Journal of Organometallic Chemistry, 165 (1979) 329-340 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

[η²-(C,O)-TRIPHENYLCYCLOPROPYLCARBONYL]TRICARBONYL-VANADIUM-KOMPLEXE, VERBINDUNGEN MIT ÜBER C UND O KOORDINIERTEN ACYL-LIGANDEN. KRISTALL- UND MOLEKÜLSTRUKTUR VON (η²-COC₃Ph₃H₂)V(CO)₃(Ph₂AsCH₂CH₂PPh₂)

UWE FRANKE und ERWIN WEISS*

Institut für Anorganische und Angewandte Chemie der Universität Hamburg, Martin-Luther-King-Platz 6, D-2000 Hamburg 13 (B.R.D.)

(Eingegangen den 31. Juli 1978)

Summary

[Et₄N][V(CO)₄L₂] salts (L₂ = dppe, arphos) give upon treatment with triphenyl-cyclopropenylium bromide under hydrogenation acyl complexes of the type $(\eta^2\text{-COC}_3\text{Ph}_3\text{H}_2)\text{V(CO)}_3\text{L}_2$. The acyl group is linked to the metal atom via its C and O atom, acting formally as a three-electron donor. A single-crystal X-ray structure investigation of $[\eta^2\text{-}(C,O)\text{-triphenylcyclopropylcarbonyl}]\text{tricarbonyl}(1\text{-diphenylphosphino-2-diphenylarsinoethane})\text{vanadium has been carried out }(R=0.062, 1720 \text{ reflexions})$. The monoclinic unit cell (space group $P2_1/c$) contains 4 molecules. Considering the acyl group as a monodentate ligand, the central V atom is coordinated pseudo-octahedrally with the CO groups in facial positions. Attempts to prepare analogous complexes with L_2 = dppm, diars were not successful.

Zusammenfassung

 $[{\rm Et_4N}][{\rm V(CO)_4L_2}]$ -Salze (${\rm L_2}$ = dppe, arphos) reagieren mit Triphenylcyclopropenylium-bromid unter Hydrierung zu Acyl-Verbindungen des Typs (η^2 -COC₃Ph₃H₂)V(CO)₃L₂. Die Acyl-Gruppe ist an das Metall-Atom über ihr C- und O-Atom gebunden und ist somit formal ein Dreielektronendonator. Es wurde eine Röntgen-Einkristalluntersuchung von [η^2 -(C, C)-Triphenylcyclopropylcarbonyl]tricarbonyl(1-diphenylphosphino-2-diphenylarsinoethan)vanadium durchgeführt (R = 0.062, 1720 Reflexe). Die monokline Elementarzelle (Raumgruppe $P2_1/c$) enthält 4 Moleküle. Bei Betrachtung der Acyl-Gruppe als einzähnigen Liganden ist das zentrale V-Atom pseudooktaedrisch koordiniert, wobei die CO-Gruppen in facialen Positionen angeordnet sind. Die Darstellung analoger Komplexe mit L_2 = dppm, diars gelang nicht.

Einleitung

Im Rahmen unserer Untersuchungen über η^3 -Allyl-Komplexe des Hexacarbonyl-vanadiums [1—7] berichteten wir kürzlich auch über das (η^3 -Triphenyl-cyclopropenyl)pentacarbonyl-vanadium, (η^3 -C₃Ph₃)V(CO)₅, dessen Darstellung durch Bestrahlung des aus Na[V(CO)₆] und Triphenylcyclopropenylium-bromid gebildeten [C₃Ph₃][V(CO)₆] gelingt [2]. Den ersten Komplex mit einem η^3 -Triphenylcyclopropenyl-Liganden, der formal als cyclischer η^3 -Allyl-Ligand betrachtet werden kann, isolierten 1964 Gowling und Kettle bei der Umsetzung von Ni(CO)₄ mit Triphenylcyclopropenylium-bromid [8,9].

Versuche zur Darstellung phosphinsubstituierter Komplexe des Typs (η^3 - C_3Ph_3)V(CO)₄L (L = PPh₃, PEt₃) durch Umsetzung von (η^3 - C_3Ph_3)V(CO)₅ mit PR₃ (R = Ph, Et) misslangen. Daher untersuchten wir das Reaktionsverhalten von [Et₄N][V(CO)₄L₂]-Verbindungen (L₂ = 1,2-Bis(diphenylphosphino)ethan (dppe), 1-Diphenylphosphino-2-diphenylarsinoethan (arphos), o-Phenylenbis-(dimethylarsin) (diars) und Bis(diphenylphosphino)methan (dppm)) gegenüber Cyclopropenylium-Salzen mit dem Ziel, Komplexe des Typs (η^3 - C_3R_3)V(CO)₃L₂ (I; R = CH₃, Ph) zu synthetisieren.

$$\begin{array}{c}
R \\
C \\
C \\
C \\
C \\
C \\
C \\
R
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
R
\end{array}$$

$$\begin{array}{c}
C \\
C \\
C \\
C \\
R
\end{array}$$

Präparative Ergebnisse

Die untersuchten Reaktionen nahmen einen unerwarteten Verlauf. [Et₄N]-[V(CO)₄dppe] reagierte mit Triphenylcyclopropenylium-bromid nicht zu einem η^3 -C₃Ph₃-Komplex, sondern entsprechend Gl. 1 in rascher Reaktion und ca. 16%-iger Ausbeute zu (η^2 -COC₃Ph₃H₂)V(CO)₃dppe (II).

$$[\text{Et}_{4}\text{N}][\text{V(CO)}_{4}\text{dppe}] + \begin{bmatrix} Ph & Ph \\ Ph & C = 0 \\ Ph & Ph \\ Ph & C = 0 \\ Ph & Ph \\ Ph & C = 0 \\ P(Ph)_{2} \\ P($$

Beim analogen arphos-Komplex (III; Darstellung ohne UV-Bestrahlung) betrug die Ausbeute nur ca. 8%. Weitere Produkte der Umsetzungen sind die neutralen $V(CO)_4L_2$ -Komplexe (L_2 = dppe [10], arphos [7]) und Bis(triphenylcyclopropenyl).

Der Dreiring ist bei der Reaktion hydriert worden. Dabei ist die Herkunft des Wasserstoffs ungeklärt. Eine ähnliche Hydrierung wird bei der Umsetzung von Na₂[Fe(CO)₄] · 1,5-Dioxan mit Triphenylcyclopropenylium-bromid beobachtet [11].

Die Bindung der CO-Gruppe des Acyl-Liganden an das V-Atom erfolgt über dessen C- und O-Atom. Damit wirkt die Acyl-Gruppe formal als Dreielektronendonator. Hitch et al. [12] stellten 1971 (CH₃CO)RuCl(CO)(PPh₃)₂ als ersten Vertreter dieses Bindungstyps dar. Die Autoren postulierten eine η^2 -gebundene Acyl-Gruppe aufgrund einer sehr niedrigen $\tilde{\nu}$ (CO)-Absorption bei 1505 cm⁻¹. Ähnlich niedrige Absorptionen werden im (CH₃CO)V(Cp)₂(CO) [13] und im (CH₃CO)WCp(CO)(C₂H₂) [14] beobachtet. Der röntgenographische Nachweis für diese Art der Bindung gelang 1976 [15] bei dem Komplex (CH₃CO)Zr(Cp)₂-(CO) (Fig. 4).

Für II und III ist eine analoge CO-Absorption des Liganden bei ca. 1500 cm⁻¹ zu erwarten; eine Zuordnung war jedoch nicht möglich, weil in diesem Bereich auch Grundschwingungen des restlichen Moleküls liegen.

Die Umsetzung von [Me₄N][V(CO)₄diars] mit Triphenylcyclopropenyliumbromid verläuft nicht analog zu Gl. 1. Es wurde ein grüner, mässig luftstabiler Carbonylkomplex unbekannter Zusammensetzung isoliert, bei dem es sich weder um V(CO)₄diars (analog V(CO)₄dppe bzw. V(CO)₄arphos) oder [V(CO)₄diars]₂ [16] noch um einen zu II und III analogen Komplex handelt. [Et₄N][V-(CO)₄dppm] reagiert mit Triphenylcyclopropenylium-bromid unter schneller Grünfärbung der THF-Lösung. Im Rückstand der eingedampften Reaktions mischung konnte jedoch keine Metallcarbonyl-Verbindung IR-spektroskopisch nachgewiesen werden. Ebenfalls erfolglos verliefen die Umsetzungen von [Et₄N][V(CO)₄dppe] und [Me₄N][V(CO)₄diars] mit Trimethylcyclopropenyliumtetrafluoroborat.

Röntgenographische Untersuchungen

 $(\eta^2\text{-COC}_3\text{Ph}_3\text{H}_2)\text{V(CO})_3$ arphos (III) kristallisiert aus einer gesättigten Toluol/ Hexan-Lösung bei -20°C in quaderförmigen, tiefroten, fast schwarzen, monoklinen Kristallen. Raumgruppe $P2_1/c$; a=965.1(7), b=1708.7(12), c=2658.5(18) pm; $\beta=104.85(2)^{\circ}$; V = 4238×10^6 pm³; Z = 4; $\rho_{\text{röntg.}}=1.37$ g cm⁻³. Die Vermessung ($\theta/2\theta$ -Scan-Technik, Mo-K_α Strahlung) eines Kristalls ($0.15\times0.1\times0.1$ mm) bis zu einem Beugungswinkel von $\theta=25^{\circ}$ ergab 2116 symmetrieunabhängige Reflexe. Davon wurden 1720 Reflexe zur Verfeinerung herangezogen.

Mit Hilfe des Direktmethodenprogramms MULTAN 74 [17] wurden drei Schweratomlagen ermittelt. Dabei konnten die Koordinaten des V-Atoms eindeutig zugeordnet werden, nicht jedoch die des As- bzw. P-Atoms. Es ergab sich, dass diese beiden Schweratomlagen mit As- und P-Atomen im ungefähren Verhältnis 1/1 besetzt sind. Sie werden im folgenden als E(1) und E(2) bezeichnet. Für die Rechnungen erwies sich erwartungsgemäss die Streukurve des Cr (24 Elektronen) als am geeignetsten. Die weitere Strukturbestimmung erfolgte mittels Fouriersynthesen und LSQ-Rechnungen (Programm SHEL-X 76) [18]. Die Lagen aller 41 H-Atome wurden berechnet (angenommener C(Ph)—H(Ph)-Abstand 100 pm) und mit isotropen Temperaturfaktoren verfeinert. Abschliessender R-Wert: 0.062 (ungewichtet).

TABELLE 1

ATOMPARAMETER UND TEMPERATURFAKTOREN VON (η²-COC3Ph3H2)V (CO) 3arphos

	ret misserope 1 emperaturiantor	. :	$\frac{1}{33^{16}} = \frac{1}{3} \frac{1}{6} \frac{1}{10^{10}} = \frac{1}{10^{10}$	1-a*- + U ₂₂ k-b	** + U33/*c** +	- 2 <i>U</i> ₁₂ hka*b*	+ 2U 13hla *c *	. + 2U23kIb*c	*)](X10 ⁻³)	
Atom	x/a	s/b	2/0	U ₁₁	U_{22}	U_{33}	. U ₂₃	U13	U_{12}	
۸	0.3789(2)	0.8495(1)	0,8107(1)	34(2)	39(2)	33(2)	6(1)	11(1)	6713	
E(1)	0.3245(2)	0.9951(1)	0,8176(1)	37(2)	22(2)	27(2)	(;) 6	2(1)	9(1)	
E(2)	0.3794(3)	0,8964(1)	0.7206(1)	56(2)	31(2)	29(2)	5(1)	(1) V(1)	#(T) 9(9)	
C(2)	0.3410(13)	0.8359(8)	0.8776(6)	22(6)	35(7)	71(2)	24(6)	(1)#.	10(6)	
0(1)	0.3158(12)	0.8213(6)	0.9164(4)	103(7)	78(7)	40(5)	10/6)	41(5)	10(0)	
C(8)	0.3927(16)	0.7466(9)	0.7862(6)	26(6)	37(6)	58(6)	37(5)	(3)2+	1(5)	
0(2)	0.3983(10)	0.6826(6)	0.7724(4)	50(6)	(9)09	89(6)	-26(5)	11(5)	1(0)	
C(9)	0.1872(9)	0.8123(8)	0.7977(5)	50(7)	(2)	26(6)	<u>-3(6)</u>	7(6)	(9)0(9)	
0(3)	0.0722(6)	0,7830(6)	0.7894(4)	42(6)	76(6)	87(6)	24(6)	-12(6)	-23(5)	
C(10)	0.5751(13)	0.8206(8)	0.8544(5)	42(6)	29(6)	18(6)	-7(5)	-22(5)	-1(e) -1(e)	
0(4)	0.6123(9)	0,8799(5)	0.8379(4)	39(5)	33(5)	65(6)	31(5)	-8(5)	6(4)	
C(1)	0,3152(17)	1,0005(9)	0.7109(6)	68(7)	48(7)	72(8)	23(7)	-5(7)	33(7)	
C(2)	0.3762(19)	1.0469(10)	0.7600(7)	131(8)	50(7)	76(8)	29(7)	30(7)	-40(7)	
C(3)	0,4383(13)	1.0527(7)	0.8726(4)	66(7)	72(7)	12(6)	(9)9	16(6)	14(7)	
C(31)	0.5330(17)	1.0243(6)	0.9160(5)	84(8)	98(8)	63(8)	26(7)	-34(7)	24(8)	
C(32)	0.6143(19)	1.0726(7)	0.9534(6)	129(8)	(6)09	94(7)	-61(7)	-45(7)	(8)	
C(33)	0.5896(15)	1.1484(7)	0.9526(5)	92(8)	56(7)	64(7)	-46(7)	8(7)	14(7)	
C(34)	0,4931(18)	1,1819(6)	0.9110(6)	75(8)	63(8)	119(9)	5(8)	-36(8)	-10(7)	
C(35)	0.4012(15)	1.1333(7)	0.8740(5)	(8)09	131(8)	65(8)	-54(8)	-25(8)	2(7)	
C(4)	0.1377(12)	1.0243(7)	0.8150(5)	35(8)	34(8)	35(7)	1(7)	6(7)	-4(8)	
C(41)	0.0611(12)	0.9811(9)	0.8441(6)	49(7)	96(8)	38(7)	-6(7)	5(6)	21(7)	
C(42)	-0.0787(12)	1.0048(9)	0.8445(5)	24(6)	124(8)	40(7)	-20(7)	-2(6)	34(7)	
C(43)	-0.1462(13)	1.0662(9)	0.8159(7)	88(8)	84(8)	111(8)	-16(8)	-25(8)	49(8)	
C(44)	-0.0740(15)	1.1065(10)	0.7837(7)	138(9)	105(8)	70(8)	30(8)	37(8)	-3(8)	
C(45)	0,0642(13)	1,0866(8)	0.7856(7)	36(9)	35(8)	127(8)	(8)6—	-23(8)	16(8)	
C(5)	0.2615(13)	0.8464(8)	0.6601(5)	43(7)	(2)	25(6)	-29(6)	-12(6)	19(6)	
C(51)	0,1717(19)	0.7858(12)	0.6615(6)	123(8)	135(8)	96(8)	-33(8)	22(8)	(8)86-	
C(52)	0.0833(19)	0.7602(11)	0.6142(5)	96(8)	99(8)	76(8)	-44(8)	27(7)	-27(7)	
C(53)	0.1084(17)	0.7818(9)	0.5694(5)	(8)66	79(8)	24(6)	4(6)	3(7)	48(7)	
- 100 × C 52									•	

-4078)	-26(8)	3(7)	-36(8)	-31(8)	-53(8)	31(7)	5(8)	-15(6)	26(7)	24(6)	-22(7)	19(8)	27(7)	34(7)	54(8)	-3(6)	26(7)	11(7)	(2)2	33(7)	8(8)	-2(8)	30(6)	6(7)	-28(6)	28(7)	20(8)	16(6)						
19(8)	34(8)	46(6)	72(7)	(2)	-1(7)	34(7)	45(7)	(9)9—	(1)(1)	32(6)	16(7)	32(7)	(8)99	40(8)	37(7)	16(6)	16(8)	37(6)	18(7)	26(7)	39(7)	21(7)	17(6)	23(7)	-56(7)	-44(7)	-28(7)	18(6)						
30(8)	-28(8)	10(6)	-38(7)	-37(7)	-20(8)	43(8)	28(7)	37(6)	22(7)	39(7)	21(7)	(7)	-5(7)	-19(7)	0(1)	-24(6)	42(8)	(2)	18(7)	39(6)	15(7)	3(7)	33(6)	35(6)	-12(7)	-13(8)	-21(7)	7(7)						
115(9)	56(8)	34(6)	82(8)	55(7)	63(7)	154(9)	70(7)	(7)17	96(8)	79(7)	59(7)	101(7)	119(8)	115(7)	79(8)	36(6)	57(7)	50(7)	40(7)	59(7)	43(7)	71(8)	38(7)	64(7)	38(7)	43(7)	49(7)	56(7)						
91(8)	85(8)	38(7)	116(8)	104(8)	178(9)	69(8)	101(8)	32(7)	38(7)	50(7)	47(7)	45(8)	29(7)	106(8)	106(8)	54(7)	42(8)	76(7)	92(8)	(2)	126(8)	72(8)	34(7)	40(6)	117(8)	91(8)	52(7)	75(7)						
139(8)	82(9)	121(8)	97(8)	168(9)	70(8)	50(7)	94(8)	34(7)	90(8)	47(7)	75(8)	47(8)	167(9)	44(9)	49(8)	57(7)	73(8)	(2)	100(8)	84(8)	151(9)	72(9)	53(7)	84(8)	134(9)	(6)06	141(8)	52(7)	100(30)	70(30)	120(30)	100(3)	100(3)	50(30)
0.5663(6)	0.6146(6)	0.7083(5)	0.7031(7)	0.6945(7)	0.6967(7)	0,7000(8)	0.7077(7)	0.8950(6)	0,9064(7)	0.8754(6)	0,8885(5)	0.8669(6)	0.8730(7)	0.9045(6)	0.9271(6)	0.9199(5)	0.9620(6)	1,0007(6)	1.0499(6)	1,0571(6)	1,0181(6)	0.9705(6)	0.9364(5)	0.9341(5)	0,9738(5)	1.0148(6)	1.0158(6)	0.9787(5)	0.897(5)	0.836(3)	0.703(4)	0.681(3)	0.771(5)	0,763(5)
0.8418(11)	0.8734(10)	0.9003(7)	0.9682(7)	0.9683(8)	0.8993(9)	0.8270(7)	0.8304(7)	0.7675(8)	0.6945(9)	0,6899(9)	0.6482(7)	0.6109(7)	0.6323(8)	0.5640(8)	0.5372(8)	0.5765(6)	0.6667(8)	0.6604(9)	0.6307(10)	0.5977(9)	0,5971(11)	0.6324(9)	0.8130(7)	0.8366(7)	0.8813(11)	0.9023(11)	0.8875(9)	0.8423(8)	0,677(6)	0.675(7)	1.010(7)	1.020(6)	1.059(7)	1.097(4)
0,1991(20)	0.2855(18)	0.5573(12)	0.6267(15)	0.7650(16)	0.8370(12)	0.7687(14)	0.6334(15)	0.6550(14)	0.5806(18)	0.6874(15)	0.8302(11)	0.9360(13)	1,0634(14)	1.0872(12)	0.9850(13)	0.8527(11)	0.5975(17)	0.7242(16)	0.7317(20)	0.6063(18)	0.4741(21)	0.4748(17)	0.7667(13)	0.9051(13)	0.9916(18)	0.9476(18)	0.8099(19)	0.7198(14)	0.479(5)	0.655(10)	0.208(8)	0.353(11)	0.482(8)	0.316(11)
C(54)	C(55)	C(6)	C(61)	C(62)	C(63)	C(64)	C(65)	C(11)	C(12)	C(13)	C(131)	C(132)	C(133)	C(134)	C(135)	C(136)	C(121)	C(122)	C(123)	C(124)	C(125)	C(126)	c(111)	C(112)	C(113)	C(114)	C(115)	C(116)	H(1)	H(2)	H(3)	H(4)	H(5)	H(6)

TABELLE 2 AUSGEWÄHLTE BINDUNGSABSTÄNDE UND BINDUNGSWINKEL MIT STANDARDABWEICHUNGEN

Atome	Abstand (pm)	Atome	Abstand (pm)
(a) Vanadium-Phosphor,	Arsen-Abstände		
V-E(1)	255.9(3)	V—E(2)	252.5(3)
(b) Phosphor, Arsen-Koh	lenstoff-Abstände		
E(1)—C(2)	192.3(18)	E(2)-C(1)	187.3(18)
E(1)—C(3)	186.8(12)	E(2)—C(5)	191.6(14)
E(1)—C(4)	185.5(14)	E(2)-C(6)	183.0(15)
	• •		200.0(20)
(c) Vanadium—Carbonyl-S		•	11448401)
V-C(7)	192.1(19)	C(7)—O(1)	114(7(21)
V-C(8) V-C(9)	189.2(18)	C(8)—O(2)	116.0(20)
V—C(9)	190.2(12)	C(9)—O(3)	118.5(15)
(d) Vanadium—Acylligano			
V-C(10)	201.4(14)	C(12)—C(13)	147.7(24)
V-0(4)	224.3(11)	C(11)—C(111)	153.9(19)
C(10)—O(4)	119.5(18)	C(13)—C(131)	151.1(18)
C(10)—C(11)	146.9(19)	C(12)C(121)	152,2(23)
C(11)—C(12)	150.8(20)	C(12)—H(1)	102(9)
C(11)—C(13)	148.8(21)	C(13)—H(2)	106(9)
(e) Sonstige Abstände			
C(1)—C(2)	149.6(22)	C(2)—H(5)	103(7)
C(1)—H(3)	102(7)	C(2)—H(6)	109(9)
C(1)—H(4)	101(8)		•
C(Ph)—C(Ph)	138.8	(Mittelwert aller Phenylring	e)
Atome	Winkel in °	Atome	Winkel in °
			
(a) Vanadium—Carbonyl-S			
C(7)—V—C(8)	104.6(7)	V-C(7)-O(1)	174.3(12)
C(7)—V—C(9)	73.7(5)	V—C(8)—O(2)	177.6(15)
C(8)—V—C(9)	77.2(6)	V—C(9)—O(3)	174.5(12)
(b) Vanadium—Acylligand			
C(10)—V—O(4)	32.0(5)	E(2)VO(4)	89.2(3)
V-O(4)-C(10)	63.3(7)	C(7)VC(10)	79.0(5)
V-C(10)-O(4)	84.6(7)	C(8)-V-C(10)	80.3(6)
V—C(10)—C(11)	144.6(11)	C(9)—V—C(10)	138.6(6)
E(1)—V—C(10)	112.1(4)	C(7)V-O(4)	98.2(4)
E(2)—V—C(10)	113.3(4)	C(8)—V—O(4)	99.9(5)
E(1)—V—O(4)	87.7(2)	C(9)—V—O(4)	170.2(5)
(c) Acylligand-System			
C(11)-C(10)-O(4)	130.0(11)	C(11)-C(13)-C(12)	61.1(11)
C(10)-C(11)-C(12)	118.1(11)	C(11)—C(13)—C(131)	126.9(11)
C(10)C(11)C(111)	110.6(11)	C(12)—C(13)—C(131)	128.4(13)
C(10)-C(11)-C(13)	114.3(12)	C(11)—C(12)—H(1)	131(6)
C(12)-C(11)-C(13)	59.1(11)	C(13)-C(12)-H(1)	129(7)
C(12)-C(11)-C(111)	123.9(12)	C(121)-C(12)-H(1)	90(7)
C(13)-C(11)-C(111)	122.0(11)	C(11)C(13)-H(2)	122(6)
C(11)—C(12)—C(13)	59.8(11)	C(12)—C(13)—H(2)	120(7)
C(11)—C(12)—C(121)	121.0(12)	C(131)-C(13)-H(2)	98(6)
C(13)—C(12)—C(121)	127.6(13)		-
(d) 1-Diphenylphosphino-2	2-diphenylarsinoethan-S	ystem	
E(1)-V-E(2)	79.1(1)	C(5)-E(2)-C(6)	104.4(6)
V—E(1)—C(2)	106.7(5)	E(1)—C(2)—C(1)	108.7(12)
V—E(1)—C(3)	118.6(4)	E(2)—C(1)—C(2)	109.6(10)
V-E(1)-C(4)	118.3(4)	C(1)—E(2)—C(5)	101.7(6)
V—E(2)—C(1)	110.5(6)	C(1)—E(2)—C(6)	103.4(7)
V-E(2)-C(5)	120.6(4)	C(2)—E(1)—C(3)	99.2(6)
	114.3(4)	C(2)-E(1)-C(4)	107.0(7)
V—E(2)—C(6) C(3)—E(1)—C(4)	114.0(4)	O(2) E(1) O(4)	100(.)

(Fortgesetzt)

TABELLE 2 (Fortsetzung)

Atome	Abstand (pm)	Atome	Abstand (pm)
(e) Sonstige Winkel			
E(1)VC(7)	87.7(4)	E(2)-V-C(7)	164.6(4)
E(1)-V-C(8)	164.3(5)	E(2)-V-C(8)	87,2(5)
E(1)—V—C(9)	97.5(4)	E(2)-V-C(9)	99.9(4)
C(Ph)—C(Ph)—C(Ph)	116.2(10)-123.4(10)	
(Mittelwert aller Phenylri	nge: 119.8)	•	

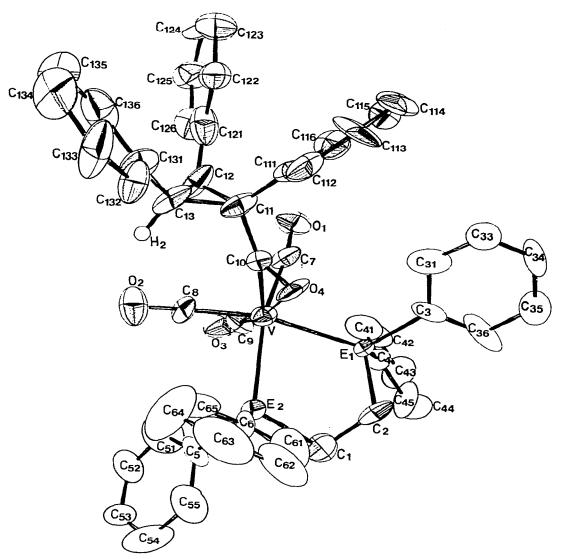


Fig. 1. Molekülstruktur und Atombezeichnung von (η²-COC₃Ph₃H₂)V(CO)₃arphos.

Beschreibung der Molekülstruktur

Die Atomkoordinaten und Temperaturfaktoren (ohne Phenyl-H-Atome) sind in Tab. 1, die Bindungsabstände und -winkel in Tab. 2 zusammengestellt. Fig. 1 zeigt die Molekülstruktur, Fig. 2 die Bindungslängen und Fig. 3 eine Projektion der Elementarzelle auf (100).

Bei Betrachtung der η^2 -COR-Gruppe (R = C_3 Ph₃H₂) als einzähnigen Liganden ist das Vanadium wie in (η^3 -C₃H₅)V(CO)₃dppe (IV; [5]) und (η^3 -3-CH₃C₃H₄)V-(CO)₃diars (V; [19]) pseudooktaedrisch koordiniert. Die Abweichungen vom

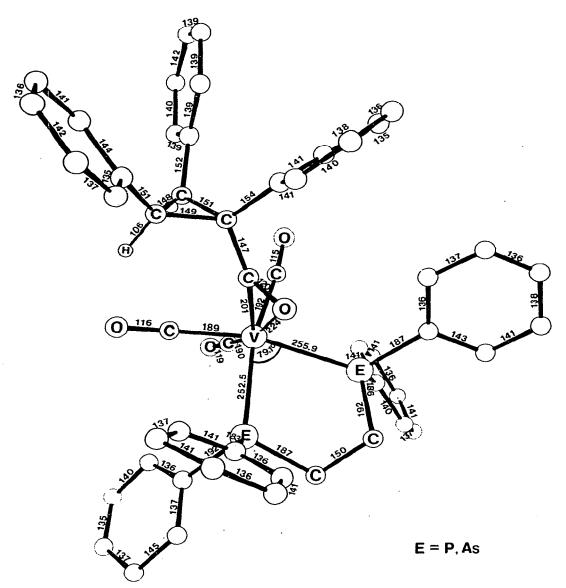


Fig. 2. Molekülstruktur und Bindungslängen (pm) von $(\eta^2$ -COC₃Ph₃H₂)V(CO)₃arphos.

idealen Oktaederwinkel betragen bis zu 16.3° (vgl. Tab. 2).

Die drei endständigen CO-Gruppen besetzen faciale Positionen. Die Schweratome E(1) und E(2) des arphos-Liganden sind mit zwei CO-Gruppen koplanar (Abweichungen von der Besten Ebene ±0.1 pm; Programm XANADU [20]), das V-Atom befindet sich 16.4 pm über dieser Ebene. Die Brücken-C-Atome sind wie in anderen Fünfring-Chelatkomplexen [21,22] nicht symmetrisch zu der aus V, E(1) und E(2) gebildeten Ebene angeordnet. C(1) steht 25.6 pm unterhalb, C(2) 53.2 pm oberhalb dieser Ebene.

Die Bindung der CO-Gruppe des Acyl-Liganden an das C-Atom erfolgt sowohl über das C- als auch über das O-Atom. Dieser Bindungstyp konnte 1976 von Fachinetti et al. [15] am Cp₂(CH₃)Zr(COCH₃) (VI; Fig. 4) erstmals röntgenographisch nachgewiesen werden. Bereits 1968 beobachteten Churchill und

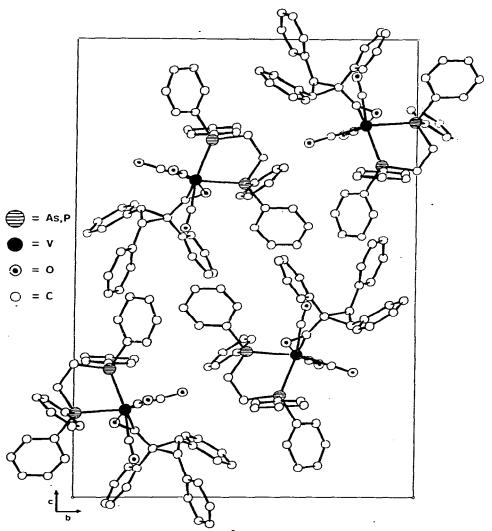


Fig. 3. Projektion der Elementarzelle von (η²-COC₃Ph₃H₂)V(CO)₃arphos auf (100).

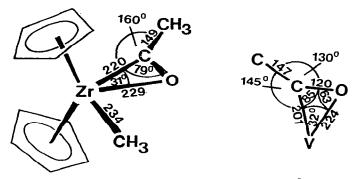


Fig. 4. $Cp_2(CH_3)Zr(COCH_3)$ (VI) und Ausschnitt von $(\eta^2\text{-}COC_3Ph_3H_2)V(CO)_3arphos$ (III) (Abstände in pm).

Fennessy für den Komplex CpMo(CO)₂PPh₃(COCH₃) [23], in dem der Acetyl-Ligand nur über das C-Atom koordiniert ist, einen verkürzten Mo—C(Acyl)-Abstand von 226.4 pm. In Mo-Alkyl-Komplexen werden dagegen deutlich grössere Mo—C-Bindungslängen (238—241 pm) gefunden. Untersuchungen an Eisenkomplexen bestätigen diese Ergebnisse: In (HBpz₃)(COCH₃)(CO)₂Fe (HBpz₃ = Tri-1-pyrazolylborato) beträgt der Fe—C-Abstand 196.8 pm [24], in Fe-Alkyl-Komplexen ca. 211 pm [25]. Entsprechend Fig. 4 tritt diese Bindungsverkürzung (220 pm für Zr—C(Acyl) und 234 pm für Zr—C(CH₃)) auch bei VI auf. Die Mehrfachbindungsanteile werden in allen Fällen durch Rückbindung aus besetzten d-Orbitalen des Metalls in das unbesetzte π*-Orbital der CO-Gruppe erklärt.

Röntgenographische Daten über V—C(Alkyl oder Aryl)-Abstände sind nicht bekannt. Die V—C(Acyl)-Bindungslänge erscheint jedoch für eine reine V—C- σ -Bindung sehr kurz. Sie ist nur geringfügig grösser als für endständige CO-Gruppen in Vanadiumkomplexen (189—199 pm [3,5]), so dass hier ebenfalls eine π -Bindung mit Rückbindungsanteilen vorliegen dürfte. Wie in VI weichen die Winkel am C(Acyl)-Atom stark von 120° (εp^2 -Hybridisierung) ab. Die CO-Gruppe fungiert somit wie eine η^3 -Allyl-Gruppe als Dreielektronendonator; das V-Atom erreicht dadurch Edelgaskonfiguration. Die formale Koordinationszahl 7 ist für Vanadiumkomplexe nicht ungewöhnlich [26,27].

In VI (Fig. 4) liegen das Zr-Atom und die Acetylligand-Atome in einer Ebene. Entsprechend bilden C(11), C(10) und O(4) mit dem V-Atom eine Ebene mit nur geringen Abweichungen von 1.4—5.8 pm. Diese Ebene steht annähernd senkrecht (91.7°) auf der durch E(1), E(2), C(7) und C(8) aufgespannten Ebene und bildet mit der C(11)—C(12)—C(13)-Ebene des Cyclopropylringes einen Winkel von 71.1°. Die drei Phenylringe sind *cis*-ständig zum Cyclopropyl-Ring.

Experimentelles

Alle Operationen erfolgten unter Luft- und Feuchtigkeitsausschluss. Bei Photolysereaktionen wurde eine 125 Watt-UV-Hg-Hochdrucklampe verwendet. [Et₄N][V(CO)₄dppe] [27] und [Et₄N][V(CO)₄arphos] [6] wurden nach den angegebenen Literaturvorschriften dargestellt.

(a) $[\eta^2-(C,O)-Triphenylcyclopropylcarbonyl]$ [1,2-bis(diphenylphosphino)-ethan|tricarbonyl-vanadium, $(\eta^2-COC_3Ph_3H_2)V(CO)_3dppe$ (II)

2.4 g (3.47 mmol) [Et₄N][V(CO)₄dppe] in ca. 250 ml THF reagieren mit einem Überschuss von Triphenylcyclopropenylium-bromid (UV, +20°C) unter heftiger Gasentwicklung. Nach 30 min wird die braune Reaktionslösung filtriert, eingedampft und mehrfach mit je 50 ml Ether gewaschen. Dabei gehen V(CO)₄dppe und Bis(triphenylcyclopropenyl) [28] in Lösung. II löst sich in Ether nur wenig. Nach zweimaligem Waschen mit Methanol und Umkristallisieren aus $CH_2Cl_2/Hexan$ (1/1) erhält man $C_{51}H_{41}VP_2O_4 \cdot CH_2Cl_2$. Ausbeute: 470 mg (0.57 mmol; 16.4%). Zers. 98—104°C. Hierfür gef.: C, 68.73; H, 5.09; V, 5.59; P, 6.91; 0, 7.7%. Ber.: C, 68.30; H, 4.70; V, 5.58; P, 6.78; O, 7.0%. Bei Umkristallisation aus Toluol/Hexan (2/1) kristallisiert II solvatfrei. Gef.: C, 73.52; H, 4.96; Molmasse 776 (osmometrisch). $C_{51}H_{41}VP_2O_4$ ber.: C, 73.73; H, 4.71%; Molmasse 830.

Eigenschaften: dunkelrote, quaderförmige (aus Toluol/Hexan) bis nadelförmige (aus CH₂Cl₂/Hexan) Kristalle, wenig löslich in Ether, mässig in Aceton, gut in Benzol und Toluol, sehr gut in THF, CH₂Cl₂ und CHCl₃, unlöslich in aliphatischen Kohlenwasserstoffen, Acetonitril, Alkoholen und Wasser; in Lösung luftempfindlich; Kristalle sind einige Tage luftstabil.

IR-Absorptionen im $\tilde{\nu}(CO)$ -Bereich (KBr): 1927vs, 1838s, 1822s cm⁻¹.

¹H-NMR-Spektrum (270 MHz, Lösungsmittel C₆D₆, interner Standard TMS, δ-Skala): neben Phenylsignalen bei 6.9, 7.0, 7.36 und 7.64 ppm enthält das Spektrum eine breite, unstrukturierte Resonanz bei 2.15 ppm (Zentrum) für die vier dppe-Methylenprotonen (vgl. [6]) und ein scharfes Singulett (rel. Int. 2) bei 3.95 ppm, das den beiden Protonen am Triphenylcyclopropyl-Ring zugeordnet wird.

¹³C-NMR-Spektrum (22.63 MHz, Lösungsmittel CD₂Cl₂/CH₂Cl₂, interner Standard TMS, δ-Skala, Bezifferung der C-Atome wie in Fig. 1): C^1 und C^2 liefern ein virtuelles Triplett [29—32] bei 25.4 ppm mit einer scheinbaren Kopplungskonstanten $J_s = \frac{1}{2} |^1 J(PC^2) + ^2 J(PC^2)| = \frac{1}{2} |^1 J(PC^1) + ^2 J(PC^1)| = 17.7$ Hz. Das quartäre C(11)-Atom ergibt ein schwaches Signal bei 65.84 ppm, C(12) und C(13) ein durch den Kern-Overhauser-Effekt verstärktes Signal bei 38.35 ppm. 13 CO-Signale wurden nicht beobachtet.

 31 P-NMR-Spektrum (36.43 MHz, Lösungsmittel Deuterotoluol, externer Standard 85% $\rm H_3PO_4$): im Temperaturbereich von +20 bis —90°C eine breite, unaufgelöste Resonanz bei 82 ppm. Die Koordinations-Verschiebung (coordination shift) (Δ = 95 ppm) ist den (η^3 -Allyl)V(CO)₃dppe-Komplexen [4] vergleichbar.

Die Darstellung von II gelingt auch ohne UV-Bestrahlung durch Rühren der Reaktionsmischung in THF (Reaktionszeit: 60 min; Ausbeute an II: 5%, Ausbeute an V(CO), dppe: 22%).

(b) [η²-(C,O)-Triphenylcyclopropylcarbonyl](1-diphenylphosphino-2-diphenyl-arsinoethan)tricarbonyl-vanadium, (η²-COC₃Ph₃H₂)V(CO)₃arphos (III) III wird analog zu II aus [Et₄N][V(CO)₄arphos] (1.9 g, 2.59 mmol) und Triphenylcyclopropenylium-bromid (1.6 g, 4.61 mmol) in ca. 200 ml THF bei Raumtemperatur dargestellt (ohne UV-Bestrahlung). Nach 30 min ist kein Ausgangsprodukt mehr nachweisbar. Die grünbraune Lösung wird filtriert und, wie

unter a beschrieben, aufgearbeitet. III löst sich in Ether etwas besser als II, daher empfiehlt es sich, zur Entfernung von V(CO)₄arphos und Bis(triphenylcyclopropenyl) nur zweimal mit je 30 ml kaltem Ether und anschliessend mit Methanol zu waschen. Zur Reinigung wird III in Aceton gelöst, rasch filtriert, eingeengt, mit Hexan versetzt und auf -30°C abgekühlt. Die ausgefallenen dunkelrotbraunen Kristalle werden mit Hexan gewaschen, getrocknet und aus Toluol/Hexan umkristallisiert. Ausbeute: 190 mg (0.22 mmol, 8.4%). Zers. 86—92°C. Gef.: C, 70.02; H, 4.96; V, 5.58. C₃₁H₄₁VPAsO₄ ber.: C, 70.02; H, 4.69; V, 5.84%.

Eigenschaften: mässig löslich in Ether, wenig in Alkoholen; sonst wie II. IR-Absorptionen im $\tilde{\nu}$ (CO)-Bereich (KBr): 1929vs, 1840s, 1822vs cm⁻¹.

¹H-NMR-Spektrum (Messbedingungen wie bei a): Phenylsignale bei 6.9, 7.0, 7.36, 7.64 ppm; —CH₂—CH₂—: 2.1 ppm (Zentrum); Dreiring-Protonen 4.03 ppm

(Singulett).

³¹P-NMR-Spektrum (Messbedingungen wie bei a): 61.5 ppm (Zentrum einer breiten Resonanz). III hat somit die niedrigste KoordinationsVerschiebung ($\Delta = 76.5$ ppm) aller bisher untersuchten arphos-Komplexe des Vanadiums [6].

Dank

Der Deutschen Forschungsgemeinschaft sei für die Bereitstellung eines rechnergesteuerten Einkristall-Diffraktometers und dem Fonds der Chemischen Industrie für Sachmittel gedankt.

Literatur

- 1 M. Schneider und E. Weiss, J. Organometal. Chem., 73 (1974) C7.
- 2 M. Schneider und E. Weiss, J. Organometal. Chem., 121 (1976) 345.
- 3 M. Schneider und E. Weiss, J. Organometal. Chem., 121 (1976) 189.
- 4 U. Franke und E. Weiss, J. Organometal. Chem., 121 (1976) 355.
- 5 U. Franke und E. Weiss, J. Organometal. Chem., 139 (1977) 305.
- 6 U. Franke und E. Weiss, J. Organometal. Chem., 153 (1978) 39.
- 7 U. Franke und E. Weiss, J. Organometal. Chem., 152 (1978) C19.
- 8 E.W. Gowling und S.F.A. Kettle, Inorg. Chem., 3 (1964) 604.
- 9 E.W. Gowling und S.F.A. Kettle, Inorg. Chem., 11 (1972) 2237.
- 10 H. Behrens, H. Brandl und K. Lutz, Z. Naturforsch., B22 (1967) 99.
- 11 G. Dettlaf, Dissertation, Universität Hamburg 1978.
- 12 R. Hitch, S.K. Goudal und C.T. Sears, Chem. Commun., 15 (1971) 777.
- 13 G. Fachinetti, St.D. Nero und C. Floriani, J. Chem. Soc. Dalton (1976) 203.
- 14 H.G. Alt, J. Organometal. Chem., 127 (1977) 349.
- 15 G. Fachinetti, G. Floriani, F. Marchetti und St. Marlino, Chem. Commun., (1976) 522.
- 16 A.S. Kasenally, R.S. Nyholm, R.J. O'Brien und M.H.B. Stiddard, Nature, 204 (1964) 871.
- 17 MULTAN 74, modifiziertes Programmsystem von G. Germain, P. Main und M.M. Woolfson, Acta Cryst., A27 (1971) 368.
- 18 SHEL 76, G. Sheldrick, Programs for Crystal Structure Determination, Cambridge 1975.
- 19 U. Franke und E. Weiss, in Vorbereitung.
- 20 XANADU, P. Roberts und G. Sheldrick, Programs for Crystallographic Calculations, Cambridge, 1975.
- 21 G. Hunter und R.C. Massey, J. Chem. Soc. Dalton, (1976) 2007.
- 22 J.R. Gollogly und C.J. Hawkins, Inorg. Chem., 8 (1969) 1168.
- 23 M.R. Churchill und J.P. Fennessy, Inorg. Chem., 7 (1968) 953.
- 24 F.A. Cotton, B.A. Frenz und A. Shaver, Inorg. Chim. Acta, 7 (1973) 161.
- 25 V.A. Semion und Yu.T. Struchkov, J. Strukt. Chem. USSR, 10 (1969) 80.
- 26 J.E. Ellis und R.A. Faltynek, J. Organometal. Chem., 93 (1975) 205.
- 27 A. Davison und J.E. Ellis, J. Organometal. Chem., 36 (1972) 131.
- 28 R. Breslow, P. Gal, H.W. Chang und L.J. Altmann, J. Amer. Chem. Soc., 87 (1965) 5139.
- 29 M. Akhtar, P.D. Ellis, A.G. MacDiarmid und J.D. Odom, Inorg. Chem., 11 (1972) 2917.
- 3G A.W. Verstuyft, J.H. Nelson und L.W. Cary, Inorg. Chem., 15 (1976) 732.
- 31 D.A. Redfield, J.H. Nelson und L.W. Cary, Inorg. Nucl. Chem. Lett., 10 (1974) 10.
- 32 R.B. King und J.C. Cloyd, jr, J. Chem. Soc. Perkin II, (1975) 938.