Journal of Organometallic Chemistry, 187 (1980) 175–201 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

SYNTHESE UND REAKTIONEN VON 1-GERMACYCLOHEXA-2,4-DIENEN UND 1-GERMACYCLOHEXA-2,4-DIEN-EISENTRICARBONYLEN

G. MÄRKL und D. RUDNICK

Chemisches Institut der Universität Regensburg (B.R.D.) (Eingegangen den 8. August 1979)

Summary

1,1-Dialkyl(aryl)-4-alkyl(aryl)-4-methoxy-1-germacyclohexa-2,5-dienes undergo ether cleavage with sodium in n-pentane or liquid ammonia. Hydrolysis of the resulting sodium salts yields the 1,1-dialkyl(aryl)-4-alkyl(aryl)-1-germacyclohexa-2,4-dienes. Reduction of 1-chloro-4-methoxy-1-germacyclohexa-2,5dienes with LiAlH₄ can be directed to give the 1*H*-1-germacyclohexa-2,4-dienes with ether cleavage.

The 1H-1-germacyclohexadienes are chlorinated by PCl_s and brominated by N-bromosuccinimide to the 1-chloro- or 1-bromo-1-germacyclohexa-2,4dienes, respectively. 1,1-Diethyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5diene reacts with PCl_3 with ether cleavage and formation of the 6-chloro-1germacyclohexa-2,4-diene. Ether cleavage is also possible with BCl_3 , the 1phenyl-1-chloro-4*R*-4-methoxy-1-germacyclohexa-2,5-dienes are transformed into the 1-phenyl-1,6-dichloro-4*R*-1-germacyclohexa-2,4-dienes.

The $Fe(CO)_3$ complexes of 1,1-dialkyl(aryl)-1-germacyclohexa-2,4-dienes were synthesized.

Zusammenfassung

1,1-Dialkyl(aryl)-4-alkyl(aryl)-4-methoxy-1-germacyclohexa-2,5-diene reagieren mit Natrium in n-Pentan bzw. flüssigem Ammoniak unter Etherspaltung. Hydrolyse der entstehenden Natriumsalze liefert die 1,1-Dialkyl(aryl)-4-alkyl(aryl)-1-germacyclohexa-2,4-diene. Die Reduktion der 1-Chlor-4-methoxy-1-germacyclohexa-2,5-diene mit LiAlH₄ kann so gesteuert werden, dass, als Ergebnis von Reduktion und Etherspaltung, die 1*H*-1-Germacyclohexa-2,4-diene entstehen.

Die 1H-1-Germacyclohexadiene können mit PCl_{s} bzw. N-Bromsuccinimid zu den 1-Chlor- bzw. 1-Brom-1-germacyclohexa-2,4-dienen halogeniert werden. 1,1-Diethyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5-dien reagiert mit PCl_{3} unter Etherspaltung zum 6-Chlor-1-germacyclohexa-2,4-dien. Die Etherspaltung gelingt auch mit BCl₃, die 1-Phenyl-1-chlor-4*R*-4-methoxy-1-germacyclohexa-2,5-diene liefern die 1-Phenyl-1,6-dichlor-4*R*-1-germacyclohexa-2,4-diene. Die Fe(CO)₃-Komplexe der 1,1-Dialkyl(aryl)-1-germacyclohexa-2,4-diene

wurden dargestellt.

Die einzigen in der Literatur beschriebenen 1-Germacyclohexa-2,4-diene sind die von Seyferth und Mitarb. [1] durch Ringerweiterung von 1,1-Diethyl-1-germacyclopent-3-enen mit Dichlorcarben erhaltenen 4-Chlor-1,1-diethyl-1germacyclo-2,4-diene.

Wir berichten über eine allgemeine Synthese von 1-Germacyclohexa-2,4-dienen aus den von uns kürzlich beschriebenen 4-Alkyl(aryl)-4-methoxy-1-germacyclohexa-2,5-dienen [2]. Die 4-Methoxy-1-germacyclohexa-2,5-diene (1--3) sind Methyl[3-penta-1,4-dienyl]ether und zeichnen sich als solche durch eine hohe Reaktivität gegenüber Reagentien aus, die zur Bildung von 1-Germacyclohexadienyl-kationen wie -anionen als reaktiven Zwischenstufen führen:

1,1-Dialkyl(aryl)-4-alkyl(aryl)-1-germacyclohexa-2,4-diene (5-7) durch Etherspaltung der 4-Methoxygermacyclohexa-2,5-diene (1-3) mit Natrium in n-Pentan

Wie bei den 4-Methoxy-1-silacyclohexa-2,5-dienen von uns berichtet [3], reagieren die analogen Germaniumverbindungen 1—3 mit Natriumpulver in siedendem n-Pentan unter Etherspaltung zu den Natriumsalzen der Germacyclohexadienylanionen 4, die als gelbgrüne Niederschläge bereits aus der siedenden Reaktionslösung ausfallen:

Etherspaltungen unter Bildung von Polyenylanionen wurden in der Literatur an zahlreichen Beispielen beschrieben [4]. Bei den symmetrisch substituierten Germacyclohexa-2,5-dienen 1-3 hängt die Geschwindigkeit der Etherspaltung durch Natrium deutlich von der Natur der Substituenten in 4-Stellung ab. Während die 4-Cyclohexyledukte 1a-3a bereits innerhalb von 6-24 h vollständig abreagieren, sind bei den 4-t-Butylverbindungen (z.B. 1b) Reaktionszeiten bis zu 60 h erforderlich. Die 4-Phenyl-1-germacyclohexa-2,5-diene (es wurden 1c und 3c untersucht) reagieren auch bei diesen langen Reaktionszeiten nur in Gegenwart eines grossen Natriumüberschusses. Die Gründe für diese unterschiedliche Reaktivität sind unklar, für die Reaktionsträgheit müssen bei den t-Butyl-Derivaten sterische, bei den Phenyl-Derivaten wohl elektronische Einflüsse verantwortlich sein.

Die Hydrolyse der Natriumsalze 4 führt ausschliesslich thermodynamisch kontrolliert zu den konjugierten 1-Germacyclohexa-2,4-dienen 5-7, die Protonierung zu den hierzu prototropen 2,5-Dienen wird nicht beobachtet. (Im

Fig. 1. ¹H-NMR-Spektrum von 1,1-Diphenyl-4-t-butyl-1-germacyclohexa-2,4-dien (5b) (CDCl₃) exp. und ber. nach LAOCOON-LAME.

Gegensatz hierzu erfolgt die Alkylierung und Acylierung von 4 kinetisch kontrolliert in 4-Stellung, hierüber wird später berichtet).

Die 2,4-Diene 5—7 werden aus den 2,5-Dienen 1—3 in Ausbeuten von 60—90% als farblose bis schwach gelbe, leicht bewegliche bis ölige Flüssigkeiten bzw. als farblose kristalline Produkte erhalten.

In den ¹H-NMR-Spektren sind die Ringprotonen H², H³, H⁵, H⁶, H⁶ ABCX₂-Systeme. In den hochaufgelösten 90 MHz-¹H-NMR-Spektren (5b, 7a) wird neben der AB-Kopplung von H², H³ (~14 Hz) noch eine W-Kopplung von H³ mit H⁵ ($J^4 \sim 1.5$ Hz) und eine long-range-Kopplung H² mit H⁵ ($J^5 \sim 1$ Hz) beobachtet, so dass alle Linien des AB-Spektrums nochmals zu Dubletts aufgespalten sind. Die CH⁶₂-Gruppe koppelt nur mit H⁵ (jede Linie des Tripletts von H⁵ wird durch H³, H⁵- und H², H⁵-Kopplung nochmal zu Dubletts von Dubletts aufgespalten); H², H⁶-Kopplungen sind nicht festzustellen.

Die Figur 1 zeigt das experimentelle und das nach LAOCOON-LAME [5] berechnete und geplottete ¹H-NMR-Teilspektrum der Ringprotonen von 5b. Die δ - und J-Werte sind in Tab. 1 enthalten.

Von den übrigen Cermacyclohexa-2,4-dienen 5-7 wurden nur die 60 MHz-Spektren aufgenommen, die Daten sind ebenfalls in Tab. 1 aufgeführt.

Die ¹³C-NMR-Spektren (off resonance und Breitbandentkopplung) von 5–7 sind praktisch identisch mit denen der entsprechenden 1-Silacyclohexa-2,4diene (siehe Tab. 2).

Die $\delta(^{13}C)$ -Werte von C² und C³ erfahren gegenüber denen von C²(C⁶) und C³(C⁵) in den 1-Germa(sila)-cyclohexa-2,5-dienen Hochfeldverschiebungen von 2-5 Hz bzw. 4-7 Hz (Tab. 2).

Ein Vergleich der $\delta(^{13}C)$ -Werte von 5–7 mit denen von offenkettigen und cyclischen 1,3-Dienen [6] (Tab. 2) lässt einen spezifischen Einfluss des Heteroatoms nicht erkennen; das Heteroatom bewirkt auf die $\delta(^{13}C)$ -Werte von C² und C³ im Dien-System von 5–7 eine einem Alkylrest vergleichbare geringe Tieffeldverschiebung, z.B. sind die $\delta(^{13}C)$ -Werte einander entsprechender C-Atome im Cyclohepta-1,3-dien und in den 1,1-Di-R'-1-germacyclohexa-2,4-dienen praktisch gleich.

1H-1-Germacyclohexa-2,4-diene (10,11) durch Umsetzung der 1H-4-Methoxy-1-germacyclohexa-2,5-diene (8, 9) mit Natrium in flüssigem Ammoniak

Bei den 1H-1-Alkyl-4-methoxy-4*R*-1-silacyclohexadienen gelingt die Etherspaltung mit Natriumpulver in siedendem n-Pentan, nach der hydrolysierenden Aufarbeitung erhält man neben den 1H-1-Silacyclohexa-2,4-dienen aber auch 1-Methoxy-1-silacyclohexa-2,4-diene als Ergebnis einer nucleophilen SiH-Substitution durch das bei der Etherspaltung gebildete Natriummethanolat.

Die 1H-1-Alkyl(Aryl)-4-methoxy-1-germacyclohexa-2,5-diene (8-9) reagieren überraschenderweise mit Natriumpulver in siedendem n-Pentan überhaupt nicht, selbst nach längeren Reaktionszeiten werden die Edukte zurückerhalten.

Im Gegensatz hierzu gelingt die Etherspaltung der 1*H*-1-Germacyclohexa-2,5-diene (8—9) glatt mit Natrium in siedendem, flüssigen Ammoniak. Hierzu löst man in trockenem, über Natrium destilliertem Ammoniak bei —78°C 2 Moläquivalente Natrium (20 mmol); nach der Zugabe von 10 mmol 1*H*-Verbindung 8—9 entfernt man das Kühlbad und lässt das Ammoniak unter Rühren

-
ы
ΗĮ.
H
B
₹
E-i

۳, ° I

I I

¹ H-NMR-SPEKTR	EN (60 MHz; CDCl ₃ , ppm)	von den verbindu		Ĵ ŢŢ		
Verbindung	æ	R'	H ²	H ³ b	HS	дų
5a R = c-C ₆ H ₁₁ R' = C ₆ H ₅	0.70-2.20 (m)	7.10-7.60 (m)	6.30 $J(H^2/H^3)$ 14 Hz $J(H^2/H^5) \simeq 1.2 Hz$	6.71 J(H ³ /H ⁵) ≃ 1.5 Hz	6,70 (t) ^d J(H ⁵ /H ⁶) 6,6 Hz	2.04 (d)
\mathbf{fc} $\mathbf{R} = \mathbf{C}_{6}\mathbf{H}_{5}$ $\mathbf{R}' = \mathbf{C}_{6}\mathbf{H}_{5}$	7.10-7.66 (m)		6.56 J(H ² /H ⁵) ≃ 15 Hz J(H ² /H ⁵) < 1.0 Hz	7.18 J(H ³ /H ⁵) <u>~</u> 1.6 Hz	6.20 (t) ^a J(H ⁵ /H ⁶) 5.8 Hz	2.28 (d)
6а R = с•С ₆ Н ₁₁ R' = СН ₃	0.80-2.00 (m)	0.18 (s)	6.00 J(H ² /H ³) 14 Hz J(H ² /H ⁵) ≃ 1.0 Hz	6.42 J(H ³ /H ⁵) ≃ 1.5 Hz	5,55 (t) * J(H ⁵ /H ⁶) 5.4 Hz	1.52 (d)
¹ H-NMR-SPEKTR	EN (90 MHz, CDCl ₃ , ppm);	8- UND J-WERTE NAC	CH LAOCOON-LAME BERE	CHNET		
бь R = С(СН ₃) ₃ R' = С ₆ Н ₅	1.0 (s)	7.21-7.56 (m)	6.42 J(H ² /H ³) 18.68 Hz J(H ² /H ⁵) 0.95 Hz	7.06 J(H ³ /H ⁵) —1.71 Hz	5,89 (t) ^d J(H ⁵ /H ⁶) 5,33 Hz	2 .09 (d)
7a R = c-C ₆ H ₁ 1 R' = C ₂ H ₅	0.61—1.72 (m)		6.10 J(H ² /H ⁵) 13.48 Hz J(H ² /H ⁵) 1.03 Hz	6.59 J(H ³ /H ⁵) 1.23 Hz	6.64 (t) ^a J(H ⁵ /H ⁶) 5.33 Hz	1.67 (d)

ł 1

 a Mit Feinstruktur durch Kopplung mit H² und H³. b AB-Tell des ABCX₂-Systems.

1

Verb.	G2	03	C4	C2	ç	R	'n'	
5b R = C(CH ₃) ₃ R' = C ₆ H ₅	123.0	142,6	143,9	118,0	11.8	36.7 (<u>C</u> (CH ₃)3) 29.4 (CH ₃)	137.7 (quart. C) 134.2: 128.1 (o., m-) 128.8 (p-)	
$T_{\mathbf{R}}$ $\mathbf{R} = \mathbf{e} \cdot \mathbf{C}_{6} \mathbf{H}_{11}$ $\mathbf{R}' = \mathbf{C}_{2} \mathbf{H}_{5}$	1.26.1	143.2	141.5	120.4	8°6	47.1 (α-C) 27.0, 32.6 (β.γ-C) 26.5 (5-C)	6.3 (G ₆ C) 8.9 (GeC <u>C</u>)	
10b R = R' = C(CH ₃) ₃ X = H	122.6	141.9	143.8	118.1	13.7	27.7; 35.6 (<u>C</u> (CH ₃) ₃) 28.0; 29.3 (CH ₃)		. ·
R = R' = C(CH3)3 X = Cl	122.9	144.9	143.5	118,9	13.7	26.8; 35.8 (Ç(CH ₃) ₃) 26.2; 29.3 (<i>C</i> H ₃)		
R = C(CH ₃) ₃ R' = C ₆ H ₅	122.5	145.3	144.6	118.1	11.9	35.3 (C(CH ₃) ₃) 29.3 (CH ₃)	135.8 (quart. C) 134.7: 127.8 (o-, m-) 129.9 (p-)	
R = C6H5 R' = C2H5	128,0	149.5	1.01	1	I	144.5 (quart. C) 127.4 (o-); 126.0; 126.8 (m., p.)	6.1; 6.7 (G e− C) 9.2; 9.3 (Ge−C− <u>C</u>)	

È

TABELLE 2

ł ł ۱ l ł ١ ۱ 116.3 125,6 111,3 136,9 142.1 133.2 136.9 142.1 133.2 116.3 111.8 125.6 i L [9] [8] [7] I I V снэ H (S)H f

7

abdestillieren. Schon nach kurzer Zeit schlägt hierbei die tiefblaue Farbe der Natriumlösung in eine gelbbraune Farbe der 1*H*-1-Germacyclohexadienyl-Natriumsalze um, die 1*H*-1-Germacyclohexa-2,4-diene 10 und 11 werden nach der hydrolysierenden Aufarbeitung durch Destillation im Ölpumpenvakuum in 50-90-proz. Ausbeute rein erhalten:

 $(b, R = C(CH_3)_3; c, R = C_6H_5)$

Für den eindeutigen Ablauf der Etherspaltung ist es wichtig, dass die stöchiometrische Menge Natrium in absolutem Ammoniak eingesetzt wird, bei Natriumüberschuss in Anwesenheit von Feuchtigkeitsspuren entstehen durch Weiterreduktion als schwer abtrennbare Nebenprodukte die 1H-1-Germacyclohex-3-ene, deren Darstellung aus 8–9 bei geeigneten Reaktionsbedingungen auch präparativ möglich ist.

Die ¹H-NMR-Spektren der 1*H*-1-Germacyclohexa-2,4-diene (10 und 11) weichen von den am Germanium symmetrisch substituierten 2,4-Dienen 5-7 insoweit ab, als das Germanium chiral ist und die benachbarte CH_2 -Gruppe demgemäss diastereotop.

Die CH₂-Protonen H⁶, H⁶' sind magnetisch nicht äquivalent, H⁶ und H⁶' koppeln mit H¹ und H⁵ mit jeweils unterschiedlichen Kopplungskonstanten und bilden ein ABXY-System. Die Vinylprotonen H², H³ sind ebenfalls ein AB-System; im hochaufgelösten 90 MHz-¹H-NMR-Spektrum sind long-range-Kopplungen H², H⁵ und H³, H⁵ zu beobachten, es liegen also ABC-Systeme vor; H¹ und H², die einen Diederwinkel von etwa 45°C einschliessen, koppeln nicht miteinander.

In Tab. 3 sind die Daten der ¹H-NMR-Spektren (60 MHz, 90 MHz) von 10 und 11 zusammengestellt, die 90 MHz-Spektren wurden nach LAOCOON-LAME gerechnet, Tab. 3 enthält die für H^1-H^6 berechneten Kopplungkonstanten; in Fig. 2 sind das experimentelle und das berechnete Spektrum von 11c einander gegenübergestellt.

Die IR-Spektren der 1H-1-Germacyclohexa-2,4-diene (10, 11) sind in Tab. 5 aufgeführt und werden im nächsten Abschnitt diskutiert.

 $1H\mathchar`l-Germacyclohexa-2,4-diene durch Umsetzung der 1-Chlor-4-methoxy-1-germacyclohexa-2,5-diene mit LiAlH_4$

Über die unerwartete reduktive Umwandlung unter gleichzeitiger Etherspaltung von 1-Chlor-1-ethyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5-dien (13c)

TABELLE 3

¹H-NMR-SPEKTREN VON 10b (60 MHz, CDCl₃, ppm) 10e UND 11e (90 MHz, CDCl₃, ppm); DIE 6- UND J-WERTE DER RINGPROTONEN WURDEN NACH LAOCOON-LAME BERECHNET

Verbludung	e	Ъ,	Н ¹	$^{ m H2}$	н3	5 ¹¹	H6, H6'
10c R = C ₆ H ₅ R' = C(CH ₃) ₃	7.20 (a)	1.07 (s)	4.0 a	6.29 J(H ² , H ³) 16.2 Hz	6.94	0.07 ^a J(H ⁵ , H ⁶) ~ 5 Hz	H ⁶ : 1.7 6 H ^{6'} : 1.9 2
10b R = C(CH ₃) ₃ R' = C(CH ₃) ₃	1.02 (a 1.12 (a	20	3.87 <i>a</i>	6.18 J(H ² , H ³) 13.64 Hz J(H ² , H ⁵) 0.96 Hz	6.87 , J(H ³ , H ⁵) 1.71 Hz	6,80 ^d J(H ¹ , H ⁵) 1.15 Hz	H ⁶ : 1.66, J(H ⁶ , H ¹) (<i>trans</i>) ^b 3.94 Hz; J(H ⁶ , H ⁵) 4.68 Hz; H ⁶ ': 1.76, J(H ^{6'} , H ¹) (<i>cls</i>) 4.64 Hz; J(H ^{6'} , H ⁵) 6.96 Hz J(H ⁶ , H ^{6'}) -19.75 Hz
110 R = R' = C ₆ H ₅	7,00— 7.70 (n	6	4.75 a	6.44 J(H ² , H ³) 13.49 Hz J(H ² , H ⁵) 1.14 Hz	7.08 6 J(H ³ , H ⁵) 1.70 Hz	6,19 ° J(H ¹ , H ⁵) 1,15 Hz	H ⁶ : 2.05; J(H ⁶ , H ¹) (frans) 3.60 Hz; J(H ⁶ , H ⁵) 5.24 Hz; H ⁶ : 2.21; J(H ^{6'} , H ¹) (<i>cls</i>) 4.00 Hz; J(H ^{6'} , H ⁵) 6.30 Hz J(H ⁶ , H ^{6'})18.25 Hz

town because a not not a set a set a set and the set of - DZW, A', H' . 1010 oursurent our

ţ

t 1 ١

Fig. 2. 90 MHz ¹H-NMR-Spektrum von 11c (CDCl₃) exp. und nach LAOCOON-LAME berechnet.

zu 1H-1-Ethyl-4-phenyl-1-germacyclohexa-2,4-dien (17c) hatten wir bereits berichtet [2].

Aus dieser Beobachtung wurde eine präparative Methode zur Darstellung von 1H-1-Germacyclohexa-2,4-dienen (10, 11 und 16, 17) entwickelt. Der wesentliche Unterschied zur beschrieben [2], ausschliesslichen Ge—Cl \rightarrow Ge—H-Reduktion der 1-Chlor-1-germacyclohexa-2,5-diene (1—3) ist, dass die Etherspaltung mit LiAlH₄ nur dann erfolgt, wenn man die etherischen Lösungen der 1-Chlor-4-methoxy-1-germacyclohexa-2,5-diene zunächst einige Stunden bei Raumtemperatur mit LiAlH₄ reagieren lässt, ehe man anschliessend unter Rückfluss zum Sieden erhitzt. Dieser Befund ist so deutbar, dass bei Raumtemperatur mit LiAlH₄ zunächst die Etherspaltung und erst bei höherer Temperatur die Ge—Cl-Reduktion erfolgt; die Etherspaltung mit LiAlH₄ scheint nur bei den 1-Chlor-4-methoxy-1-germacyclohexa-2,5-dienen möglich zu sein, da bei den 1H-4-Methoxy-1-germacyclohexa-2,5-dienen analoge Umsetzungen nicht beobachtet werden.

Auch unter den angegebenen Reaktionsbedingungen verläuft die Umsetzung mit LiAlH₄ nicht immer unter gleichzeitiger Etherspaltung. Das 4-Cyclohexyledukt 13a unterliegt z.B. auch nach 36-stdg. Umsetzung mit LiAlH₄ bei Raumtemperatur und anschliessendem 3-stdg. Erhitzen zum Sieden nur z.T. der Etherspaltung zu einem Gemisch von 1H-1-Ethyl-4-methoxy-4-cyclohexyl-1germacyclohexa-2,5-dien und 17a; 17a lässt sich chromatographisch in etwa 40-proz. Ausbeute vom einfachen GeCl \rightarrow GeH-Reduktionsprodukt abtrennen.

Unverständlich ist das Reduktionsverhalten von 1-Chlor-1,4-diphenyl-4methoxy-1-germacyclohexa-2,5-dien (15c); bei der Umsetzung eines kristallinen, praktisch reinen Isomeren 15c (wahrscheinlich Z-15c [2]) entsteht das IH-4-Methoxy-1-germacyclohexa-2,5-dien in 76-proz. Ausbeute, während das ölige E/Z-Isomerengemisch von 15c (Isomerenverhältnis 49/51) unter gleichen Reaktionsbedingungen zum zuvor bereits beschriebenen 2,4-Dien 11c abreagiert. Die Ausbeuten der so erhaltenen 1H-1-Germacyclohexa-2,4-diene (10, 11 und 16, 17) schwanken zwischen 40-90%.

Für die Darstellung der 1H-1-Germacyclohexa-2,4-diene steht damit neben der Etherspaltung der 1H-4-Methoxy-1-germacyclohexa-2,5-diene mit Natrium in flüssigem Ammoniak eine zweite Methode zur Verfügung, die z.T. eine wertvolle präparative Ergänzung darstellt.

In Tab. 4 sind die ¹H-NMR-Spektren der dargestellten 1H-1-Germacyclohexa-2,4-diene 16 und 17 zusammengestellt, wie bei 10, 11 setzen sich die ¹H-NMR-Spektren jeweils aus einem ABXY- (H⁶, H⁶', H¹, H⁵) und einem ABC-System (H², H³, H⁵) zusammen.

Das ¹³C-NMR-Spektrum von 1,4-Di-t-butyl-1H-1-germacyclohexa-2,4-dien (10b) (Tab. 2) zeigt, dass die Signale der Ring-C-Atome im Vergleich zu denen der 1,1-Dialkyl(aryl)-1-germacyclohexa-2,4-diene (5–7) praktisch lagekonstant sind.

In den IR-Spektren der 1H-1-Germacyclohexa-2,4-diene (10, 11 und 16, 17) werden die Signale der Ge-H-Valenzschwingung als starke Banden in dem in der Literatur [8] angegebenen Bereich von 1990-2060 cm⁻¹ beobachtet (Tab. 5). Durch einen Vergleich mit den zu 10, 11, 16 und 17 entsprechenden Ge-Hal-Verbindungen lässt sich die starke Bande bei 720-730 cm⁻¹ der Ge-H-Deformationsschwingung zuordnen.

TABELLE 4							
¹ H-NMR-SPEKTR	en von dei	N VERBINDUNGEN	16, 17 (60 MHz,	CDCl ₃ , ppm)			
Verbindung	R	R'	H1	H ²	H ³	H5	He, H6'
16c R = C ₆ H ₅ R' = CH ₃	7.22 (8)	3.67 (d) J(H−Ge−CH ₃) ≃ 3.5 Hz	4.17 (Sextett)	6.28 J(H ² , H ³) 14.1 Hz	6.86	6,07 a	1.67 (m)
17a R = c-C ₆ H ₁₁ R' = C ₂ H ₅	0.83	2,33 (m)	4.10 (m)	8.08 J(H ² , H ³) 13.2 Hz	6.53	5.62 a	im Bereich des Multipletts von 0.83—2.33 (m)
¹ H-NMR-SPEKTR LAOCOONLAM	en von der Berechn	N VERBINDUNGEN ET	18, 17 (90 MHz,	CDCl ₃ , ppm), DIE 6- UNI	J-WERTE DER	RINGPROTONE	n wurden nach
170 R = C ₆ H ₅ R' = C ₂ H ₅	7.28 (m)	0.74— 1.61 (m)	4.13 (m) J(H ¹ , H ⁵) 1.16 Hz	6,33 J(H ² , H ³) 19.33 Hz J(H ² , H ⁵) 1,14 Hz	6.95 J(H ³ , H ⁵) 1.33 Hz	0.16 ^d J(H ⁵ , H ⁶) 5.52 Hz J(H ⁵ , H ⁶) 5.75 Hz	H ⁶ : 1.82; J(H ⁶ , H ¹) (trans) 4.25 Hz; H ⁶ : 2.01; J(H ⁶ , H ¹) (c is) 4.60 Hz; J(H ⁶ , H ⁶) ~18.25 Hz

^a Triplett mit Felnstruktur.

TABELLE 5

IR-SPEKTREN DER 1H-1-GERMACYCLOHEXA-2,4-DIENE (Film, cm⁻¹)

Verbindung	v(Ge-H)	δ(Ge—H)	v(cis-CH=CH)	v(CR=CH)	v(C ₆ H ₅)	δ(C(CH ₃) ₃)
$10b B = B' = C(CH_{a})_{a}$	2020vs	735s	710s	810s	-	1365vs 1390m
$10c$ $B = C_{CH_{C}} B' = C(CH_{C})$	2010s	725s	690s	800m		1355m
11c $R = R' = C_{c}H_{c}$	2040vs	730s	690s	790w	735s	
16b $R = C_{1}H_{2}$ $R' = CH_{2}$	2060vs	740s	705m	805m	_	
17a	2045vs	720s	-	800w	755w	
$R = C_{2}H_{5}$ 17e $R = C_{6}H_{5}, R' = C_{2}H_{5}$	2055vs	730s	705m	780m	750s	-

1-Halogen-1-alkyl(aryl)-4-alkyl(aryl)-1-germacyclohexa-2,4-diene durch Ge--H \rightarrow Halogenierung der 1H-Germacyclohexa-2,4-diene

Die oben dargestellten 1H-1-Germacyclohexa-2,4-diene (10, 11, 16 und 17) sind wertvolle Edukte für die Einführung funktioneller Gruppen am Germanium. Die Ge-H \rightarrow Ge-Cl-Umwandlung gelingt glatt durch Umsetzung der 1H-1-Germacyclohexa-2,4-diene mit PCl_s in siedendem Tetrachlorkohlenstoff; die 1-Chlor-1-germacyclohexa-2,4-diene (18, 19) werden direkt durch anschliessende Destillation im Ölpumpenvakuum in 70-95-proz. Ausbeute als farblose bis schwach gelbe Flüssigkeiten bzw. Öle erhalten, die in der Kälte z.T. kristallin erstarren:

 $(b, R = C(CH_3)_3; c, R = C_6H_5)$

Die Bromierung Ge-H \rightarrow Ge-Br gelingt am besten durch die Umsetzung der 1H-1-Germacyclohexa-2,4-diene mit N-Bromsuccinimid (NBS) in siedendem Tetrachlorkohlenstoff in Gegenwart von Azoisobuttersäuredinitril. Das gebildete, in CCl₄ unlösliche Succinimid lässt sich durch Filtration einfach abtrennen, die 1-Brom-1-germacyclohexa-2,4-diene (20-22) werden durch Destillation im Ölpumpenvakuum als gelbliche Öle in 67-74-proz. Ausbeute erhalten.

Die 1-Halogen-1-germacyclohexa-2,4-diene (18, 19 bzw. 20–22) sind wie die Ge-H-Edukte am Heteroatom chiral, die benachbarte CH₂-Gruppe ist diastereotop. In den ¹H-NMR-Spektren (Tab. 6) erscheinen die Ringprotonen (Forsetzung s. S. 190)

H-NMR-SPEKTREN VON DE	N VERBINDUNGEN	I 18-25 (80 MHz, CI	DCl ₃ , ppm)			
/erbindung	n	R'	H² H	E	βH	He, He'
80 t = C ₆ H ₅ t = C ₂ H ₅ t = Cl	(s) 7.17	0.67—1.60 (m)	6.27; 6.50 J(H ² , H ³) 14 Hz	93 a	6.17 (t mit Feinstruktur)	2.15 (d); 2.20 (d) J(H ⁵ , H ⁶) 6 Hz
96 2 = C ₆ H5 2 = C(CH3)3 2 = C(CH3)3	7.25 (s)	1.17 (s)	0.27; 8.50 J(H ² /H ³) 14 Hz	.00 a	6,20 (t mit Feinstruktur)	2.15,(d) J(H ⁵ , H ⁶) <u>~</u> 5.5 Hz
9b (90 MHz, CDCl ₃ , ppm) ^b 1 = R' = X(CH ₃)3 K = Cl	1.07 (s)	1.14 (s)	6.31 J(H ² , H ³) 18.54 H J(H ² , H ⁵) 1.05 Hz J	.04 z (H ³ , H ⁵) —1.76 Hz	6,94 J(H ⁵ , H ⁶) 6,28 Hz	2.01 (d) J(H ⁶ , H ⁵) 5,28 Hz
000 3 = C6H5 3' = C2H5 K = Br	(a) 7.17 (a)	0.80—1.67 (m)	6.32; 6.53 J(H ² /H ³) 13 Hz	.87 a	6.18 (t mit Fein- struktur)	2.83 (d) J(H ⁵ , H ⁶) <u>~</u> 6 Hz
uc 1 = C ₆ H ₅ X' = C(CH ₃) ₃ K = Br	7.23 (s)	1.16 (ø)	6.32; 6.53 J(H ² , H ³) 13 Hz	93 a	0.18 (t mit Foin- struktur)	2,30 (d) J(H ⁵ , H ⁶) <u>~</u> 5,5 Hz
220 R. e. R. = 06H5 K. e. Br	7.10—7.47 (m)		6.47; 6.70 J(H ² , H ³) 14 Hz	D 00,	0.25 (t mit Feinstruktur)	2,83 (d) J(H ⁵ , H ⁶) <u>~</u> 5,5 Hz

TABELLE 6 ¹H-NMR-SPEKTREN VON DEN VERBINDUNGEN **18—26** (60 MHz, CDCl3, p

^a Das zweite Signal des bei tiefem Feld liegenden Teils des AB-Spektrums (H³) fällt in das Aromaten-Multiplett. ^b Die 8- und J-Werte der Ringprotonen wurden nach LAOCOON-LAME berechnet.

 H^6 , H^5 als ABX- und H^2 , H^3 , H^5 als ABC-Systeme. Im Übrigen sind die Spektren von 20–22 weitgehend identisch mit denen der 1H-1-Germacyclohexa-2,4-diene.

In Fig. 3 ist das 90 MHz-¹H-NMR-Spektrum von 1-Chlor-1,4-di-t-butyl-1germacyclohexa-2,4-dien (19b) abgebildet. Für die Ringprotonen werden die Kopplungskonstanten nach dem LAOCOON-LAME-Programm gerechnet, das hiernach geplottete Spektrum ist in Fig. 3 dem exp. Spektrum spiegelbildlich gegenübergestellt.

Die IR-Spektren der 1-Halogen-1-germacyclohexa-2,4-diene (Tab. 7) sind, mit Ausnahme der Ge-H-Schwingungen, praktisch identisch mit denen der 1H-1-Germacyclohexa-2,4-diene.

Das mit dem Beckman IR 4240 im Bereich von $300-700 \text{ cm}^{-1}$ aufgenommene Spektrum von 19b in CH₂Cl₂-Lösung zeigt in dem in der Literatur [9] angegebenen Bereich für die Ge-Alkyl-Valenzschwingungen (550-625 cm⁻¹) zwei Signale bei 545s und 577m cm⁻¹; in dem für ν (Ge-Hal) angebenen Bereich von 380-425 cm⁻¹ sind keine Absorptionsbanden zu beobachten.

Die 1-Chlor- und 1-Brom-1-germacyclohexa-2,4-diene sind Ausgangspunkt zahlreicher weiterer Synthesen und Untersuchungen, über die an anderer Stelle berichtet wird.

Fig. 3. ¹H-NMR-Spektrum von 1,4-Di-t-butyl-1-chlor-1-germacyclohexa-2,4-dien (19b) (CDCl₃) exp. und ber.

TABELLE 7

IR-SPEKTREN DER 1-HALOGEN-1-GERMACYCLOHEXA-2,4-DIENE (Film, cm⁻¹)

Verbindung	γ(cis-CH=CH)	γ(CR=CH)	γ(C ₆ H ₅)	δ(C(CH ₃) ₃)
18c R = C_6H_5 , R' = C_2H_5 ;	695s	805m	740m	_
$x = C_1$ 19b $R = R' = C(CH_3)_3;$ $x = C_1$	690s	805m		1360vs 1390w
$X = C_1$ 19e $R = C_6H_5, R' = C(CH_3)_3;$ $X = C_2$	705s	815m	745m	1365vs
$x = C_1$ 20c $R = C_6H_5; R' = C_2H_5;$	695s	-	740m	
x = Br 21b $R = R' = C(CH_3)_3;$ $Y = P_2$	710s	825m	750m	1370s 1390 w
21e $R = C_6H_5, R' = C(CH_3)_3;$	710s	820m	750s	1370s 1390 w
$R = R' = C_6 H_5;$	690s	780m	730s	-
25e	700s	790m	750vs	_

1,1-Dialkyl-4-alkyl(aryl)-6-chlor-1-germacyclohexa-2,4-diene (10)

Die Eingangs skizzierte, durch Säuren katalysierte Etherspaltung von 1-3über die 1-Germacyclohexadienylkationen als reaktiven Zwischenstufen gelingt, entsprechend der wohlbekannten Spaltung einfacher Ether [10], durch Umsetzung mit PCl₃ bzw. Bortrihalogeniden als Lewis-Säuren, auf sehr mildem Wege.

1,1-Diethyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5-dien (3c) reagiert mit PCl₃ in Tetrachlorkohlenstoff bereits bei Raumtemperatur sehr rasch; nach 3-stdg. Reaktionszeit erhält man als einziges Reaktionsprodukt das 1,1-Diethyl-4-phenyl-6-chlor-1-germacyclohexa-2,4-dien (23) als schwach gelbe Flüssigkeit in 62-proz. Ausbeute.

Die Etherspaltung von 3c gelingt nicht mit BCl_3 -Gas, das in etwa stöchiometrischer Menge bei 0°C in die n-Pentanlösung von 3c eingeleitet wird. Dies ist überraschend, da die 1-Chlor-4-methoxy-1-germacyclohexa-2,5-diene (11, siehe unten) unter gleichen Bedingungen glatt reagieren. Das ¹H-NMR-Spektrum von 23 (Tab. 6) bestätigt dessen Struktur. Die Ringprotonen sind ein ABCX-System, im 60 MHz-Spektrum werden neben dem H², H³-AB-System noch H³, H⁵- und H⁵, H⁶-Kopplungen beobachtet, eine H², H⁵-Kopplung ist erst im 90 MHz-Spektrum ($J(H^2, H^5) < 1$ Hz) zu erkennen.

Die PCl_3 -Etherspaltung von 1–3 zeigt ähnlich der Alkalimetall-Spaltung wieder eine, allerdings verschiedene, Substituentenabhängigkeit.

Bei den 1,1-Diphenyl-1-germacyclohexa-2,5-dienen (z.B. 1b und 1c) ist selbst nach 24-stdg. Erhitzen in Tetrachlorkohlenstoff praktisch keine Umsetzung mit PCl₃ zu beobachten. Eine sterische Hinderung durch die Phenylsubstituenten am Germanium würde dann verständlich, wenn die Etherspaltung nicht über ein Carbeniumion, sondern einen 6-gliedrigen Übergangszustand abläuft:

1-Alkyl(aryl)-4-Alkyl(aryl)-1,6-dichlor-1-germacyclohexa-2,4-diene (25)

Die aus den 1(Z), 4(Z)-1, 5-Dilithium-3-alkyl(aryl)-3-methoxypenta-1,4-dienen [2,3] durch Umsetzung mit Phenyltrichlorgerman leicht zugänglichen 1-Phenyl-1-chlor-4-alkyl(aryl)-4-methoxy-1-germacyclohexa-2,5-diene (24) [2] reagieren mit gasförmigen BCl₃ in n-Pentan bei 0°C glatt zu den 1-Phenyl-1,6-dichlor-1germacyclohexa-2,4-dienen (25):

 $(a, R = c-C_6H_{11}; b, R = C(CH_3)_3; c, R = C_6H_5)$

Das 1,4-Diphenyl-4-methoxy-1-germacyclohexa-2,5-dien (24c) liefert direkt ein kristallines Reaktionsprodukt, bei dem es sich um das Dichlorid 25c handelt. Durch Umkristallisation aus Petrolether (50-70°C) erhält man reines 25c in fast farblosen Kristallen, Schmp. 65-66°C in 66-proz. Ausbeute.

Das ¹H-NMR-Spektrum von 25c als ABCX-System (Tab. 6) entspricht weitgehend dem von 23, allerdings wird für H^3 des AB-Teils (H^2 , H^3) eine ausgeprägte Tieffeldverschiebung beobachtet, für die wahrscheinlich die Halogensubstitution am Germanium verantwortlich ist.

Im Massenspektrum (Schema 1) von 25c wird zwar das Germabenzolradikalkation und das durch nochmalige HCI-Eliminierung gebildete Dehydrogermabenzolradikalkation beobachtet, die Molekülfragmente höchster Intensität entstehen aber durch Eliminierung von C_6H_5GeCl und $C_6H_5GeCl_2$. Eine Aussage, ob in der 1,6-Dichlorverbindung 25c das *cis*- oder *trans*-Dichlorid vorliegt, ist mit den vorliegenden Daten nicht möglich.

SCHEMA 1. Massenspektrum von 25c (Varian MAT CH5, 70 eV) ⁷⁰Ge, ³⁵Cl.

1-Phenyl-1-chlor-4-cyclohexy-4-methoxy-1-germacyclohexa-2,5-dien (24a) reagiert mit BCl₃ unter analogen Bedingungen wie 24c glatt und einheitlich zu 25a. Man erhält ein gelbes, öliges Rohprodukt, das sich sowohl bei der Destillation im Hochvakuum (10^{-4} Torr) als bei der Säulenchromatographie an Kieselgel 60 zersetzt. Die spektroskopischen Daten des Rohprodukts bestätigen aber eindeutig, dass das Dichlorid 25a vorliegt.

Die 1-Chlor-1-phenyl-4-methoxy-germacyclohexa-2,5-diene (24b und 24c) reagieren ebenso wie 1-Chlor-1-methyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5-dien [2] mit PBr₃ in Tetrachlorkohlenstoff bereits bei Raumtemperatur unter Etherspaltung. Die erhaltenen 1,6-Dihalogen-1-germacyclohexa-2,4-diene konnten aber noch nicht rein erhalten werden, da es hierbei bereits zu einem teilweisen Ge-Cl \rightarrow Ge-Br-Austausch kommt, nach den Massenspektren liegen Gemische von 1-Chlor-6-brom- und 1,6-Dibrom-1-germacyclohexa-2,4dienen vor, die weder destillativ noch chromatographisch getrennt werden können.

Eine von Jutzi [11] an 1,1-Dialkyl-2,3,4,5-tetraphenyl-1-germacyclopentadienyl-Eisentricarbonylkomplexen beschriebene Alkyl \rightarrow Cl-Substitution mit SnCl₄ bei Raumtemperatur ist weder bei den 1,1-Dialkyl-1-germacyclohexa-2,5-dienen 2, 3 noch bei 24c zu beobachten. In benzolischer Lösung bei Raumtemperatur erhält man dunkelrote Öle, aus denen bislang keine definierten Reaktionsprodukte isoliert werden konnten.

1-Germacyclohexa-2,4-dien-Eisentricarbonyle

Eisentricarbonyl-Komplexe von 2,3,4,5-Tetraphenyl-1-germacyclopenta-2,4dienen wurden kürzlich von Jutzi [11] auf photochemischen Wege dargestellt, Übergangsmetallkomplexe von 1-Germacyclohexa-2,4-dienen hingegen sind bislang nicht bekannt.

Die oben beschriebenen 1,1-Dialkyl(aryl)-1-germacyclohexa-2,5-diene (5-7) sind wie die entsprechenden 1-Silacyclohexa-2,4-diene [12] zur Bildung von Fe(CO)₃-Komplexen (26-28) befähigt:

Hierzu werden die Diene in konzentrierter, benzolischer Lösung mit überschüssigem $Fe(CO)_5$ unter N₂-Schutzgas im Bombenrohr 15–20 h auf 150–160°C erhitzt. Durch Destillation der dunkelbraun gefärbten Reaktionslösungen lassen sich im Hochvakuum (10⁻³ Torr) im rotierenden Kugelrohr die Eisenkomplexe in 86- bis 89-proz. Ausbeute als intensiv gelbe Öle erhalten. Der Fe(CO)₃-Komplex des 1,1-Diphenyl-4-cyclohexyl-1-germacyclohexadiens (5a) kristallisiert nach kurzer Zeit, aus n-Pentan erhält man 26a als gelbbraune Kristalle, Schmp. 126°C.

Die ¹H-NMR-Spektren von 26–28 (Tab. 8) zeigen die bei den $Fe(CO)_3$ -Komplexen von offenkettigen und cyclischen 1,3-Dienen [13] und auch den 1-Silacyclohexa-2,4-dienen [12] beobachteten Besonderheiten.

Die Ringprotonen (H², H³, H⁵, H⁶, H^{6'}) sind ABMXY-Systeme. Die Protonen H⁶, H^{6'} (*exo*- bzw. *endo*-ständig zu Fe(CO)₃) der enantiotopen CH₂-Gruppe sind magnetisch nicht equivalent und stellen ein AB-System dar, jedes Signal des AB-Spektrums wird durch ³J-Kopplung mit H⁵ nochmals aufgespalten. Die Richtigkeit der Zuordnung der H⁶, H^{6'}-Signale vorausgesetzt, sind die Kopplungskonstanten J(H⁶(exo)/H⁵) (3.28 Hz) kleiner als J(H^{6'}(endo)/H⁵) (4.51 Hz).

Die Ringprotonen zeigen gegenüber den nicht komplex gebundenen Dienen 5-7 generell eine Hochfeldverschiebung, die bei H² ($\Delta\delta$ 4.3-4.4 ppm, siehe Tab. 6) und bei H⁵ ($\Delta\delta$ 2.3-2.5 ppm) besonders ausgeprägt ist, die Signale von H³ werden nur um etwa $\Delta\delta$ 0.9-1.0 ppm zu hohem Feld verschoben. Im ¹H-NMR-Spektrum der 1,1-Dimethylverbindung 27a (Fig. 4) werden zwei Methylsignale bei 0.10 ppm (s) und bei 0.33 ppm (s) beobachtet.

Nach den Ergebnissen der Röntgenstrukturanalyse am Cyclopentadienyl-(1methyl-1,2,5-triphenyl-1-silacyclopentadien)-kobalt(I) [14] ist das bei höherem Feld liegende Methylsignal der zu Fe(CO)₃ exo-ständigen CH₃-Gruppe zuzuordnen. Entsprechend wurde der bei höherem Feld liegende Teil des AB-Spektrums von H⁶, H^{6'} dem exo-ständigen H⁶ zugeordnet. Im 1,1-Diphenyl-1-germacyclohexa-2,4-dien · Fe(CO)₃-Komplex (26a) treten die Signale der Protonen einer Phenylgruppe als Singulett bei 7.15 ppm, die der anderen als Bandenkomplex bei 7.00–7.60 ppm auf. Eine Zuordnung zum exo- bzw. endo-ständi-

¹ H-NMR-SPEKTR	REN VON DEN V	ERBINDUNGEN 26-2	28 (90 MHz, CDCl ₃)				
Verbindung	R' (exo)	R' (endo)	H ⁶ (exo)	H ^{6'} (endo)	H ²	HS	H ³
26a R' = C ₆ H ₅	7.27 (6)	7.347.60 (m)	1.387 (d) 1.552 (d)	1.83 (d) 1.99 (d)	2.13 (d) J(H ² /H ³)	3.37 (m)	(dd) 5.73 (d)
			J(H ⁵ /H ⁶) (exo) 3.28 Hz J(H ⁶ /H ⁶ ') —14.77 Hz	J(H ^a /H ^v) (endo) 4.61 Hz	8,62 Hz		5.83 (d) J(H ³ /H ⁵) 1.44 Hz
27a R' = CH ₃	0.107 (8)	0.32 (8)	0.915 (d) 1.078 (d)	1.27 (d) 1.44 (d)	1.829 (d) $J(H^2/H^3)$	3.21 (m)	(dd) 5.51 (d)
			J(H ² /H ⁹) (exo) 3.28 Hz J(H ⁶ /H ⁶ ') —14.57 Hz	J(H ² /H ⁰) (endo) 4.51 Hz	8,60 Hz		5.61 (d) J(H ³ /H ⁵) 1.64 Hz
28 a R' = C ₂ HS	0.50-2	.20 (m)	۵	1.22 (d) 1.38 (d) 7/15/146/ /2010	1,74 (d) J(H ² /H ³) 8 69 H ²	3.22 (m)	(dd) 5.73 (d) 5.82 (d)
			J(H6/H6') —14.67 Hz	4.51 Hz	211 2010		J(H ³ /H ⁵) 1.44 Hz

TABELLE 8

^a Die Signale von H^6 fallen in den C $_2H_5$ -Bereich.

Fig. 4.¹H-NMR-Spektrum von 1,1-Dimethyl-1-germacyclohexa-2,5-diene-eisentricarbonyl (27a).

gen Phenyl-Substituenten bedarf weiterer Untersuchungen.

In den Massenspektren von 26–28 sind in den 70 eV- und 12 eV-Spektren die Molekülionen praktisch nicht zu beobachten, die Feldionisationsspektren (FI/CID) bestätigen die Molekulargewichte. Die durch stufenweise Eliminierung von CO bis zu $[M-3 \text{ CO}]^{+}$ gebildeten Molekülfragmente besitzen die höchste rel. Intensität.

Die CO-Valenzschwingungen liegen in dem für $Fe(CO)_3 \cdot Dien-Komplexe$ generell beobachteten Bereich. Im 1,1-Diphenyl-Komplex 13a tritt bei 2040 cm⁻¹ eine sehr scharfe Bande, bei 1950 und 1970 cm⁻¹ ein Dublett etwas verbreiterter Banden auf. Dieses Dublett fällt in den übrigen Komplexen zu einem sehr breiten Signal zusammen.

Experimenteller Teil

Allgemeine Arbeitsvorschrift zur Umsetzung der 1-Germacyclohexa-2,5-diene (1–3) mit Natriumpulver zu den Anionen 4, Hydrolyse zu den 1-Germacyclohexa-2,4-dienen 5–7

In einem 25 ml 2-Halskolben mit seitlichem Kapillarhahn mit Rückflusskühler und aufgesetztem Quecksilberventil werden unter Reinststickstoff 10.0 mmol 1-Germacyclohexa-2,5-dien 1-3 in 10 ml absolutem n-Pentan gelöst, mit etwa 40 mmol Natriumpulver versetzt und 5–24 h unter kräftigem magnetischen Rühren unter Rückfluss zum Sieden erhitzt. Die Natriumsalze 4 scheiden sich während dieser Zeit als gelbgrüne Niederschläge (z.T. als glänzende Flitter) ab. Man kühlt anschliessend mit Eis und lässt durch vorsichtiges Zutropfen von Eiswasser das überschüssige Natrium abreagieren unter gleichzeitiger Hydrolyse der Natriumsalze. Nach der Zugabe von 20–30 ml Ether schüttelt man aus, wäscht mehrmals mit Wasser, trocknet über Na₂SO₄ und zieht das Lösungsmittel ab. Die erhaltenen Rohprodukte 5–7 werden durch Destillation im rotierenden Kugelrohr gereinigt.

1,1-Diphenyl-4-cyclohexyl-1-germacyclohexa-2,4-dien (5a)

4.06 g (10.0 mmol) 1,1-Diphenyl-4-cyclohexyl-4-methoxy-1-germacyclohexa-2,5-dien (1a) [2] werden 24 h mit 1.00 g Natriumpulver wie beschrieben umgesetzt und aufgearbeitet. Man erhält 2.77 g Rohprodukt als gelbes Öl, nach der Destillation im rotierenden Kugelrohr bei 165–175°C (Luftbadtemperatur)/ 10^{-2} Torr 2.48 g (66%) 5a als farbloses Öl. Gef.: C, 73.64; H, 7.21. C₂₃H₂₆Ge (376.5) ber.: C, 73.27; H, 6.96%.

1,1-Diphenyl-4-t-butyl-1-germacyclohexa-2,4-dien (5b)

3.80 g (10.0 mmol) 1,1-Diphenyl-4-t-butyl-4-methoxy-1-germacyclohexa-2,5-dien (1b) [2] werden mit 1.00 g Natriumpulver wie beschrieben 24 h umgesetzt. Man erhält 3.11 g gelbes Öl, nach der Destillation bei 155–165°C/10⁻² Torr 2.17 g (62%) reines 5b als schwach gelbes Öl. Gef.: C, 71.93; H, 6.92. $C_{21}H_{24}Ge$ (350.4) ber.: C, 71.98; H, 6.90%.

1,1,4-Triphenyl-1-germacyclohexa-2,4-dien (5c)

3.80 g (10.0 mmol) 1,1,4-Triphenyl-4-methoxy-1-germacyclohexa-2,5-dien (1c) [2] werden mit 1.40 g (60.0 mmol) Natriumpulver in 30 ml abs. Petrolether (50/70°C) 70 Stunden unter Rückfluss zum Sieden erhitzt. Nach der hydrolysierenden Aufarbeitung erhält man ein gelbes, kristallines Rohprodukt, nach der Umkristallisation aus Ethanol 2.76 g (75.0%) farbloses, kristallines 5c, Schmp. 99-100°C. Gef.: C, 74.11; H, 5.31. $C_{23}H_{20}$ Ge (369.0) ber.: C, 74.86; H, 5.46%.

1,1-Dimethyl-4-cyclohexyl-1-germacyclohexa-2,4-dien (6a)

2.82 (10.0 mmol) 1,1-Dimethyl-4-cyclohexyl-4-methoxy-1-germacyclohexa-2,5-dien (2a) [2] werden wie beschrieben 15 h mit 0.70 g (30 mmol) Natriumpulver umgesetzt. Man erhält 2.40 g Rohprodukt, die Destillation bei 95–100°C (Luftbadtemperatur)/ 10^{-2} Torr liefert reines 6a als schwach gelbe Flüssigkeit, Ausb. 2.31 g (87%). Gef.: C, 60.97; H, 8.53. C₁₃H₂₂Ge (252.3) ber.: C, 61.88; H, 8.79%.

1,1-Diethyl-4-cyclohexyl-1-germacyclohexa-2,4-dien (7a)

3.10 g (10.0 mmol) 1,1-Diethyl-4-cyclohexyl-4-methoxy-1-germacyclohexa-2,4-dien (3a) [2] werden wie oben beschrieben 6 h mit 1.00 g Natriumpulver umgesetzt. Man erhält 2.50 g gelbes, trübes Öl als Rohprodukt, nach der Destillation im rotierenden Kugelrohr bei 115°C (Luftbadtemperatur) 2.22 g (79%) 7a als schwach gelbe, klare Flüssigkeit. Gef.: C, 64.37; H, 8.89. $C_{15}H_{26}Ge$ (280.4) ber.: C, 64.26; H, 9.35%.

In einem 100 ml 3-Halskolben mit Trockenrohr werden bei -78°C etwa 80 ml Ammoniak einkondensiert und nach Zugabe von etwa 2 g Natrium 1 Stunde magnetisch gerührt. Man kondensiert das getrocknete Ammoniak nun in einem schwachen Stickstoffstrom in eine 100 ml 2-Halskolben-Reaktionsapparatur mit Quecksilberventil um, gibt 460 mg Natriumschnitzel zu und rührt erneut 15–20 Minuten bei –78°C. Nach dem Einspritzen von 2.82 g (10 mmol) 1H-1.4-Di-t-butyl-4-methoxy-1-germacyclohexa-2,5-dien (8b) [2] entfernt man das Kühlbad und lässt unter magnetischem Rühren das Ammoniak abdampfen. Wenn etwa die Hälfte des Ammoniaks abdestilliert ist, schlägt die blaue Farbe der Lösung in die gelbbraune des gebildeten Natriumsalzes um. Nachdem zum Schluss das Ammoniak mit einem kräftigem N2-Strom vollständig entfernt worden ist, wird mit etwa 50 ml Ether und, unter Eiskühlung, mit etwa 20 ml Wasser versetzt. Die etherische Lösung liefert nach dem Waschen und Trocknen 2.30 g Rohprodukt 10b, das durch Destillation im Kugelrohr ($60-70^{\circ}C/10^{-2}$ Torr) als farblose Flüssigkeit rein erhalten wird, Ausb. 1.45 g (57%). Gef.: C, 61.26; H, 9.95. C₁₃H₂₄Ge (252.9) ber.: C, 61.73; H, 9.56%.

1H-1-t-butyl-4-phenyl-1-germacyclohexa-2,4-dien (10c)

3.0 g (10 mmol) 1H-1-t-Butyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5dien (8c) liefern analog zur Darstellung von 10b 2.45 g (90.0%) 10c, Sdp. $115-125^{\circ}C/10^{-2}$ Torr, als farblose Flüssigkeit. Gef.: C, 66.09; H, 7.20. C₁₅H₂₀Ge (272.9) ber.: C, 66.02; H, 7.39%.

1H-1,4-Diphenyl-1-germacyclohexa-2,4-dien (11c)

3.3 g (10 mmol) 1H-1,4-Diphenyl-4-methoxy-1-germacyclohexa-2,5-dien (9c) werden analog 8b mit Natrium/NH_{3 fl.} umgesetzt. Die hydrolysierende Aufarbeitung liefert bei 150–155°C/10⁻² Torr (Kugelrohr) 1.40 g (48%) 11c als gelbliches Öl. Gef.: C, 69.49; H, 5.67. $C_{17}H_{16}Ge$ (292.9) ber.: C, 69.71; H, 5.51%.

Reduktion von 1-Chlor-1-methyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5dien (12c) mit LiAlH₄ zu 1-Methyl-1H-4-phenyl-1-germacyclohexa-2,4-dien (16c)

In einem 100 ml 2-Halskolben mit Hg-Ventil suspendiert man unter Schutzgas etwa 230 mg (6 mmol) LiAlH₄ in 25 ml abs. Ether und tropft unter magnetischem Rühren bei Raumtemperatur mit der Spritze 300 mg 12c zu. Nach 6-stdg. Reaktionszeit erhitzt man noch zwei Stunden unter Rückfluss zum Sieden und hydrolysiert unter Eiskühlung vorsichtig mit 5–10 ml Wasser. Nach dem Waschen, Trocknen und Abziehen des Solvens liefert die Destillation im Ölpumpenvakuum bei 90–95°C/10⁻² Torr (Kugelrohr) 2.08 g (89%) 16c als farbloses Öl. Gef.: C, 61.13; H, 6.43. C₁₂H₁₄Ge (230.8) ber.: C, 62.43; H, 6.11%.

1H-1-t-Butyl-4-phenyl-1-germacyclohexa-2,4-dien (10c)

5.0 g (15.0 mmol) 2,5-Dien (8c) werden wie bei der Darstellung von 16c mit etwa 380 mg (10.0 mmol) LiAlH₄ 72 Studen in der Siedehitze umgesetzt. Nach der hydrolysierenden Aufarbeitung liefert die Kugelrohrdestillation bei 105– 115° C/10⁻² Torr 1.68 g (60%) 1H-1-t-Butyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5-dien und bei $120-125^{\circ}C/10^{-2}$ Torr 1.15 g (40%) 10c als farblose Flüssigkeit; 10c lässt sich nicht analysenrein vom 2,5-Dien abtrennen.

1H-1-Ethyl-4-cyclohexyl-1-germacyclohexa-2,4-dien (17a)

3.16 g (10.0 mmol) 1-Chlor-1-ethyl-4-cyclohexyl-4-methoxy-1-germacyclohexa-2,5-dien (13a) [2] werden wie bei 10c beschrieben mit LiAlH₄ umgesetzt. Die destillative Aufarbeitung liefert 17a in 40-proz. Ausbeute als farblose Flüssigkeit (Sdp. 80–90°C/10⁻² Torr); 17a lässt sich ebenfalls nicht analysenrein vom mitgebildeten 1H-1-Ethyl-4-cyclohexyl-4-methoxy-1-germacyclohexa-2,5-dien abtrennen.

1-Chlor-1,4-di-t-butyl-1-germacyclohexa-2,4-dien (19b)

Unter Feuchtigkeitssauschluss werden 1.04 g (5.0 mmol) PCl₅ und 1.42 g (4.95 mmol) 1H-1,4-Di-t-butyl-1-germacyclohexa-2,4-dien (10b) in 25 ml abs. CCl₄ 2 Stunden bei Raumtemperatur gerührt; abschliessend erhitzt man noch 1 Stunde unter Rückfluss zum Sieden. Nach dem Abziehen des Solvens liefert die Destillation des gelbbraunen, kristallinen Rohprodukts im rotierenden Kugelrohr (85–90°C/10⁻² Torr) 1.53 g 19b als farblose Flüssigkeit, die in der Kälte kristallin erstarrt. Gef.: C, 53.76; H, 8.14; Cl, 13.00. C₁₃H₂₃ClGe (287.4) ber.: C, 54.34; H, 8.07; Cl, 12.34%.

1-Chlor-1-t-butyl-4-phenyl-1-germacyclohexa-2,4-dien (19c)

1.35 g (5.0 mmol) 1H-1-t-Butyl-4-phenyl-1-germacyclohexa-2,4-dien (10c) werden wie bei der Darstellung von 19b mit PCl₅ umgesetzt. Die destillative Aufarbeitung liefert bei 125–135°C (Luftbadtemp.)/ 10^{-2} Torr 1.54 g (85%) 19c als gelbes Öl, das in der Kälte kristallin wird. Gef.: C, 59.01; H, 6.25; Cl, 12.11. C₁₅H₁₉ClGe (307.4) ber.: C, 58.61; H, 6.23; Cl, 11.53%.

1-Chlor-1-ethyl-4-phenyl-1-germacyclohexa-2,4-dien (18c)

Zu einer Lösung von 550 mg (2.65 mmol) PCl_5 in 10 ml abs. CCl_4 werden unter Rühren und Schutzgas 650 mg (2.65 mmol) 1-Ethyl-1H-4-phenyl-1-germacyclohexa-2,4-dien (17c) in 10 ml abs. CCl_4 zugetropft. Man erwärmt 1 Stunde unter Rückfluss zum Sieden, zieht das Solvens ab und erhält als Rohprodukt 720 mg braunes Öl. Die Destillation im rotierenden Kugelrohr bei 135–145°C (Luftbadtemp.)/10⁻² Torr liefert 18c als schwach rosa gefärbte Flüssigkeit, Ausb. 570 mg (77%). Gef.: C, 56.21; H, 5.76. $C_{13}H_{15}ClGe$ (279.3) ber.: C, 55.90; H, 5.41%.

1-Brom-1-ethyl-4-phenyl-1-germacyclohexa-2,4-dien (20c) durch Umsetzung von 1H-1-Ethyl-4-phenyl-1-germacyclohexa-2,4-dien (17c) mit N-Bromsuccinimid (NBS)

2.0 g (etwa 8.0 mmol) 17c und 1.45 g (8.2 mmol) NBS in 15 ml abs. CCl₄ werden nach Zugabe von etwa 80 mg Azo-bis-isobutyronitril 5 Stunden unter Rückfluss zum Sieden erhitzt. Nach dem Erkalten wird vom Succinimid abgesaugt, die destillative Aufarbeitung liefert bei 145–155°C/10⁻² Torr (Kugelrohrdestillation) 1.95 g (74%) 20c als gelbliches Öl. Gef.: C, 48.43; H, 5.01; Br, 25.12. C₁₃H₁₅BrGe (323.7) ber.: C, 48.23; H, 4.67; Br, 24.68%.

1-Brom-1-t-butyl-4-phenyl-1-germacyclohexa-2,4-dien (21c)

0.74 g (2.7 mmol) 1H-1-t-butyl-4-phenyl-1-germacyclohexa-2,4-dien (10c) werden, wie bei der Darstellung von 20c beschrieben, mit NBS umgesetzt. Man erhält bei 130–140°C/10⁻² Torr 0.69 g (73%) 21c als schwachgelbes Öl.

1-Brom-1,4-diphenyl-1-germacyclohexa-2,4-dien (22c)

1.45 g (5.0 mmol) 1H-1,4-Diphenyl-1-germacyclohexa-2,4-dien (11c) werden, analog $10c \rightarrow 21c$, mit NBS umgesetzt. Die destillative Aufarbeitung liefert bei 170–180°C/10⁻² Torr (rotierendes Kugelrohr) 1.24 g (67%) 22c als leicht bräunliches Öl. Gef.: C, 53.76; H, 4.18. C₁₇H₁₅BrGe (371.8) ber.: C, 54.92; H, 4.07%.

1,1-Diethyl-4-phenyl-6-chlor-1-germacyclohexa-2,4-dien (23)

In einem 25 ml-Stickstoffkolben mit seitlichem Hahn werden 304 mg (1.0 mmol) 1,1-Diethyl-4-phenyl-4-methoxy-1-germacyclohexa-2,5-dien (3c) [2] in 3 ml abs. Tetrachlorkohlenstoff gelöst und mit 1.0 ml frisch destilliertem PCl₃ 3 h bei Raumtemperatur gerührt. Nach dem Abziehen vom Solvens und überschüssigem PCl₃ erhält man 280 mg rotbraunes Öl. Die Destillation im rotierenden Kugelrohr bei 165°C (Luftbadtemp.)/10⁻² Torr liefert 23 als schwach gelbe Flüssigkeit, Ausb. 192 mg (62%). Gef.: C, 59.02; H, 6.44; Cl, 11.98. C₁₅H₁₉ClGe (308.8) ber.: C, 58.34; H, 6.20; Cl, 11.48%.

1,4-Diphenyl-1,6-dichlor-1-germacyclohexa-2,4-dien (25c)

In einem 2-Hals-Stickstoffkolben mit Gaseinleitungsrohr und Quecksilberventil-Verschluss werden 1.44 g (4.00 mmol) 1,4-Diphenyl-1-chlor-4-methoxy-1germacyclohexa-2,5-dien (9c) in 70 ml abs. n-Pentan gelöst. Bei 0°C (Eisbad) leitet man etwa 4 min gasförmiges BCl₃ ein, das mit trockenem Stickstoff verdünnt wird. Man rührt noch 30 min bei 0°C, während dieser Zeit färbt sich die gelbe Lösung rotbraun. Hierauf zieht man im N₂-Strom Lösungsmittel und überschüssiges BCl₃ bei Raumtemperatur im Wasserstrahlvakuum ab. Das erhaltene, dunkelbraune Öl kristallisiert beim Anreiben mit Petrolether (50–70°C). Die mehrmalige Umkristallisation aus Petrolether (50–70°C) liefert 10c als noch schwach bräunlich gefärbte Kristalle, Schmp. 65–66°C, Ausb. 0.97 g (66%). Gef: C, 56.77; H, 4.09. C₁₇H₁₄Cl₂Ge (363.2) ber.: C, 56.22; H, 3.89%.

1-Phenyl-4-cyclohexy-1,6-dichlor-1-germacyclohexa-2,4-dien (25a)

1.82 g (5.00 mmol) 1-Phenyl-1-chlor-4-cyclohexyl-4-methoxy-1-germacyclohexadien (9a) werden wie bei der Darstellung von 10c beschrieben, mit gasf. BCl₃ umgesetzt. Nach dem Abziehen vom Solvens und überschüssigem BCl₃ erhält man 10a als grünliches Öl, das sich sowohl bei der Destillation im Hochvakuum als auch bei der Chromatographie an Kieselgel 60 zersetzt.

Allgemeine Arbeitsvorschrift zur Darstellung der 1-Germacyclohexa-2,4-dien · FeCO₃-Komplexe (26–28)

In einem mehrfach evakuierten und mit Stickstoff gespülten Bombenrohr werden 5.00 mmol 1-Germacyclohexa-2,4-dien (5, 6, 7) in 5 ml O₂-freiem abs. Benzol gelöst und mit 5.0 ml Fe(CO)₅ versetzt. Man kühlt, unter Schutzgas, mit flüssiger Luft und schmilzt das evakuierte Bombenrohr ab. Nach 16–20stdg. Erhitzen im Bombenrohrofen auf 155–160°C wird das Reaktionsgemisch unter Stickstoff in einen Schlenkkolben überführt. Nach dem Abziehen des Lösungsmittels wird destilliert oder umkristallisiert.

1,1-Diphenyl-4-cyclohexyl-1-germacyclohexa-2,4-dien \cdot Fe(CO)₃ (26a)

1.88 g (5 mmol) 1-Germacyclohexa-2,4-dien (5a) werden wie oben beschrieben mit $Fe(CO)_5$ umgesetzt. Nach dem Abziehen vom Solvens und überschüssigem $Fe(CO)_5$ erhält man ein orangerotes, kristallines Rohprodukt. Aus n-Pentan erhält man reines 11a als orange Kristalle, Schmp. 126°C, Ausb. 0.96 g (37%). Gef.: C, 60.53; H, 5.07. C₂₆H₂₆O₃FeGe (516.3) ber.: C, 60.52; H, 5.08%.

1,1-Dimethyl-4-cyclohexyl-1-germacyclohexa-2,5-dien-eisentricarbonyl (27a)

2.52 g (10 mmol) 1,1-Dimethyl-4-cyclohexyl-1-germacyclohexa-2,4-dien (6a) werden mit 7.0 ml Fe(CO)₅ wie oben beschrieben umgesetzt. Man erhält ein dunkelbraunes Öl, aus dem sich bei der Destillation in einer Mikrodestillationsapparatur bei 128–135°C/10⁻² Torr 3.32 g (89%) 27a als oranges Öl isolieren lassen. Gef.: C, 49.91; H, 5.58. C₁₆H₂₂O₃FeGe (392.2) ber.: C, 49.03; H, 5.61%.

1,1-Diethyl-4-cyclohexyl-1-germacyclohexa-2,4-dien-eisentricarbonyl (28a)

1.40 g (5.00 mmol) 1,1-Diethyl-4-cyclohexyl-1-germacyclohexa-2,4-dien (7a) werden, wie oben beschrieben, mit Fe(CO)₅ umgesetzt. Man erhält ein tiefbraunes Rohprodukt, die Mikrodestillation liefert bei 150–160°C (Luftbadtemp.)/10⁻² Torr 1.80 g (86%) 28a als rotbraunes Öl. Gef.: C, 51.69; H, 6.17. $C_{18}H_{26}O_{3}FeGe$ (420.3) ber.: C, 51.47; H, 6.19%.

Literaturverzeichnis

- 1 D. Seyferth, Th.F. Jula, D.C. Mueller, P. Mazerolles, G. Manuel und F. Thoumas, J. Amer. Chem. Soc., 92 (1970) 657.
- 2 G. Märkl und D. Rudnick, J. Organometal. Chem., 181 (1979) 305.
- 3 G. Mürkl, H. Baier, P. Hofmeister, F. Kees und C. Soper, J. Organometal. Chem., 173 (1979) 125.
- 4 Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart, 1970, Band 13/1, S. 410-420; siehe z.B. auch K. Hafner und K. Gdiasch, Angew. Chem., 74 (1962) 118.
- 5 C.W. Haigh, Ann. Report on NMR-Spektroscopy, Vol. 4, Academic Press, London, 1971, S. 311.
- 6 D.E. Dorman, M. Jautelat und J.D. Roberts, J. Org. Chem., 36 (1971) 2757.
- 7 V. Formauk, L. Desnoyer, H.P. Kellerhals und J.T. Clerk, ¹³C-Data Bank, Vol. 1, Bruker Physik Karslruhe 1976.
- 8 (a) D. Quane und R.S. Bottei, Chem. Rev., 63 (1963), 403; (b) M. Lesbre, P. Mazerolles und J. Satgé, The Organic Compounds of Germanium, Interscience, New York, J. Wiley, London, S. 314.
- 9 D. Quane und R.S. Bottei, Chem. Rev., 63 (1963) 438; ref. 8b, S. 344.
- 10 siehe [3], Lit. stelle [24].
- 11 P. Jutzi und A. Karl, J. Organometal. Chem., 138 (1977) 57.
- 12 G. Märkl, C. Soper, P. Hofmeister und H. Baier, J. Organometal. Chem., 174 (1979) 305.
- 13 M.L.H. Green, L. Pratt und G. Wilkinson, J. Chem. Soc., (1959) 3753; A. Davison, W. McFarlane und G. Wilkinson, Chem. Ind. (London), (1962) 820; J. Chem. Soc., (1962) 4821; K. Bachmann und W. v. Philipsborn, Org. Magn. Reson., 8 (1976) 648.
- 14 J.J. Daly und F. Sanz, unveröffentlichte Ergebnisse.