Journal of Organometallic Chemistry, 188 (1980) C31-C35
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

TRANSITION-METAL COMPLEXES OF TWO VALENCE TAUTOMERS OF A BULKY PHENOXIDE, 2,6-Bu-t $-4-\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{O}^{-}$(ArO ${ }^{-}$); PRERARATION AND CRYSTAL AND MOLECULAR STRUCTURE OF A PHENOXYTITANIUM(III) AND A CYCLOHEXADIENONYLRHODIUM(I) COMPLEX, $\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}\right.$ OAr] AND [Rh(ArO- $\left.\left.\boldsymbol{\eta}^{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] *$
B. CETINKAYA, P.B. HITCHCOCK**, M.F. LAPPERT**, S. TORRONI, School of Molecular Sciences, University of Sussex, Brighton BNI 9QJ, (Great Britain) J.L. ATWOOD**, W.E. HUNTER and M.J. ZAWOROTKO

Department of Chemistry, The University of Alabama, University, Alabama 35486 (U.S.A.)
(Received January 14th, 1979)

Summary

The 2,6-di-t-butyl-4-methylphenoxo ligand (ArO^{-}) is ambidentate, giving rise to the O -bonded 15-electron $d^{1}\left[\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{OAr}\right]$ and the $\eta^{5}-[\mathrm{C}(2)-\mathrm{C}(6)]$ bonded 18-electron d^{8} complex $\left[\mathrm{Rh}\left(\mathrm{ArO}-\eta^{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$, obtained from $\left[\left\{\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Cl}\right\}_{2}\right]-\mathrm{LiOAr}$ and $\left[\mathrm{Rh}\left\{\mathrm{N}\left(\mathrm{SiMe}_{3}\right)_{2}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]-\mathrm{ArOH}$, respectively; the average $\mathrm{Ti}-\mathrm{C}(\eta)$ distance is $2.362(10) \AA, \mathrm{Ti}-\mathrm{O} 1.892(2) \AA$, and $\mathrm{O}-\mathrm{C}$ (of Ar) $1.352(3) \AA$, and TiOC $142.3(2)^{\circ}$; in the $R h I$ complex, $C(2)-C(6)$ are coplanar (with $\mathrm{C}-\mathrm{C}(\mathrm{av}) .1.38(2) \AA$), $\mathrm{C}(1)-01.28 \AA$, and Rh to $\mathrm{C}(2)-\mathrm{C}(6)$ bond lengths are in the range $2.19-2.65 \AA$.

We report the preparation (see Scheme 1; for the amide (I), see reference [1]) and single crystal X-ray characterisation of two transition-metal complexes derived from the anion of the phenol (II), which is thus shown to be capable of behaving as an ambidentate nucleophile. The TiII complex (III) has the 2-electron-O-centred aryloxide structure, whereas the Rh^{I} complex (IV) contains the 6 -electron- η^{5}-C-centred cyclohexadienonyl ligand. Some data are in Table 1.

The preference for O-bonding in the 15 -electron complex III but η^{5}-Cbonding for the 18 -electron IV is attributed to the greater stability associated with the chosen central metal electron configuration (cf., the alternative 19-electron TiII or 14-electron RhI tautomers), the superior matching of the

[^0]

(IV)

SCHEME 1. Preparation of a $\mathrm{Ti}^{1 I I}$ and a Rh^{I} complex derived from the anion of $2,6-\mathrm{Bu}^{-\mathrm{t}_{2}-4-\mathrm{MeC}_{6} \mathrm{H}_{2} \mathrm{OH}}$ (ArOH)
hard ligand ArO^{-}with Ti^{3+} and the softer ($\mathrm{ArO}-\eta^{5}$) ${ }^{-}$with Rh^{+}, and steric constraints.

Alkoxides or aryloxides of the $4 d$ and $5 d$ metals of Group VII, VIII, or I are exceedingly rare [2]. However, analogues of III are well-known, although generally dimeric, as in [$\left\{\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{OR}\right\}_{2}$] ($\mathrm{R}=\mathrm{Me}, \mathrm{Et}$, or Ph) [3]. π-Phenoxo complexes, " $\mathrm{RuH}\left(\eta^{6}-\mathrm{PhO}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ " and some solvated analogues, as well as " $\mathrm{Rh}\left(\eta^{6}-\mathrm{PhO}\right)\left(\mathrm{PPh}_{3}\right)_{2} \cdot 2 \mathrm{PhOH} "$, have been described [4]. The possibility was recognised of a η^{5}-cyclohexadienonyl bonding mode, and preliminary X-ray data on " $\mathrm{RuH}\left(\eta^{6}-\mathrm{PhO}\right)\left(\mathrm{PPh}_{3}\right)_{2} \cdot \mathrm{MeOH}$ " were cited [5]. η^{5}-Cyclohexadienyl analogues are authenticated, as in [$\mathrm{Mn}(\mathrm{CO})_{3}\left(\eta^{5}-\mathrm{C}_{6} \mathrm{H}_{7}\right)$] [6] (V) and a cyclo-hexa-2,4-dienone (L)-complex [Fe(CO) L] has been described [7] (and L may be regarded as the keto-tautomer of phenol).

Crystal data for compound III: $M=397.4$, monoclinic, space group $P 2_{1} / c$, $a 8.010(6), b 15.919(8), c 17.640(8) \AA, \beta 98.15(5)^{\circ}, U 2226.5 \AA^{3}, D_{c} 1.19 \mathrm{~g}$ cm^{-3} for $Z=4, \mu\left(\mathrm{Mo}-K_{\alpha}\right) 4.1 \mathrm{~cm}^{-1}$. Data were collected on an Enraf-Nonius CAD-4 diffractometer in a manner similar to that previously described [8], and were refined by full-matrix least-squares techniques. The final R values were $R=0.032$ and $R^{\prime}=0.032$ for 1901 independent reflections with $I>3 \sigma(I)$.

TABLE 1

Complex ${ }^{\text {a }}$	Colour	Yield (\%)	$\begin{aligned} & \text { M.p. } \\ & \left(\theta_{c} \rho^{\circ} \mathbf{C}\right. \end{aligned}$	$\mathrm{IR}^{\text {b }}$ ($1500-1600 \mathrm{~cm}^{-1}$)
III ${ }^{\text {c }}$	Deep-purple	50	167-169	$1592 \mathrm{~m}, 1583$ (sh), $1550 \mathrm{ww}, 1505 \mathrm{ww}$
IV ${ }^{\text {d }}$	Red-brown	72	123-124	1585w. $1570 \mathrm{~m} .1548 \mathrm{~s}, 1540$ (sh), 1530 \%

[^1]

Fig. 1. A perspective view of the molecular structure of [$\left.\mathrm{Ti}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2}(\mathrm{OAr})\right]$ (III) showing selected bond lengths and the numbering system used. The Ti-C(7) distance ranges from 2.352 (4) to 2.380 (4) A and average $\mathbf{2 . 3 6 2 (1 0)} \mathrm{A}$. The angle Cp (centroid)-Ti-Cp (centroid) is 135.5°.

The molecule is illustrated in Fig. 1. Evidence of steric effects associated with the bulky aryloxide are seen in parameters associated with the ligand itself. The $\mathrm{Ti}-\mathrm{O}-\mathrm{C}$ angle, $142.3(2)^{\circ}$, is much larger than the 125° values found in $\mathrm{M}(\mathrm{OAr})_{2}$ ($\mathrm{M}=\mathrm{Ge}$ or Sn) [9], and the central carbon atoms of the t-butyl ligands lie 0.34 and $0.40 \AA$ out of the plane of the phenyl group. The Ti-O bond length, $1.892(2) \AA$, is slightly outside the range of 1.78 to $1.86 \AA$ found in compounds with the $\mathrm{Ti}-\mathrm{O}-\mathrm{Ti}$ linkage [10], but the parameters of the $\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$ unit appear normal for Ti in the +3 oxidations state [11].

Crystal data for compound IV: $\mathrm{C}_{51} \mathrm{H}_{53} \mathrm{OP}_{2} \mathrm{Rh}^{2} 2 \mathrm{C}_{6} \mathrm{H}_{6}, M=1003.2$, triclinic, space group $P \overline{1}, a 11.570(3), b 19.650(4), c 13.298(5) \AA, \alpha 74.39(5)^{\circ}, \beta 96.23(4)^{\circ}$, $\gamma 113.34(3)^{\circ}, U 2673.5 \AA^{3}, Z=2, \mu\left(\mathrm{Cu}-K_{\alpha}\right) 35.1 \mathrm{~cm}^{-1}$. Data were collected on a Hilger and Watts Y290 diffractometer and refined by large block least squares, $R=0.088, R^{\prime}=0.115$ for the 1920 reflections with $I>3 \sigma(I)$. The CO bond length (Fig. 2) is indicative of a double bond and the CC bond lengths are similar to those in the cyclohexadienyl complex V [6]. All the substituents on the ring are bent slightly away from the metal. The slight asymmetry in the metal-ring bonding, as evident from the longer $\mathrm{Rh}-\mathrm{C}(6)$ bond, is probably the result of minimisation of non-bonded contacts of the large t-Bu groups with the Ph rings on $P(1)$.

Fig. 2. A perspective view of the molecular structure of $\left[R h\left(\mathrm{OAr}^{-} \eta^{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ (IV) showing selected bond lengths and the numbering system used. Es.d.'s are Rh-P 0.005, Rh-C 0.02, C-C 0.02 A.

Acknowiedgement

We thank the University of Izmir for granting leave of absence to B.C., C.N.R. for providing S.T. with study leave, and the U.S. National Science Foundation for partial support to J.L.A.

References

1 B. Cetinkaya, M.F. Lappert, and S. Tomoni, J. Chem. Sac. Chem. Commun., (1979) 843.
2 D.C. Bradley. R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides, Academic Press, New York, 1978: eardier publications on metal complexes derived from the anion of 2,6-di-t-butylphenols are cited in B. Cetinkaya, I. Gumrikci. M.F. Lappert, J.I. Atwood, and R. Shakir, d. Amer. Chem. Soc., 102 (1980) in press.
3 M.F. Esppert and A.R. Sanger, J. Chem. Soc. A. (1971) 1314.
4 D.J. Cole-Hamilton, R.J. Young, and G. Wilkinson, J. Chem. Soc. Dalton, (1976) 1995.
5 J.C. McConway and A.C. Skapski, cited in ref. 4.
6 M.R. Churchili and F.R. Scholer, Inorg, Chem., 8 (1969) 1950.

7 A.J. Birch, P.E. Cross, J. Lewis, D.A. White and S.B. Wild, J. Chem. Soc. A. (1968) 332.
8 J. Fiolton, M.F. Lappert, D.G.EF, Ballaxd, B. Pearce. J.I. Atwood. and W.E. Hunter. J. Chem. Soc. Dalton, (1979) 45 .
9 B. Cetinkaya, G, Gimpincin, M.F. Lappert, J.L. Atwood. R.D. Rogers, and M.J. Zaworotko. J. Amer. Chem. Soc., 102 (1980) in press.
10 M.D. Rausch, D.I. Sikora, D.C. Hmeir, W.E. Eiunter, and d.L. Atwood, J. Amer. Chem: Soc., in press and references therein.
11 J.L. Atwood, K.E. Stone, H.G. Alt, D.C. Frncir, and M.D. Rausch, J. Organometal. Chem., 132 (1977) 367.

[^0]: *No reprints available.
 **Authors to whom correspondence should be addressed.

[^1]: ${ }^{a}$ Satisfactory microanaly fical data were obtained. ${ }^{b}$ Nujol' mulls; $s=s t r o n g, m=m e d i u m, ~ w=w e a k, ~$ $\boldsymbol{V}=$ very weak, (sh) $=$ shoulder $C_{M o n o m e r ~ b y ~ c r y o s c o p y ~ i n ~} C_{6} H_{8}: g_{\text {av }}=1.9795$ at $20^{\circ} \mathrm{C}$ in PhMe (singlet).
 protons at τ 7.93.

