Journal of Organometallic Chemistry, 168 (1979) C33—C36
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

VERÄNDERUNG DER ORIENTIERUNG IN DER METALLIERUNGS-REAKTION UNTER DEM EINFLUSS VON ISOTOPENSUBSTITUTION

N.M. LOIM*. N.A. ABRAMOWA, Z.N. PARNES und D.N. KURSANOW

Institute of Organo-Element Compounds, Academy of Sciences, Moscow (U.S.S.R.)

(Eingegangen den 17. Oktober 1978)

Summary

Substitution of the hydrogen atoms of the cyclopentadienyl ring of (N, N-dimethylaminomethyl)cymantrene by deuterium changes the direction of orientation of metalation of this amine.

Die Metallierung von (N,N-Dimethylaminomethyl)cymantren (I) mit n-Butyllithium in Ether/THF-Lösung wird bei Raumtemperatur von starker Verharzung des Reaktionsgemisches begleitet. Bei -70° C läuft jedoch die Reaktion ohne solche ab und führt zur Bildung des Lithiumsalzes des Amins I. Beim nachfolgenden Zerlegen des Reaktionsgemisches mit Deuteriumoxid bildet sich das monodeuterierte (N,N-Dimethylaminomethyl) cymantren (II) mit einem Deuteriumgehalt von 0.99 ± 0.01 Atom pro Molekül. Das NMR-Spektrum von II in CCl₄-Lösung in Gegenwart von Eu(fod)₃ oder in CF₃COOH deutet darauf hin, dass nur der Ring metalliert wird und praktisch das gesamte Deuterium (nicht weniger als 97%) sich in der α -Stellung befindet.

$$(CO)_{3}Mn - CH_{2}N - CH_{3} - CH_{2}N - CH_{3} - CH_{2}N - CH_{3} - CH_{2}N - CH_{3} - CH$$

Bei der Umsetzung von Li—I mit Dimethylformamid (DMF) bildet sich auch praktisch als einziges Produkt das 1,2-Isomere des (N, N-Dimethylaminomethyl)-formylcymantrens (III) (1 H-NMR (60 MHz) in CCl₄ (δ , ppm von ext. TMS): 2.28s N(CH₃)₂; 3.03d und 3.60d CH₂ (J(HH) 12.6 Hz); 4.81m H(3,4); 5.33m H(5); 9.69s CHO).

Die (CH₃)₂NCH₂-Gruppe im Amin I weist also, wie im Falle der Dimethylaminomethyl-Derivate von Benzol [1] und Ferrocen [2], einen starken ortho-

Li-I
$$\frac{\text{HCON}(\text{CH}_3)_2}{\text{HCON}(\text{CH}_3)_2}$$
 (CO)₃Mn $\frac{5}{4}$ $\frac{1}{3}$ CH₂N(CH₃)₂

orientierenden Effekt bei der Metallierung mit n-Butyllithium auf. Unerwartete Resultate erhielten wir bei der Metallierung der deuterierten Derivate des Amins I nach Schema 1.

Es erwies sich, dass der Deuteriumgehalt in dem durch Zerlegen des Li-II mit Wasser erhaltenen Amin IV mit dem im Amin II vollständig übereinstimmt, was mit Hilfe der NMR- und Massenspektroskopie festgestellt wurde. Gleichzeitig führt das Zerlegen des Li-II mit Deuteriumoxid zum Amin V, welches 1.97 \pm 0.01 Deuteriumatome pro Molekül enthält (1.78 D in der α - und 0.19 D in der β -Stellung). Das heisst, dass die Metallierung von II ausschliesslich an den C—H-Bindungen des Rings erfolgt und die C—D-Bindungen praktisch unberührt bleiben.

Es konnte ferner festgestellt werden, dass die Umsetzung des Amins V mit n-Butyllithium unter denselben Bedingungen beim nachfolgenden Zerlegen des Reaktionsgemisches mit Wasser zum Amin VI führt, dessen Deuteriumgehalt nur um $0.1~\mathrm{D}$ weniger als im Ausgangsamin V beträgt. Daraus folgt, dass die Substitution bei der Metallierung des deuterierten Amins V vorwiegend nicht in der α -, sondern in der β -Stellung erfolgen sollte, wenn diese Reaktion überhaupt abläuft. Tatsächlich führt das Zerlegen des Lithiumderivats von V mit DMF zu einem Gemisch von isomeren Cymantren-Aminoaldehyden, welches 70% des

(四()

1,3-Isomeren VII und 30% des 1,2-Isomeren III enthält. Der gesamte Deuteriumgehalt in Gemisch betrug 1.8 Atome.

Das Isomere VII wurde mit Hilfe der Flüssigkeitschromatographie rein isoliert und durch sein 1 H-NMR-Spektrum in CCl₄ identizifiert ((δ , ppm von ext. TMS) 2.32s N(CH₃)₂; 3.09 breites s. CH₂; 4.80m H(4); 5.33m H(2,5); 9.52s CHO).

Somit konnte zum erstenmal gezeigt werden, dass die Einführung des Wasserstoffisotops Deuterium ins Molekül die für eine nicht-deuterierte Verbindung kennzeichnende Reaktionsrichtung verändern kann.

Dies eröffnet einen neuen Weg zur Synthese von 1,3-Bis-derivaten des Cymantrens aufgrund der Metallierungsreaktion.

Der Einfluss der Isotopensubstitution auf die Orientierung von Metallierungsreaktionen wurde auch bei anderen Dimethylaminoalkylcymantrenen sowie bei verwandten Ferrocen- und Benzolderivaten aufgefunden [3].

Das Amin I wurde nach Schema 2 synthetisiert.

(CO)₃Mn
$$\longrightarrow$$
 1. n-BuLi (CO)₃Mn \longrightarrow CHO \longrightarrow HCON(CH₃)₂ I (VIII) (IX)

Experimentelles

A. Allgemeine Arbeitsvorschrift zur Metallierung von I, II, V und Cymantren VIII. Zur Lösung von 0.08 mol Substrat in 200 ml absol. THF gibt man unter Rühren im Argonstrom 100 ml 1 M äther. n-Butyllithium-Lösung. Das Reaktionsgemisch kühlt man im Laufe der n-BuLi-Zugabe bis 1 Stunde danach auf -70 bis -65° C ab. Das Zerlegen der Lithiumorganischen Verbindungen mit einem entsprechenden Elektrophil (H_2O , D_2O oder DMF) führt man bei -70° C durch.

Nach Zugabe von $\rm H_2O$ bzw. $\rm D_2O$ erwärmt man das Reaktionsgemisch langsam (während 1 Stunde) auf 5°C. Im Falle von DMF wurde die Temperatur auf 20°C angehoben und das Reaktionsgemisch unter diesen Bedingungen noch 2 Stunden gerührt.

Zur Isolierung der Amine II, IV, V und VI sowie der Aminoaldehyde III und VII wurde das Reaktionsgemisch in 1000 ml 3 N HCl gegossen und mit Benzol extrahiert. Die saure wässrige Lösung wurde bis pH 9–10 alkalisiert und mit Äther/Hexan extrahiert. Die vereinigten organischen Extrakte wurden mit Wasser gewaschen, über Na₂SO₄ getrocknet und im Vakuum destilliert. Zur Isolierung von IX wurde das Reaktionsgemisch mit 3 N HCl angesäuert, mit 1000 ml Wasser verdünnte und mit Benzol extrahiert. Die vereinigten organischen Extrakte wurden mit Wasser gewaschen, über Na₂SO₄/Mg₂SO₄ getrocknet und destilliert.

- (a) Formylcymantren IX. Aus 25 g VIII und 24.2 ml DMF wurden 19.8 g (70%) IX erhalten: Fp. 69—70°C, Kp. 84—86°C bei 0.04 Torr. Lit. [4]: Fp. 74—75°C (aus Heptan).
- (b) α -Deutero-(N, N-dimethylaminomethyl) cymanetren II. Aus 21.2 g I und 6.5 ml D₂O in 10 ml THF wurden 18.6 g (89%) II erhalten: Kp. 73—74°C bei 0.03 Torr. $n_{\rm D}^{25}$ 1.5685.

- (c) α -Formyl-(N,N-dimethylaminomethyl) cymantren (III). Aus 10.6 g I und 10 ml DMF wurden 7.5 g (65%) III erhalten; Kp. 108–109°C bei 0.07 Torr, $n_{\rm D}^{22}$ 1.5841. Die Analyse entsprach der Brutto-Formel $C_{12}H_{12}NO_4Mn$.
- (d) Das Gemisch von α und β -Formyl-(N,N-dimethylaminomethyl) cymantren (III und VII). Aus 6.6 g V und 4 ml DMF wurden 3.9 g (46%) Gemisch von III und VII erhalten: Kp. 106–109°C bei 0.02 Torr, n_D^{22} 1.5861.
- B. (N,N-Dimethylaminomethyl) cymanetren (I). 15 g (0.06 mol) IX, 17.5 ml (0.24 mol) DMF und 10 ml (0.3 mol) HCOOH kocht man in einem Kolben 3 Stunden bei 150-160°C. Nach der Kühlung wird das Reaktionsgemisch in 300 ml 3 N HCl gegossen und mit Benzol extrahiert. Die wässrige Schicht wird mit 6 N NaOH alkalisiert und mit Äther/Hexan extrahiert. Die organischen Extrakte werden mit Wasser gewaschen, über Na₂SO₄/MgSO₄ getrocknet und destilliert. Die Ausbeute an I betrug 10.5 g (67%), Kp.80–82°C bei 0.04 Torr, n_D²² 1.5702. Die Analyse entsprach der Brutto-Formel C₁₁H₁₂NO₃Mn. ¹H-NMR-Spektrum (60 MHz), δ (ppm) von ext. TMS in CCl₄: 1.96s N(CH₃)₂; 2.81s CH₂; $4.45s(br) C_5H_4$; $CF_3COOH 2.62 d (J(HH^+) 5 Hz) N(CH_3)_2$; $3.66d (J(HH^+) 5.5$ Hz) CH₂; 4.53 m H_{β}; 4.72 m H_{α}.

Die ¹H-NMR-Spektren wurden mit R20 und R32 "Perkin-Elmer"-Geräten aufgenommen. Massenspektroskopische Analysen wurde mit dem AEI MS-30/ DS-50-Spektrometer durchgeführt.

Literatur

- 1 F.N. Jones und C.R. Hauser, J. Org. Chem., 27 (1962) 701.
- D.W. Slocum, B.W. Rockett und C.R. Hauser, J. Amer. Chem. Soc., 87 (1965) 1241.
 N.M. Loim, Z.N. Parnes und D.N. Kursanow, im Druck.
- 4 A.N. Nesmejanow, K.N. Anisimow und Z.P. Valuewa, Doklady Akad. Nauk USSR, 162 (1965) 112.