicolet-Rechner, Typ 1080.

(1) Darstellung von $[Mo(CO)_3L_2]_2$ (L = DMMA, DEMA, DBMA, DMFU, DEFU, DBFU)


In dickwandigen Einschlussrohren von ca. 50 ml Inhalt werden 1 mMol C-H₅Mo(CO), und 2 mMol der entsprechenden Ester in 20 ml Cyclohexan 24 Std. auf 80°C erhitzt. Die Reaktionsprodukte fallen analysenrein als gelbe Feststoffe an.


Im Falle der Dibutylesterderivative wird Petroläther (20 ml) gewählt; die Isolierung der Komplexe erfolgt hierbei durch Fällen mit CH₅OH. Ausbeuten: 50-60%. Die analytischen Daten der dargestellten Komplexe sind aus Tab. 5.ersichtlich.

(2) Darstellung von $[Mo(CO)_3(DMFU)_2]_x$

- 1. Methode. 1 mMol C₇H₈Mo(CO)₃ und 2 mMol Fumarsäuredimethylester werden mit 20 ml Cyclohexan im Einschlussrohr 24 Std. auf 100°C erhitzt. Nach dem Waschen mit Benzol erhält man die roten, analysenreinen Kristalle von [Mo(CO)₃(DMFU)₂]_x. Ausbeute ca. 50%.
- 2. Methode. Den gleichen Komplex erhält man auch, wenn man [Mo(CO)₃-(DMFU)₂]₂ in Cyclohexan 24 Std. im Einschlussrohr auf 100°C erhitzt. Analysenergebnisse: Gef.: C, 38.65; H, 3.88; Mo, 20.25. Ber.: C, 38.46; H, 3.42; Mo, 20.51%.

Fig. 6. Strukturvorschlag für [Mo(CO)3(DMFU)2]x

🌬 🔭 IR- und Ramanspektrum von [Mo(CO)3(DMFU)2]g im Bereich von 2000 his 1500 cm 🤚

TABELLE 5
ANALYSEN UND MOLEKULARGEWICHTE DER KOMPLENE [Mo(CO)1/L;]2

to other dame	Analysen (Med then			
	С Н		Мσ	துகைத் த⊺⊬ுக் உ	
g MacConcoDMMA): 1:	38.19	3.57	20 10	etm)	
* EMPLY + CoH4O4)	(38.46)	(3.42)	(20.51)	greiter ficht :	
SW-COLCDEMAL 12	43.79	4.94	18.50	1 1 (16)	
EDEMA = C8H12O4)	(43.51)	(4.58)	(18.32)	(104% nm:	
(35x(CO))(DBMA)2]2	51.27	6.72	14,80	1500	
*DSMA = C12H20O4	(50.94)	(6.29)	(15.09)	(1273.12)	
\$36(CO)3(DMFU)2 12	38.32	3,66	20.10	960	
(DMFU = CoHBO4)	(38.46)	(3.42)	(20,51)	147 ¥£61	
(MotCO)1(DEFU)2 12	43.49	4.91	17.92	1050	
(DEFU = CaH12O4)	(43.51)	(4.58)	(18.32)	1104年的原。	
(MorCO) 1(DBFU) 2 12	51.36	6.71	14.58	1.300	
(DEFU = C12H20O4)	(50.94)	(6.29)	(15.09)	11273426	

Dank

Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie e.V., Fonds der Chemie, sind wir für die grosszügige Unterstutzung unserer Arbeiten und Herrn Professor Dr. R.D. Fischer für wertvolle Diskussionen zu grossem Dank verpflichtet.

Literatur

- E.O. Fischer und H. Werner, Metal π-Complexes, Vol. I, Elsevier, Amsterdam, London, New York, 1966; Μ. Herberhold, Metal π-Complexes, Vol. II, Elsevier, Amsterdam, London, New York, 1972.
- 2 M. Herberhold und C.R. Jablonski, J. Organometal. Chem., 14 (1968) 457.
- 3 M. Herberhold und C.R. Jablonski, Inorg. Chim. Acta, 7 (1973) 241.
- 4 M. Herberhold und H. Alt. J. Organometal, Chem., 42 (1972) 407.
- 5 H.D. Murdoch, R. Henzi und F. Calderrazzo, J. Organometal, Chem., 7 (1967) 441.
- 6 M. Herberhold und C.R. Jablonski, Chem. Ber., 102 (1969) 767.
- 7 M. Herberhold und C.R. Jablonski, Chem. Ber., 102 (1969) 778.
- 8 G.O. Schenck, E.A. Koerner von Gustorf und M.-J. Jun, Tetrahedron Lett., (1962) 1059.
- 9 E.A. Koerner von Gustorf, H. Köller, M.-J. Jun und G.O. Schenck, Atomstrahlung, Med. Techn. (1964) 259.
- 10 E.A. Koerner von Gustorf, M.-J. Jun und G.O. Schenck, Z. Naturforsch. B, 18 (1963) 767.
- 11 E. Weiss, K. Stark, J.E. Lancaster und H.D. Murdoch, Helv. Chim. Acta, 46 (1963) 288.
- 12 G. Paiaro und R. Palumbo, Gazz, Chim. Ital., 97 (1967) 265.
- 13 H. Yamazaki und N. Hagihara, J. Organometal, Chem., 21 (1970) 431.
- 14 J.P. Collman und J.W. Kang, J. Amer. Chem. Soc., 88 (1966) 3459.
- 15 W.H. Baddley und M.S. Fraser, J. Amer. Chem. Soc., 91 (1969) 3661.
- 16 M.S. Fraser und W.H. Baddley, J. Organometal, Chem., 36 (1972) 377.
- 17 H. Bock und H. tom Dieck, Z. Naturforsch, B, 21 (1966) 739.
- 18 H. Behrens, E. Lindner und G. Lehnert, J. Organometal. Chem., 22 (1970) 439.
- 19 G. Lehnert, Dissertation Universität Erlangen-Nürnberg 1969.
- 20 H. Behrens, G. Lehnert und H. Sauerborn, Z. Anorg, Allg. Chem., 374 (1970) 310.
- 21 H. Behrens, E. Lindner und G. Lehnert, J. Organometal. Chem., 22 (1970) 665.
- 22 H. Schaper und H. Behrens, J. Organometal, Chem., 113 (1976) 377.
- 23 F.A. Cotton und C.S. Kraihanzel, J. Amer. Chem. Soc., 84 (1962) 4432.
- 24 G. Bor, Inorg. Chim. Acta, 1 (1967) 81.
- 25 L.J. Bellamy, Advances in Infrared Group Frequencies, Methuen, London, 1968.
- 26 D.F. Shriver, Chem. Brit., 8 (1972) 419 und die dort zit. Literatur.
- 27 A.E. Crease und P. Legzdins, Chem. Commum., (1972) 268.
- 28 A.E. Crease und P. Legzdins, J. Chem. Soc., Dalton, (1973) 1501.
- 29 D.P. Tate, A.A. Buss, J.M. Augl, B.L. Ross, J.G. Grasselli, W.M. Ritchey and F.J. Knoll, Inorg. Chem., 4 (1965) 1323.
- 30 M. Dubini und F. Montino, Chem. Commun., (1966) 749.
- 31 M. Dubini und F. Montino, Chim. Ind. (Milano), 49 (1967) 1283. Chem. Abstr., 68 (1968) 74736.