Journal of Organometallic Chemistry, 169 (1979) 259—263 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

HETERONUCLEARE CLUSTERSYSTEME

XV *. μ_2 -GERMANDIYL- UND μ_3 -GERMANTRIYL-KOBALTCARBONYLE

GÜNTER ETZRODT und GÜNTER SCHMID **

Fachbereich Chemie der Universität Marburg/Lahn, Lahnberge, 3550 Marburg (B.R.D.)
(Eingegangen den 25. September 1978)

Summary

GeBr₄ and CH₃GeCl₃ treated with NaCo(CO)₄ under mild conditions gives BrGeCo₃(CO)₁₁ and CH₃GeCo₃(CO)₁₁, respectively. Thermolysis of CH₃GeCo-(CO)₁₁ at 80°C leads under loss of CO to the germylidynetricobalt nonacarbonyl cluster CH₃GeCo₃(CO)₆. The comparison of the IR and mass spectra with homohomologous compounds, investigated by X-ray analysis, allows structure proposals.

Zusammenfassung

GeBr₄ und CH₃GeCl₃ reagieren mit NaCo(CO)₄ unter milden Bedingungen zu BrGeCo₃(CO)₁₁ bzw. CH₃GeCo₃(CO)₁₁. Die Thermolyse von CH₃GeCo₃(CO)₁₁ bei 80°C führt unter CO-Abspaltung zu dem Germylidyn-trikobaltnonacarbonyl-Cluster CH₃GeCo₃(CO)₉. Der Vergleich der IR- und Massenspektren mit röntgenstrukturanalytisch untersuchten homologen Verbindungen erlaubt Strukturvorschläge.

Einleitung

Die vor kurzem gelungene Synthese des "Germylidyn-Clusters" μ_3 -(Tetracarbonylkobalt-germantriyl)-cyclo-tris(tricarbonylkobalt)-(3 Co-Co), (Co) $_9$ Co $_3$ -Ge-Co(CO) $_4$ [2] aus GeBr $_4$ und NaCo(CO) $_4$ veranlasste uns zum genaueren Studium der Reaktionsabläufe in diesem und in verwandten Systemen. Wie wir verschiedentlich dargelegt haben, verläuft die Bildung tetraedrischer hetero-

^{*} XIV, Teil s. Ref. 1.

^{**} Korrespondenzautor. Neue Anschrift: Fachbereich Chemie der Universität Essen, Universitätsstr. 5-7, 4300 Essen 1 (B.R.D.).

nuclearer Kobaltcluster $(CO)_9Co_3E(R_n)$ vermutlich über die offenen Komplexe $(R_n)E[Co(CO)_4]_3$. In Fällen, in denen das Heteroelement E zu gross ist und damit die Knüpfung von Co—Co-Bindungen verhindert, können diese offenen Komplexe als stabile Verbindungen isoliert werden [3,4]. Beispiele liegen in den Verbindungen $Sn[Co(CO)_4]_4$, $Pb[Co(CO)_4]_4$ [4] oder $Bi[Co(CO)_4]_3$ [5] vor. Im Falle des Germaniums sollten eventuell offene Komplexe als Zwischenprodukte nachweisbar und in die Clusterverbindungen überführbar sein.

Ergebnisse

Die Bildung des Clusters (CO)₂Co₃GeCo(CO)₄ aus GeBr₄ und NaCo(CO)₄ erfolgte in siedendem Petrolether im Verlaufe von 20 Stunden [2], Setzt man dagegen GeBr₄ und NaCo(CO)₄ im Molverhältnis 1/3 bei Raumtemperatur in Petrolether um, so bildet sich als lösliche Verbindung BrGeCo₃(CO)₁₁ in 80 proz. Ausbeute. Analog verläuft die Umsetzung von CH_3GeCl_3 mit NaCo(CO)₄. Hier muss allerdings im Verlaufe von 4 Stunden langsam auf 65°C erhitzt werden, um die Reaktion zu bewerkstelligen. $CH_3GeCo_3(CO)_{11}$ kann ebenfalls in 80 proz. Ausbeute in Form rotbrauner Kristalle isoliert werden. Eine Verbindung des Typs RGeCo₃(CO)₁₁ mit R = C₆H₅ wurde bereits früher beschrieben [6]. Sie bildet sich aus $C_6H_5GeH_3$ und $Co_2(CO)_8$. Die Röntgenstrukturanalyse ergab einen Molekülaufbau, der sich von der bekannten Struktur des $Co_2(CO)_8$ dadurch ableitet, dass eine Brückencarbonylgruppe durch die μ_2 -Ge(C₆H₅)Co(CO)₄-Gruppe substituiert ist. Der Vergleich der IR-Spektren im Bereich der CO-Valenzschwingungen der strukturell gesicherten und der beiden neuen Verbindungen zeigt, dass analoge Molekülstrukturen vorliegen dürften.

Somit ist sowohl für $CH_3GeCo_3(CO)_{11}$ als auch $BrGeCo_3(CO)_{11}$ eine Struktur mit einer μ_2 -GeCo(CO)₄(R)-Gruppe (R = CH_3 , Br) anzunehmen:

Die Massenspektren der beiden Verbindungen bestätigen durch die Molpeaks die angenommenen Molekülgrössen und zeigen die erwarteten Fragmentierungsverläufe. Tabelle 2 gibt die gefundenen Peaks bis zur Massenzahl m/e 192(GeCo₂[†]) wieder.

Die Fragmente konnten durch das Isotopenmuster des Germaniums (70 Ge, 72 Ge, 73 Ge, 74 Ge und 76 Ge) leicht identifiziert werden. Die Tabelle 2 enthält nur die Peaks mit den häufigsten Isotopen 74 Ge (36.74%) und 79 Br (50.54%). Neben den Molekülpeaks beobachtet man den schrittweisen CO-Abbau, jeweils bis zum Fragment $RGeCo_3^+$, sowie dessen weitere Zersetzung in $GeCo_3^+$, $GeCo_2^+$ und die Ionen Ge^+ und Co^+ , die nicht angegeben sind.

Die Bildung der Verbindungen $CH_3GeCo_3(CO)_{11}$ und $BrGeCo_3(CO)_{11}$ aus $NaCo(CO)_4$ und $RGeX_3$ (R=X=Br; $R=CH_3$, X=Cl) sollte notwendigerweise über die offenen Komplexe $RGe[Co(CO)_4]_3$ verlaufen, woraus sich unter Abspal-

TABELLE 1 IR-DATEN VON C_6H_5 Ge $Co_3(CO)_{11}$, CH_3 Ge $Co_3(CO)_{11}$ UND BrGe $Co_3(CO)_{11}$ IM $\nu(CO)$ -BEREICH (cm⁻¹)

C ₆ H ₅ GeCo ₃ (CO) ₁₁ a	CH ₃ GeCo ₃ (CO) ₁₁ b	BrGeCo ₃ (CO) ₁₁ ^b		
2104schw ^c	2105m	2113schw		
2082st	2082st	2099schw		
2056st	2056st	2090st		
2044schw	2046(Sch)	2080schw		
2036st	2030st	2064st		
2025m	2020/25m	2048m		
2014m	2007schw	2033(Sch)		
1998schw	1998schw	2004schw		
1850schw	1850m	1856schw		
1835(Sch)	1838schw	1846schw		

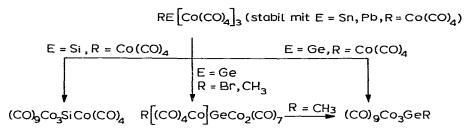
a In Cyclohexan. In n-Hexan. c schw = schwach; st = stark; m = mittel; Sch = Schulter.

tung einer CO-Gruppe die μ_2 -Germandiyl-Komplexe bilden. Wie bereits von Graham et al. gezeigt [6], lässt sich C_6H_5 GeCo $_3$ (CO) $_{11}$ in siedendem n-Hexan in das μ_3 -(Phenylgermantriyl)-cyclo-tris(tricarbonylkobalt)-(3 Co—Co), (CO) $_9$ Co $_3$ -GeC $_6H_5$ überführen. Erhitzt man H_3 CGeCo $_3$ (CO) $_{11}$ in siedendem Cyclohexan 5 Stunden, so erfolgt ein Farbumschlag von rotbraun nach violett. Aus der Lösung lässt sich in 63 proz. Ausbeute der "Germylidyn"-Cluster (CO) $_9$ Co $_3$ GeCH $_3$ in dunkelvioletten, sublimierbaren. Kristallen isolieren. Thermolyse- und Photolyseversuche mit $BrGeCo_3(CO)_{11}$ verliefen dagegen nicht eindeutig. Offensichtlich treten bei höheren Temperaturen Umhalogenierungsreaktionen ein, welche die Bildung von $BrGeCo_3(CO)_9$ verhindern.

Das IR-Spektrum von $CH_3GeCo_3(CO)_9$ zeigt im $\nu(CO)$ -Bereich 5 Schwingungen in Petrolether, die denen der homologen Methylidynverbindung $CH_3CCo_3(CO)_9$

TABELLE 2 MASSENSPEKTROSKOPISCHES FRAGMENTIERUNGSSCHEMA VON $CH_3GeCo_3(CO)_{11}$ UND $BrGeCo_3(CO)_{11}$ (70 eV, 20°C)

CH ₃ GeCo ₃ (CO) ₁₁			BrGeCo ₃ (CO) ₁₁		
m/e	Rel. Intensi- tät (%)	Ion	m/e	Rel. Intensi- tät (%)	Ion
574	6.0 ^a	H ₃ CGeCo ₃ (CO) ₁₁ [†]	638	3.0	BrGeCo3(CO)11
546	6.5	H ₃ CGeCo ₃ (CO) ₁₀ ⁺	610	20.4	BrGeCo3(CO)10
518	26.1	H ₃ CGeCo ₃ (CO) ₉ ⁺	582	15.3	BrGeCo3(CO)9+
490	34.1	H ₃ CGeCo ₃ (CO) ₈ ⁺	554	39.2	BrGeCo3(CO)8+
462	10.8	H ₃ CGeCo ₃ (CO) ₇ ⁺	526	7.4	BrGeCo3(CO)7+
434	40.2	H ₃ CGeCo ₃ (CO) ₆ ⁺	498	20.7	BrGeCo3(CO)6+
406	89.6	H ₃ CGeCo ₃ (CO) ₅ ⁺	470	49.3	BrGeCo3(CO)5+
378	58.6	H ₃ CGeCo ₃ (CO) ₄ ⁺	442	71.5	BrGeCo3(CO)4+
350	52.2	H ₃ CGeCo ₃ (CO) ₃ ⁺	414	44.4	BrGeCo3(CO)3+
322	74.5	H ₃ CGeCo ₃ (CO) ₂ ⁺	386	56.1	BrGeCo2(CO)2+
294	75.9	H ₃ CGeCo ₃ (CO) ⁺	358	54.2	BrGeCo3(CO)+
266	92.4	H ₃ CGeCo ₃ ⁺	330	100.0	BrGeCo3+
251	72.8	GeCo3 ⁺	271	30.1	BrGeCo2 ^T
192	42.6	GeCo2 ⁺	251	5.2	GeCo3 ⁺
		4	192	52.3	GeCo2+


^a Referenzpeak m/e 28 = 100% (CO⁺).

entsprechen (in Klammern) [7]: 2108m (2104m), 2055sst (2052sst), 2045st (2038st), 2018m (2018schw), 1992schw (2008schw). Auch das Massenspektrum ist mit der Annahme eines Germylidyn-trikobaltnonacarbonyl-Clusters in Einklang. Neben dem Molekülpeak bei m/e 518 finden sich dieselben Abbauprodukte wie die in Tabelle 2 von m/e 518 für $H_3CGeCo_3(CO)_9^+$ bis m/e 192 für $GeCo_2^+$ aufgeführt sind.

Diskussion

Die Bildung tetraedrischer, heteronuclearer Kobaltcluster des Typs (CO) $_9$ Co $_3$ -ER (E = Si, Ge) verläuft offensichtlich über die "offenen" Komplexe RE[Co(CO) $_4$] $_3$. Während im Falle von E = Si keine Zwischenprodukte isoliert sind, kann mit E = Ge der Weg zum Cluster temperaturabhängig gesteuert werden. Isolierbare Zwischenprodukte sind Verbindungen des Typs RGeCo $_3$ (CO) $_{11}$, die eine μ_2 -Germandiyl-Gruppe enthalten. Temperaturanstieg leitet eine weitere CO-Abspaltung unter Bildung eines Clusters ein. Wie kürzlich beschrieben [4], wird mit E = Sn und Pb die Clusterbildung ganz unterbunden, wobei die Reaktionen bei der Bildung von E[Co(CO) $_4$] $_4$ stehenbleiben.

Zusammenfassend lassen sich die Reaktionsabläufe folgendermassen darstellen:

Beschreibung der Versuche

Die Versuche wurden in absolutierten, stickstoffgesättigten Lösungsmitteln unter Stickstoffatmosphäre durchgeführt. CH₃GeCl₃, GeBr₄ und Co₂(CO)₈ (zur Darstellung von NaCo(CO)₄) wurden käuflich erworben. Die IR-Spektren wurden an Spektrometern 457 und 225 der Firma Perkin—Elmer aufgenommen. Für die Aufnahme der Massenspektren stand ein Gerät der Firma Varian CH 7 zur Verfügung. Die Analysen wurden in der Zentralen Analytischen Abteilung des Fachbereichs Chemie der Universität Marburg erstellt.

Darstellung von $CH_3GeCo_3(CO)_{11}$

1.31 g CH₃GeCl₃ (6.74 mMol) und 3.99 g NaCo(CO)₄ (20.57 mMol) werden nacheinander in 150 ml Cyclohexan eingetragen und eine halbe Stunde bei Raumtemperatur, eine weitere halbe Stunde bei 50°C gerührt. Schliesslich wird bei 65°C weitere 3 Stunden umgesetzt. Nach dem Erkalten wird von Ungelöstem abgefrittet und das Filtrat im Vakuum vom Lösungsmittel und flüchtigen Bestandteilen befreit. Der dunkelbraune Rückstand wird anschliessend aus Petrolether umkristallisiert (40°C). Ausbeute: 3.09 g rotbraune Kristalle (80%, bezogen auf eingesetztes CH₃GeCl₃). (Gef.: C, 25.07; H, 0.69; Co, 28.49; Ge,

12.94. $C_{12}H_3Co_3GeO_{11}$ ber.: C, 25.17; H, 0.53; Co, 30.88; Ge, 12.68%. Mol-Gew. (massenspektrometrisch): gef. 574; ber. 574).

Darstellung von BrGeCo₃(CO)₁₁

1.82 g GeBr₄ (4.63 mMol) und 2.69 g NaCo(CO)₄ (13.89 mMol) werden in Petrolether bei Raumtemperatur einen Tag lang gerührt. Anschliessend wird wie zuvor beschrieben aufgearbeitet. Ausbeute: 2.36 g (80%, bezogen auf eingesetztes GeBr₄). (Gef.: C, 20.87; Br, 12.50; Co, 25.49; Ge, 11.63. C₁₁BrCo₃-GeO₁₁ ber.: 20.73; Br, 12.54; Co, 27.74; Ge, 11.39%. Mol-Gew. (massenspektrometrisch): gef. 638; ber. 638).

Darstellung von (CO)₉Co₃GeCH₃

Man löst 0.82 g H₃CGeCo₃(CO)₁₁ (1.43 mMol) in 20 ml Cyclohexan und erhitzt 5 Stunden lang zum Sieden unter Rückfluss. Dabei färbt sich die Lösung von braunrot nach dunkelviolett. Man zieht das Lösungsmittel im Vakuum ab und sublimiert den Rückstand bei etwa 60°C an einen auf 0°C gekühlten Finger. Ausbeute: 0.46 g (63% d. Theorie). Gef.: C, 22.93; H, 0.75; Co, 32.65; Ge, 13.82. C₁₀H₃Co₃GeO₂ ber.: 23.25; H, 0.59; Co, 34.23; Ge, 14.05%. Mol-Gew. (massenspektrometrisch): gef. 518, ber. 518).

Dank

Wir danken dem "Fonds der Chemischen Industrie" für seine finanzielle Unterstützung.

Literatur

- 1 B. Stutte und G. Schmid, J. Organometal. Chem., 155 (1978) 203.
- 2 G. Schmid und G. Etzrodt, J. Organometal. Chem., 137 (1977) 367.
- 3 G. Schmid, Angew. Chem., 90 (1978) 417; Angew. Chem. Int. Ed., 17 (1978) 392.
- 4 G. Schmid und G. Etzrodt, J. Organometal. Chem., 131 (1977) 477.
- 5 G. Etzrodt, R. Boese und G. Schmid, Chem. Ber., im Druck.
- 6 R. Ball, M.J. Benetti, E.H. Brocks, W.A.G. Graham, J. Hoyano und S.M. Illingsworth, Chem. Commun., (1970) 592.
- 7 R. Markby, J. Wender, R.A. Friedel, F.A. Cotton und H.W. Sternberg, J. Amer. Chem., Soc., 80 (1958) 6529.