Journal of Organometallic Chemistry, 127 (1977) C65—C68
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

ACYLATION DES ENOLATES LITHIENS D'ESTERS OU DE CETONES AU MOYEN D'ANHYDRIDES MIXTES CARBOXYLIQUES ET CARBONIQUES: PREPARATION DE β -CETOESTERS ET DE β -DICETONES

RENE COUFFIGNAL et JEAN-LOUIS MOREAU

Université P. et M. Curie, Laboratoire de Synthèse Organométallique, bâtiment F, 4, Place Jussieu, 75230—Paris Cédex 05 (France)

(Reçu le 12 décembre 1976)

Summary

Lithium esters and ketoenolyllithium compounds react with mixed carboxylic and carbonic acid anhydrides to give, respectively, β -ketoesters and β -diketones in satisfactory yields.

La préparation de β -cétoesters (I) par réaction de Claisen entre deux esters différents conduit généralement à un mélange de produits [1]. Réalisée au moyen des chlorures d'acides, l'acylation des esters par catalyse basique fournit, parfois, non pas le β -cétoester attendu, mais l'ester d'énol correspondant ou/et le dérivé de diacylation [2, 3]. Ces problèmes semblent avoir été résolus en partie par l'emploi des énolates lithiens d'esters [3].

Néanmoins, l'obtention aisée de ces derniers d'une part [4], la synthèse facile des anhydrides mixtes carboxyliques et carboniques II d'autre part [5, 6], nous incitent à publier une nouvelle voie d'accès à ces composés:

$$R'COOH + ClCO_{2}Et \xrightarrow{Et_{3}N} R'C - O - COEt$$

$$O \qquad O$$

$$(II)$$

$$H - C - CO_{2}R + LiN \xrightarrow{i-Pr} \xrightarrow{Et_{2}O, THF} LiCCO_{2}R + HN \xrightarrow{i-Pr}$$

$$LiCCO_{2}R + R'C - O - COEt \xrightarrow{R'C} R'C - CO_{2}R$$

$$O \qquad O \qquad O$$

$$(II) \qquad (I)$$

$$(R = Et ou t-Bu)$$

Agents d'acylation doux employés en synthèse peptidique, les anhydrides mixtes ont déjà été utilisés avec succès par Bram et Vilkas pour acyler l'énolate magnésien du malonate acide d'éthyle [6].

Condensés avec les énolates lithiens d'esters, ces anhydrides conduisent à de meilleurs rendements en β -cétoesters que les chlorures d'acides (Tableau 1).

TABLEAU 1

	R	R'	R"	R'"	Rdt. (%)		Eb. (°C/mmHg)	
_						litt.		
Ш	Et	n-C ₃ H ₇	Н	H	67	56 [3]	80-86/14	
IV	Et	iso-C ₃ H ₂	H	H	70	66 [3]	7 9-8 3/15	
v	Et	cyclo-C, H,,	C ₂ H ₅	H	40		80-85/0.04	
VI	Et	C ₂ H ₅	CH,	CH,	76		80-83/11	
VII	Et	сн,-сн=сн	H	H	67		88-94/12	
VIII	Et	$H_2C=C(CH_3)$	H	H	52		90-94/17	
IX	t-Bu	n-C,H,	H	H	64		90-95/13	

Enfin, appliquée aux anhydrides d'acides à chaîne carbonée éthylénique, notre méthode conduit normalement aux β -cétoesters γ , δ insaturés, très utiles dans certaines réactions de cyclisation [7]. De plus, elle nous paraît plus rapide et plus facile à mettre en oeuvre que celles déjà existantes [6, 7].

De façon similaire, nous avons envisagé la synthèse de β -dicétones. Bien que ce sujet ait déjà fait l'objet de nombreux travaux [8], l'intérêt n'en a guère diminué. C'est ainsi, par exemple, que Seebach prépare quelques β -dicétones en condensant des chlorures d'acides avec un énolate lithien de cétone [9]; avec un énolate magnésien, Näf et Decorzant obtiennent des mélanges de β -dicétones et d'esters d'énols correspondants [10].

Quant à nous, en opposant les anhydrides mixtes II aux enolates lithies de cétones, qu'il est aisé de préparer d'une façon régiosélective [11 à 13], nous isolons les β-dicétones X attendues.

Nous avons rassemblé dans le Tableau 2 nos premiers résultats.

Nous remarquons que la condensation d'un anhydride mixte à chaîne carbonée éthylénique fournit la dicétone correspondante XVI avec un faible rendement (35%), ce qui s'explique en partie par une polymérisation du produit à la distillation.

TABLEAU 2

R" | RENDEMENTS ET POINTS D'EBULLITION DE R'—C—C—R || | | | ||
$$\circ$$
 O R "O

	R'	R"	R'"	R	Rdt. (%)	Eb. (°C/mmHg)				
XI	C,H,	H	н	CoH,	49	93-95/0.2				
XII	n-C ₃ H ₇	H	H	C,H,	50	89 9 1/0.05				
XIII	n-C ₃ H ₇	H	H	n-C ₃ H ₇	61	92-95/15				
XIV	CoHs	CH,	H	C,H,	67	108-110/0.3				
xv	C,H,	CH,	CH,	i-C,H,	60	145-147/12				
XVI	$CH_2 = C(CH_3)$	н	H	CoH,	35	107-109/0.3				

L'identité des produits obtenus à été déterminée par analyse centésimale et par spectrographie IR et de RMN. A ce propos, les spectres de RMN montrent que les β -dicétones décrites (sauf pour le composé XV, exclusivement sous forme cétonique) sont des mélanges dans lesquels la forme énolique est prépondérante si R'' = R''' = H; au contraire, lorsque R'' = H et R''' = alcoyle, c'est la forme cétonique qui prédomine.

Les anhydrides mixtes carboxyliques et carboniques sont donc de bons agents d'acylation. Nous envisageons l'extension de cette réaction à d'autres exemples, notamment aux cétones dissymétriques, pour lesquelles la formation exclusive des énolates régioisomères devrait donner des acylations régiospécifiques.

Mode opératoire

Type a: Obtention des β-cétoesters. Dans une solution de diisopropylamidure de lithium (0.2 mol), préparé selon le procédé classique au sein du mélange éther/THF (110/30 v/v), on introduit rapidement 0.15 mol d'ester dilué dans 15 ml de THF, vers -80 à -60°C, après agitation de 15 min, l'anhydride mixte II (0.1 mol), dilué dans 10 ml de THF, est ajouté goutte à goutte en maintenant la température vers -60°C; la durée de contact des réactifs est de 1 h.

L'hydrolyse est effectuée dans le ballon réactionnel par 200 ml d'HCl 2 N. Après extraction à l'éther, lavage par une solution de NaHCO₃ puis par l'eau acidulée jusqu'à pH 5 ou 6, la phase éthérée est séchée; la distillation permet d'isoler le β-cétoester comme produit principal.

Type b: Obtention des β-dicètones. Les énolates de cétones sont préparés à partir de 0.15 mol de cétone. Cette dernière est introduite goutte à goutte en 1 h à -60°C dans une solution éthérée (120 ml) de 0.2 mole de diisopropylamidure de lithium. Après 30 min d'agitation à cette température, l'anhydride mixte II (0.1 mol) est additionné; le milieu est ensuite réchauffé vers 20°C et agité pendant 20 h. L'hydrolyse est alors effectuée par 200 ml d'HCl 2 N; après les traitements usuels, la distillation donne essentiellement la β-dicétone. On relève parfois des traces (environ 5%) de l'ester d'énol correspondant, ainsi qu'un peu de produit de cétolisation.

Dans le cas de la dicétone XIII, toutes les opérations sont conduites à -80°C dans le THF, afin d'obtenir l'énolate régiospécifique selon [13].

Bibliographie

- 1 C.R. Hauser et B.E. Hudson, Jr., Org. React., 1 (1942) 266.
- 2 B.E. Hudson, Jr. et C.R. Hauser, J. Amer. Chem. Soc., 63 (1941) 3156.
- 3 M.W. Rathke et J. Deith, Tetrahedron Lett., 31 (1971) 2953.
- 4 M.W. Rathke et A. Lindert, J. Amer. Chem. Soc., 93 (1971) 2318 et réf. citées.
- 5 D.S. Tarbell et J.A. Price, J. Org. Chem., 22 (1957) 245.
- 6 G. Bram et M. Vilkas, Bull. Soc. Chim. Fr., (1964) 945. 7 G. Stork et R.N. Guthikonda, Tetrahedron Lett., 27 (1972) 2755 et réf. citées.
- 8 C.R. Hauser, F.W. Swamer et J.T. Adams, Org. React., 8 (1954) 59.
- 9 (a) D. Seebach et V. Ehrig, Angew. Chem., 84 (1972) 107;
- (b) D. Seebach, V. Ehrig et M. Teschner, Liebigs Ann. Chem., (1976) 1357.

 10 F. Näf et R. Decorzant, Helv. Chim. Acta, 57 (1974) 1317.
- 11 (a) H.O. House, M. Gall et M.D. Olmstead, J. Org. Chem., 36 (1971) 2361;
- (b) H.O. House, D.S. Crumine, A.Y. Teranishi et H.D. Olmstead, J. Amer. Chem. Soc., 95 (1973) 3310.
- 12 M. Gaudemar et F. Gaudemar-Bardone, J. Organometal. Chem., 104 (1976) 281.
- 13 G. Stork, G.A. Kraus et G.A. Garcia, J. Org. Chem., 38 (1974) 3459.