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Summary

Copyrolysis of hexamethylcyclotrisilthiane and hexamethylcyclotrisiloxane

© yields 1,1,8,3,5,5,7,7-octamethyl-2,4,6-trioxo-1,3,5,7-tetrasila-8-thiacyclooctane.
Likewise, copyrolysis of hexamethylcyclotrisilthiane or tetramethylcyclodi-
silthiane with 1,1,3,3-tetramethyl-2-oxa-1,3-disilacyclopentane yields 1,1,3,3,5,5-
hexamethyl-2-oxa-1,8,5-trisila-4-thiacycloheptane. Possible mechanisms are
discussed.

The existence of an easily established equilibrium between hexamethylcyclotri-
silthiane (I) and tetramethylcyclodisilthiane (II) has been known for some time
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We were interested in the possibility that the mechanism for this equilibration
might be as illustrated below and thus involve an intermediate possessing a
silicon—sulfur double bond:
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Hexamethylcyclotrisiloxane (III) has been used to trap intermediates posses-
sing silicon—carbon [3,4], silicon—oxygen [4,5], silicon—nitrogen [6], and even
silicon—sulfur ['7] double bonds.
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However, in this latter case the initial adduct was apparently unstable at the high
reaction temperature (600°C) [7].
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1,1,3,3-Tetramethyl-2-oxa-1,3-disilacyclopentane (IV) has also proved a useful
trapping agent for silicon—oxygen doubly bonded intermediates [8].
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With these ideas in mind, we heated a 10/1 mixture of I and III at 200°Cin a
sealed pressure bottle for 7 h. This led to formation of 1,1,3,3,5,5,7,7-octa-
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methyl-2,4,6-trioxa-1,3,5,7-tetrasila-8-thiacyclooctane (V) (81%)*, II (23%), and
a non-volatile residue. The yields are based on the number of equivalents of avail-
able [ =Si=S] and are corrected for recovered starting material.
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Likewise, we found that heating a 1/5 mixture of I and IV at 200°C for 7 h gave
1,1,3,3,5,5-hexamethyl-2-oxa-1,8,5-trisila-4-thiacycloheptane (VI) (31%), I1 (26%).
and a non-volatile residue.

< .
K \ >Si/ ~sil ~ P

) .
~ ~ Si Sl
LS SiQ + SI 'S a - ~o e
o \Si/ ~ S'/S
7\ Ve l\
()

Heating a 1/5 mixture of Il and IV at 200°C for 7 h produced VI (8.5%), a small
amount of recovered II, and a non-volatile residue.
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The lower yield of VI isolated from reaction of II with IV, compared with reac-
tion of I with IV, may be due to the availability of other reaction pathways for II.
Nevertheless, we believe these experiments suggest that the thermal equilibrium
of T and IT at 200°C involves an intermediate possessing a silicon—sulfur double
bond, [(CH,),Si=S]. In addition, they provide a new direct synthesis of hetero-
cyclic compounds containing silicon—oxygen and silicon—sulfur bonds [10,11].
Further studies to clarify the mechanism and scope of these novel reactions are
in progress. ' :

Experimental
1(0.270 g, 1 mmol), IV (0.800 g, 5 mmol)*, and a Teflon-covered magnetic

stirring bar were placed in a dry, nitrogen-filled pressure bottle. The mixture was
stirred and heated to 200°C for 7 h. A white solid found to be II (0.069 g,

*This result is in contradiction to Hailey and Nickless [9], who report that heating III and I at 180°C for
several weeks resulted in no charge:
*Available from Silar Laboratories (III and 1V).
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0.38 mmol, 26%) was collected from the neck of the flask. The liquid mixture
was dissolved in cyclohexane and analyzed by GLPC on a 72" X 4" DCQF-1 on
Chromosorb W 60/80 mesh column at 100°C. The only volatile products were V1
(0.225 g, 0.9 mmol, 31% based on number of equivalents of available [=Si=S]
and recovered I (0.011 g, 0.04 mmol). Properties of 1,1,3,3,5,5-hexamethyl-2-
0x0-1,3,5-trisila-4-thiacycloheptane: NMR (CDCl;, §, ppm): 0.10 (s, 3H), 0.32 (s,
3H), 0.36 (s, 3H), 0.65—1.05 (m, 4H). IR (CCl,): 1035 cm™! (8i—O--8i). UV
(cyclohexane): end absorption only. Mass spectrum: Parent m/e 250 (22%).
Calculated for CgH,,0881; 250.070, found 250.072. P - 15 m/e 235 (100%).
1(0.270 g, 1 mmol) and III (2.22 g, 10 mmol) were treated and analyzed as

above to yield V (0.150 g, 0.48 mmol, 31%), II (0.030 g, 0.17 mmol, 23%).
These yields are corrected for recovered hexamethylcyclotrisilthiane (0.129 g,
0.48 mmol, 48%). Properties of 1,1,3,3,5,5,7,7-octamethyl-2.4,6-trioxa-1,3,5,7-
tetrasila-8-thiacyeclooctane: NMR (CDCl,, §, ppm): 0.18 (s, 12H), 0.50 (s, 12H).
IR (CCl,): 1070 and 1020 em™!. UV: transparent. Mass spectrum: Parent /e
312 (3%). Calculated for CgH,;,0,SSi, 312.053, found 312.053. P — 15 m/e 297
(100%).

© I1(0.180 g, 1 mmol) and IV (0.80 g, 5 mmol) were treated as above. Some un-
reacted II (0.012 g, 0.07 mmol, 7%) was collected from the neck of the bottle.
The remainder of this reaction product was a viscous liquid. It was taken up in
CH,Cl, and bulb-to-bulb distilled. A polymeric residue of 0.32 g was obtained
“along with a volatile component which was analyzed as before to give recovered
IV (0.56 g, 3.5 mmol, 70%) and VI (0.042 g, 0.17 mmol, 8.5%).
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