STEPECCHELISTKY OF LGK: SOIN COBALT PCRPFYRIES. 9. PREPARATION AND CHANGCDERIXATIOA OE FIVE-COOPDTNATE ORGANOCOBALT (III) DERIVATIVES

M. E. Kastner and W. Robert Scheidt*
Department of Chemistry, University of Notre Dame, Notre Dame, Indiana 46556 (U.S.A.) (Received March 30th, 1978)

Summary

Organocobalt(III) derivatives have been pxepared by direct aerial oxidation of tetraphenylporphinetocobalt(II; in soiutions containing acetone, acetophenone, and malanonitriie. The molecular and crystai structure of acctonyi-x, E,Y,j-tetraphenylporphinatocobalt (III) has been determined by x-ray diffraction techniques. The porphinato core provides the base of a \equiv ruare pyramid, with the acetonyl srcup at the apex. $\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}, \mathrm{Cotrp}$ crystallizes in the triclinic system, space group pī. The uni气 cell has $a=12.187$ (a) $\mathrm{A}, \mathrm{b}=14.157$ (5) $\mathrm{A}, \mathrm{c}=11.925$ (5) O. $\alpha=94.70(2)^{\circ}, Q=111.39(4)^{\circ}$, and $\gamma=68.44 \quad(4)^{\circ}$. The calculated and experimental densities are 1.356 and $1.34 \mathrm{~g} / \mathrm{cm}^{3}$ respectiveiy for $2=2$, required crystal symmetry I. Final discrepancy indices are $R_{1}=0.050$ and $R_{2}=0.076$. The average Co-N distance is 1.948 O F and the Co-c distance is 2.028 A.

Introduction

In the course of actempting to prepare selected crystalline adducts of cobalt(II) porpnyrins, w2 āiscovered a fecile reaction between sobalt (TT) porphyrins and organic substrates with active methyl or methylene groups. The reaction yields quite stable five-coordinate organccchalt(III: porphyrin species. In view of the interest in the chemistry of vitamin B_{12} and the relative rarity of five-coordinate cobalt(III) complexes, we have investigatec the spectroscopic properiies and the structure of one of these compounds. We report herein the molecuiar structure of acetonyl-x, $3, \hat{i}, \delta-t e \pm r a p h e n y l p o r p h i r i a t c c o b a l t(I I I) . ~$

Experimental

(Acetonyl)Cotpy. This compound was originally prepared as large.single crystals by the slow (ca. 3 weeks) evaporation of an acetone solution of CoTPP 1 containing a large molar excess of N-benzyl-2,4,5-trjmethylimidazole. Subsequent preparations were performed on a larger scale. Air was bubbled through a soiution of Cotpl ($200 \mathrm{mg}, 0.30 \mathrm{mmole}$) in acetone (250 mL) containing an excess of various Lewis bases (N-benzyl-2,4,5-trimethylimidazole, ${ }^{2}$ 2,4,5-trimethyiimidazole, or tetramethylguanidine were ail found satisfactory). The acetone was replenished as necessary. After ca. Io days, the acetone was evaporated, the residue dissoived in benzene and chromatograpied on a dry-packed silica gel column. The first band eluted (benzene) was CoTPP, tio second bance, eluted with 20% methanol-benzene, was the desirad organocobalt(III) species ($67 \mathrm{mg}, 31 \%$). IR (KBr) $v \mathrm{CC}, 1660 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{CoN}_{4} \mathrm{OC}_{47} \mathrm{H}_{33}=\mathrm{C}, 77.46$; 5, 4.56; N, 7.69. Found: C, 76.41;世, 4.75; N, 7.47. $\lambda_{\text {max }}$ benzene (ε) 527 (1.33 $\times 10^{\frac{4}{4}}$, 412 (1.41 $\times 10^{5}$).
(Acetophenonvi)Corpe. Air was bubblea through a solution of Cotpe ($200 \mathrm{mg}, 0.30 \mathrm{mmole}$) in 25 mL of acatophenone containing a Lewis base. Arter two weeks, the product was obtained and purified as above ($60 \mathrm{mg}, 25$ \%) . IR (KBr) $v \mathrm{CC}, 1630 \mathrm{~cm}^{-1}$. Anal. Calca. for $\mathrm{CoN}_{4} \mathrm{CC}_{52}{ }^{\mathrm{H}} 35=\mathrm{C}: 78.98 ; \mathrm{H}, 4.45 ; \mathrm{A}, 7.08$, Eound: C, 79.04; H, 4.96; :i, 7.13. Amax benzene (ε) 620 (1.21×10^{3}), 530 $\left(1.33 \times 10^{4}\right), 412\left(1.51 \times 20^{5}\right)$.
(CH(CN) 2) COTPP. Air was bubbied through a solution of CoTPP ($200 \mathrm{mg}, 0.3$ mnole) and malononitrile ($500 \mathrm{mg}, 7.6 \mathrm{~mole}$) in 50 ml of benzene and purified as above except for the use of pure benzene as eluent ($75 \mathrm{mg}, 34$) . IR (KBr) y (CN) , $2225 \mathrm{~cm}^{-1}$. Anal. Calcd. for $\mathrm{CoN}_{6} \mathrm{C}_{47} \mathrm{H}_{29}$: C, 76.62; H, 3.97; N, ll.34. Found: $\mathrm{C}, 76.45 ; \mathrm{H}, 4.29 ; \mathrm{N}, 11.02$. \quad max benzene (E) 620 (I. $3 \mathrm{I} \times 10^{3}$), $550\left(8.34 \times 10^{3}\right), 552\left(1.58 \times 10^{4}\right), 412\left(1.06 \times 10^{5}\right)$.

Instrumentation. IR spectra were recorded in KBr pellets on a Perkin-Elmer 457 and visible spectra on a Cary 15 spectrophotometer. Nmr spectra were recorded on a Varian Xl-100 spectrophotometer operating in the FT mode. Nagnetic susceptibilities were measured on a Cahn Faraday balance. The mass spectrum was measured on an AEI MS-902 instrument.

X-ray Structure Determination of (Acetonyl)CoTPP. All measurements were derived from a crystal with approximate dimensions of $0.2 \times 0.2 \times 1.0 \mathrm{~mm}$. Preliminary examination on a Syntex PI diffractometer revealed no symmetry other than a center. A

Delauney reduction confirmed the assignment of the triclinic systera. Lattice constants, $a=12.187$ (8) $\AA, \underset{\sim}{\mathrm{D}}=14.157$ (5) $\mathcal{A}, \underline{c}=$ $11.925(5) A, \sigma=94.70(5)^{\circ}, \beta=111.39(4)^{\circ}$, and $\dot{\gamma}=68.44$ (4) ${ }^{\circ}$, came from a least-squares refinement that utilized the serting angles of 56 reflections, collectea at ± 26. For a cell content of $2\left[\mathrm{CoN}_{4} \mathrm{OC}_{4} \mathrm{TH}_{33}\right]$, these constants led to a calculated dersity of $1.356 \mathrm{~g} / \mathrm{cm}^{3}$. The experimental density is $1.34 \mathrm{~g} / \mathrm{cm}^{3}$. Intensity data were measured by $A \rightarrow 2 e$ scanning methods with graphite-monochromated Mo $k \alpha$ radiation. All indepenaent data for which $\sin \theta / \lambda \leqslant 0.626 \AA^{-1}$ were measurea and the 6546 refiections for which $F_{0}>3 \sigma\left(F_{0}\right)$ were retained as observed. Bacigrounds were measured at the extremes uf the scan for 0.5 times the time required for the scan. Four standari reflections, measured every 50 reflections during data collection, showed ro long term trends. Intensity daさa were reduced as dsscribed previously. ${ }^{3}$ With a $\mu=0.56 \mathrm{~mm}^{-1}$ and the cristal dimensions, no correction for absorption was deemed necessary.

The structure was solved by the heavy atom methodi and refined using block-diagonal least-squares techniques. Standard values for scattering factors were used. 5,6 After isotropic refinement, a iifference Fourier synthesis revealed electron density maxima appropriately located for porphinato hydrogen atoms. The position of hydrogen atoms were idealized ($\mathrm{C}-\mathrm{H}=0.95$ A). The position of the acetonyl hydrcgen atoms were also determined from the Fourier maps and idealized ($C-E=1.9$ A). All hydrogen atom parameters were included in subsequent cycles of refinement as fixed contributors. Refinement was carried to convergence using anisotropic temperature factors for all heavy atoms. Final values of the discrepancy indices were 0.050 (conventional residual) and 0.076 (weighted residual). A final difference Fourier synthesis was judged to be free of significant features; the largest peak had a density of $0.5 \mathrm{e} / \mathrm{A} 3$. Final atomic coordinates and the associated anisotropic themmal parameters in the asymmetic unit of structure are listed in Tables 1 and 2 , respectively. A listing of the final observed and calculated structure factors is available from ASIS/NAPS.*

[^0]
Results anā Discussion

Figure 1 is a computer drawn model of the (Acetonyl)coTPP molecule as it exists in the crystal. Each atom is represented by an ellipsoid with the relative size and orientation required by the thermal parameters given in Table 2 . The hydrogen atoms of the acetonyl ligand have been mãe artificially small. Each atom is identified by a label that is used througho:it the tables. Also displayed in the figure are the bond distances of the coordination group.

Figure 2 illustrates ine displacement of the atoms in the molecule from the mean piane defined by the 24 -atom macrocyclic ring. The figure has essentially the sane orientation as figure I; each atom symbol has been replaced by the value of the displacement in urits of 0.01 A. The pattern of displacements in

Figure 1. A computer-drawn model of the (Acetonyi)Compp molecule. The atom labeling scheme is shown.

Figure 2. A diagram of the porphinato core showing displacements of the atoms, in units of 0.01 A , from the mean plane of the $24-$ atom core. This diagram has the same general oriertation as that of Figure 1. The mean plane of the core and the paper are coplanar. Also displayed on the figure are the individual N....N distances and the average co...C C_{m} separation.
the porphinato core corresponds closely to \underline{D}_{2} d synnetry. The equatorial pseudo twofold axes pass througn the methine carbon atoms (C_{m} 's on Figure l) and the pseudo dihedral mirror planes pass through the nitrogen atoms and the mifupoints of the $C_{b}-C_{b}$ bonds. Otherwise put, the methine carbon atoms define a plane that is coplanar with the mean plane of the four nitrogen atoms (Figure 2); the \bar{s}-pyrrole carbon atoms of adjacent rings are alternatively above and below this plane. It is interesting to note that most porphyrin structures that have a \underline{D}_{2} a type of ruffled core have an alternate conformation in which the positions of the dihedral mirrors and twofold axes are reversed.

Bond parameters in the core reflect the fourfold geometry

Table 1. Atomic Coordinates in the Unit Cell Coordinates ${ }^{\text {a }}$

Atom type	Coordinates		
	$10^{4} \mathrm{x}$	$10^{4} \mathrm{y}$	$10^{4} \mathrm{z}$
Co	2273 (1)	- 19 (1)	42 (1)
N_{1}	1921 (2)	1419 (1)	304 (2)
N_{2}	559 (2)	299 (2)	-1126(2)
N_{3}	2604 (2)	-1465 (1)	- 192 (2)
N_{4}	3814 (2)	- 360 (1)	1467 (2)
C_{25}	3182 (3)	70 (2)	-1047 (3)
C_{26}	2242 (3)	562 (2)	-2219 (3)
C_{27}	1775 (3)	- 73 (3)	-3188 (3)
\bigcirc	1847 (2)	1485 (2)	-2410 (2)
$c_{\text {al }}$	2722 (2)	1857 (2)	1089 (2)
$\mathrm{C}_{\mathrm{a} 2}$	931 (2)	2227 (2)	- 426 (2)
$c_{\text {bl }}$	2233 (3)	2938 (2)	823 (2)
$\mathrm{C}_{\mathrm{b} 2}$	1141 (3)	3159 (2)	- 112 (2)
$c_{\text {a3 }}$	- 364 (2)	1254 (2)	-1529 (2)
$c_{a 4}$	- 8 (2)	- 375 (2)	-1749 (2)
$c_{\text {b3 }}$	-1517(3)	1154 (2)	-2324(3)
$c_{b 4}$	-1313(3)	175 (2)	-2447 (3)
$\mathrm{c}_{\mathrm{a} 5}$	1873 (2)	-1898(2)	-1082 (2)
$c_{\text {aб }}$	3734 (2)	-2264 (2)	337 (2)
$\mathrm{c}_{\mathrm{b} 5}$	2573 (3)	-2950(2)	-1138(2)
$c_{\text {b6 }}$	3713(3)	-3173 (2)	- 263 (3)
$c_{a 7}$	4685 (2)	-1313(2)	1922 (2)
Ca_{a}	4254 (2)	303 (2)	2262 (2)
$c_{b 7}$	5623 (3)	-1241 (2)	3043 (2)
$C_{\text {b } 8}$	5362 (2)	- 260 (2)	3250 (2)
$\mathrm{CmI}^{\text {m }}$	- 168 (2)	2157 (2)	-1279(2)
$\mathrm{Cm}_{\mathrm{m} 2}$	615 (2)	-1400 (2)	-1792(2)
$C_{\text {m }}$	4709 (2)	-2214 (2)	1375 (2)

Table 1. contd.

Atom Type	Coordinates		
	$10^{4} x$	$10^{4} \mathrm{y}$	$10^{4} 2$
$c_{\text {m } 4}$	3793 (2)	1346 (2)	2062 (2)
C_{1}	-1148(2)	3120 (2)	-1983(3)
C_{2}	-1037(3)	3429 (2)	-2985 (3)
C_{3}	-1862 (4)	4345 (3)	-3614 (3)
C_{4}	-2838(3)	4945 (2)	-3241 (4)
C_{5}	-2969 (3)	4641 (3)	-2276 (4)
C_{6}	-2113 (3)	3722 (2)	-1621 (3)
C_{7}	- 60 (2)	-1998(2)	-2680 (2)
C_{8}	- 362 (3)	-2730(2)	-2299 (3)
C_{9}	- 978 (3)	-3281(2)	-3121 (3)
c_{10}	-1291(3)	-3116(2)	-4336 (3)
c_{11}	-1000(3)	-2393(3)	-4729 (3)
C_{12}	- 385(3)	-1830(2)	-3912 (3)
c_{13}	5804(2)	-3167(2)	1942 (2)
c_{14}	6987 (3)	-3336 (2)	1938 (3)
C_{15}	7997 (3)	-4219 (3)	2495 (3)
c_{16}	7826 (3)	-4921 (2)	3071 (3)
c_{17}	6655 (3)	-4752 (2)	3089 (3)
C_{18}	5633 (3)	-3877 (2)	2532 (3)
C_{19}	4507 (2)	1931 (2)	2932 (2)
C_{20}	5214 (3)	2346 (2)	2502 (3)
C_{21}	5958(3)	2807 (2)	3445 (3)
C_{22}	5996 (3)	2858 (2)	4609 (3)
C_{23}	5271 (3)	2464 (2)	4934 (3)
C_{24}	4532 (3)	2004 (2)	4101 (3)

Table 2. Anisotropic Thermal parameters.

Atom Type	Anisotropic parameters ${ }^{\text {a }}$						
	E_{11}	$\underline{-}_{22}$	${ }_{-33}$	${ }_{-12}$	B_{13}	\underline{B}_{23}	$\underline{B} \cdot \mathrm{~A}^{\text {2 }}$
Co	2.22 (1)	2.42(1)	2.40 (1)	-1.15(1)	0.29 (1)	-0.09(1)	2.3
N_{L}	2.28 (8)	2.70 (8)	2.59 (8)	-. .96(7)	$0.61(7)$	-0.16(7)	2.6
N_{2}	2.46 (9)	2.93 (9)	2.93 (9)	-1.29(7)	0.69 (7)	-0.17(7)	2.7
N_{3}	2.60 (9)	2.80 (5)	2.68 (9)	-1.24(7)	0.57 (7)	-0.17(7)	2.7
N_{4}	2.53 (9)	2.57 (8)	2.89 (9)	-1.25(7)	0.26 (7)	0.06 (7)	2.7
C_{25}	3.6 (1)	3.9 (1)	3.6 (1)	-1.7 (1)	1.2 (1)	0.1 (1)	3.6
c_{26}	3.7 (1)	4.6 (1)	4.0 (1)	-1.6 (1)	1.9 (1)	0.2 (1)	3.8
c_{27}	5.3 (2)	6.5 (2)	4.0 (1)	-2.8 (1)	1.6 (1)	-0.4 (1)	4.9
0	5.7 (1)	4.7 (1)	5.5 (1)	-1.6 (1)	2.1 (1)	1.3 (1)	5.0
$c_{\text {al }}$	2.8 (1)	2.8 (1)	3.1 (1)	-1.3 (1)	0.7 (1)	0.3 (1)	2.9
$c_{a 2}$	2.9 (1)	2.8 (1)	2.8 (1)	-1.2 (1)	0.5 (1)	0.2 (1)	2.9
$c_{b l}$	3.5 (1)	2.7 (1)	3.7 (1)	-1.6 (1)	0.5 (1)	0.0 (1)	3.2
$\mathrm{c}_{\mathrm{b} 2}$	3.4 (1)	2.7 (1)	3.5 (1)	-1.2 (1)	0.6 (1)	0.2 (1)	3.3
$c_{\text {a }}$	2.4 (1)	3.2 (1)	3.2 (1)	-1.0 (1)	0.5 (I)	-0.0 (1)	3.0
$c_{\text {a } 4}$	2.7 (1)	3.7 (1)	3.0 (1)	-1.8 (1)	0.8 (1)	-0.3 (i)	3.0
$\mathrm{c}_{\mathrm{b} 3}$	2.5 (1)	3.9 (1)	4.9 (2)	-1.1 (1)	0.1 (1)	-0.0 (1)	3.8
Cb_{6}	2.6 (1)	4.3 (1)	4.5 (1)	-1.8 (1)	0.2 (1)	-0.5 (1)	3.6
c_{25}	3.3 (1)	3.1 (1)	2.7 (1)	-1.7 (1)	0.7 (1)	-0.3 (1)	2.9
c^{46}	3. (I)	2.7 (1)	3.0 (1)	-1.3 (1)	0.6 (1)	-0.1 (1)	2.9
$\mathrm{c}_{\mathrm{b} 5}$	4.0 (1)	3.1 (1)	3.3 (I)	-1.7 (i)	0.7 (1)	-0.6 (1)	3.4
$c_{\text {b6 }}$	3.8 (1)	3.1 (1)	3.4 (1)	-1.4 (1)	0.7 (1)	-0.4 (I)	3.5
$c_{a 7}$	2.7 (1)	2.9 (1)	2.9 (1)	-1.3 (1)	0.5 (1)	0.1 (1)	2.8
$c_{\text {a } 8}$	2.7 (1)	3.2 (1)	2.5 (1)	-1.5 (1)	0.6 (1)	-0.4 (1)	2.7
$c_{b 7}$	3.0 (1)	3.3 (1)	3.2 (1)	-1.4 (1)	-0.1 (1)	0.3 (1)	3.2
$c_{b 8}$	3.0 (1)	3.3 (1)	3.1 (1)	-1.4 (1)	0.0 (1)	-0.3 (1)	3.2
$\mathrm{CmI}^{\text {c }}$	2.5 (1)	3.0 (1)	3.2 (1)	-0.8 (1)	0.3 (1)	0.3 (1)	3.0
$C_{m 2}$	3.3 (1)	3.4 (1)	2.8 (1)	-2.1 (1)	0.5 (1)	-0.3 (1)	2.9
$\mathrm{C}_{\mathrm{m} 3}$	2.7 (1)	2.8 (1)	3.2 (1)	-1.2 (I)	0.6 (1)	0.1 (1)	2.9
$\mathrm{C}_{\mathrm{m} 4}$	2.7 (1)	2.9 (1)	2.9 (1)	-1.4 (1)	0.7 (1)	-0.4 (1)	2.8

Table 2. contd.

$\begin{aligned} & \text { Atom } \\ & \text { Type } \end{aligned}$	E_{11}		B_{22}	Anisotropic pazameters ${ }^{\text {a }}$					$\stackrel{B}{-13}^{1}$		B_{23}		$\underline{B}, \mathrm{~A}_{2}^{\mathrm{B}}$	
				$\stackrel{B}{B}_{33}$		B_{12}								
C_{1}	2.6	(1)		3.2	(1)	4.0	(1)	-1.2	(1)	-0.0	(1)	0.3	(1)	3.3
c_{2}	4.7	(2)	4.6	(2)	3.8	(1)	-1. 6	(1)	0.2	(1)	0.6	(1)	4.5	
c_{3}	6.9	(2)	5.4	(2)	4.9	(2)	-3.0	(1)	-1.0	(2)	1.9	(1)	5.4	
c_{4}	3.9	(2)	3.7	(1)	8.7	(2)	-1. 7	(1)	-1. 5	(2)	1.9	(1)	4.9	
C_{5}	3.4	(2)	3.6	(2)	1.2 .0	(3)	-0.7	(1)	1.7	(2)	0.3	(2)	5.6	
C_{6}	3.5	(1)	4.0	(2)	7.3	(2)	-0.8	(1)	1.7	(1)	0.6	(1)	4.8	
c_{7}	3.1	(1)	3.4	(I)	2.9	(1)	-1. 7		0.5	(1)	-0.5	(1)	3.1	
C_{8}	4.0	(1)	4.0	(1)	3.5	(1)	-2.3	(1)	1.3	(1)	-0.9	(1)	3.5	
C_{9}	4.5	(2)	4.8	(2)	4.9	(2)	-3.0	(1)	1.8	(I)	-1. 3	(1)	4.1	
c_{10}	3.8	(1)	4.8	(2)	4.5	(1)	-2.2		0.7	(1)	-1.8	(1)	$\pm .1$	
c_{11}	4.8	(2)	6.4	(2)	2.8	(1)	-2.5	(1)	0.3	(1)	-0.7	(1)	4.4	
C_{12}	4.6	(2)	4.8	(2)	3.2	(1)	-2. 3	(1)	0.1	(1)	0.0	(1)	4.2	
C_{13}	3.2	(1)	2.6	(1)	3.1	(1)	-1. 2	(1)	0.4	(I)	-0.3	(1)	3.0	
c_{14}	3.4	(1)	4.1	(1)	5.0	(2)	-1.3		1.1	(1)	0.4	(1)	4.2	
c_{15}	3.1	(1)	5.2	(2)	5.9	(2)	-0.9	(1)	1.0	(1)	-0.5	(1)	4.9	
C_{16}	4.9	(2)	3.2	(1)	4.5	(2)	-0. 3	(1)	-0.3	(1)	-0.4	(1)	4.5	
C_{17}	5.5	(2)	2.9	(1)	4.8	(2)	-1.6	(1)	0.6	(1)	0.4	(1)	4.4	
C_{18}	4.3	(1)	3.0	(I)	4.0	(1)	-1. 3	(1)	0.5	(I)	-0.1	(1)	3.7	
C_{19}	2.6	(1)	2.6	(1)	3.3	(1)	-1. 2	(1)	0.2	(1)	-0.4	(1)	2.9	
C_{20}	4.1	(i)	3.7	(1)	4.8	(2)	-2.1	(1)	1.6	(1)	-1. 0	(1)	3.9	
C_{21}	4.8	(2)	4.3	(2)	7.3	(2)	-3.1	(I)	1.7	(2)	-1.2	(I)	4.6	
C_{22}	4.4	(2)	4.6	(2)	6.1	(2)	-2. 1	(1)	0.1	(1)	-1. 6	(1)	4.6	
C_{23}	5.3	(2)	4.7	(2)	3.7	(1)	-2.1	(1)	0.2	(1)	-1.1	(i)	4.6	
C_{24}	3.9	(1)	3.9	(1)	3.7	(1)	-1.8	(1)	0.6	(1)	-0.5	(1)	3.8	

$a_{\text {The }}$ number in parentheses following each datum is the estimated
standard deviation in the last significant figure. Bij $_{i j}$ is related to the dimensionless Eij $_{i j}$ employed during refinement as $\underline{B}_{i j}=$ ${ }^{4} \beta_{i j} / a_{i}{ }^{*} a_{j}{ }^{*}$.
${ }^{b_{I s o t r o p i c}}$ thermal parameters as calculated from $\underline{E}-4\left[V^{2} \operatorname{det}\left(\beta_{i j}\right)\right]^{1 / 3}$.

Table 3. Bond Lengths in the Coordination Group,
Porphinato Skeleton, and Acetonyl Groupa

Bond	Value, ${ }_{\text {A }}$	Bond	$\text { Value, } \mathrm{A}$	Bond	Value, ${ }_{\text {A }}$
$\mathrm{Co}-\mathrm{N}_{1}$	1.944 (2)	$\mathrm{Cal}_{\text {21 }}-\mathrm{C}_{\mathrm{m4}}$	1.383 (4)	$C_{a 7}-C_{b 7}$	$1.433(4)$
$\mathrm{CO}-\mathrm{N}_{2}$	1.948 (2)	$C_{a l}{ }^{-C_{b l}}$	1.438 (3)	$C_{a 8}{ }^{-C_{m 4}}$	1.380(4)
$\mathrm{CO}-\mathrm{N}_{3}$	$1.953(2)$	$\mathrm{Ca}_{\mathrm{a} 2}-\mathrm{C}_{\mathrm{ml}}$	1.387 (4)	$\mathrm{C}_{\mathrm{a} 8}{ }^{-C_{b 8}}$	1.431 (4)
$\mathrm{CO}-\mathrm{N}_{4}$	1.946(2)	$C_{a 2}{ }^{-C_{b 2}}$	1.429 (4)	$\mathrm{CmI}^{-\mathrm{C}_{1}}$	1.500(4)
$\mathrm{CO}-\mathrm{C}_{25}$	$2.028(3)$	$\mathrm{Ca3}^{-\mathrm{C}_{\mathrm{ml}}}$	1.375 (4)	$C_{m 2}-C_{7}$	1.498 (4)
$\mathrm{N}_{1}-\mathrm{C}_{\mathrm{al}}$	1.377 (3)	$\mathrm{C}_{\mathrm{a} 3}-\mathrm{C}_{\mathrm{b} 3}$	1.424 (4)	$\mathrm{C}_{\mathrm{m} 3}{ }^{-\mathrm{C}_{13}}$	1.492 (4)
$\mathrm{N}_{1}-\mathrm{Ca}_{\mathrm{a} 2}$	I. 380 (3)	$\mathrm{C}_{\mathrm{a4}}-\mathrm{C}_{\mathrm{m} 2}$	1.375 (4)	$\mathrm{C}_{\mathrm{m4}}-\mathrm{C}_{19}$	1.501 (3)
$\mathrm{N}_{2}-\mathrm{C}_{23}$	1.385 (3)	$C_{a 4}-C_{54}$	1.435 (4)	$c_{b 1}-c_{b 2}$	1.335 (4)
$\mathrm{N}_{2}-\mathrm{C}_{\mathrm{a} 4}$	1.391 (3)	$\mathrm{C}_{\mathrm{a} 5} \mathrm{C}_{\mathrm{m} 2}$	1.386 (4)	$C_{b 3}-C_{b 4}$	1.335 (4)
$\mathrm{N}_{3}-\mathrm{C}_{\mathrm{a} 5}$	1.378(3)	$\mathrm{C}_{a 5}{ }^{-\mathrm{C}_{\mathrm{b} 5}}$	1.428(4)	$\mathrm{c}_{\mathrm{b} 5}{ }^{-\mathrm{C}_{\mathrm{b} 6}}$	1.339 (4)
$\mathrm{N}_{3}-\mathrm{C}_{\mathrm{a}}$	1.383 (3)	$c_{a 6}{ }^{-c_{m 3}}$	1.387 (4)	$c_{b 7}{ }^{-C_{b 8}}$	1.330 (4)
$\mathrm{N}_{4}-\mathrm{Ca}_{\mathrm{a}}$	1.375 (3)	$\mathrm{C}_{\mathrm{a6}}-\mathrm{C}_{\text {b } 6}$	1.424 (4)	$\mathrm{C}_{25} \mathrm{C}_{26}$	1.468 (4)
$\mathrm{N}_{4}-\mathrm{C}_{\mathrm{a} 8}$	1.386(3)	$\mathrm{c}_{\mathrm{a} 7}{ }^{-\mathrm{C}_{\mathrm{m} 3}}$	1.379 (4)	$\mathrm{C}_{26} \mathrm{C}_{27}$	1.480 (5)
				$\mathrm{C}_{26}{ }^{-0}$	1.224 (4)

${ }^{\text {a }}$ The numbers in parentheses are the estimated standard deviations.
with average bond aistances of $C 0-\mathbb{N}=1.948$ (4) $\AA_{\text {, }} N-C_{a}=1.382$ (5) $A, C_{a}-C_{b}=1.430$ (5) $A, c_{a}-c_{m}=1.382$ (5) A, and $C_{b}-C_{b}=$ 1.335 (4) \AA, where the number in parentheses following the averaged value is the estimated standard deviation. The average value of the individually determined $C-C$ bond distances in the four peripheral phenyl rings is 1.38 (1) A. Values for the bond angles are as follows: $\mathrm{C}_{\mathrm{a}} \mathrm{NC}_{\mathrm{a}}=104.5(3)^{\circ}, \mathrm{C}_{\mathrm{a}} \mathrm{C}_{\mathrm{m}} \mathrm{C}_{\mathrm{a}}=122.6$ (5) ${ }^{\circ}$, $\mathrm{NC}_{a} \mathrm{C}_{\mathrm{b}}=110.4(4)^{\circ}, \mathrm{NC}_{a} \mathrm{C}_{\mathrm{m}}=125.0(5)^{\circ}, \mathrm{C}_{a} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b}}=107.3(2)^{\circ}$. The values of the various bond parameters in porphinato complexes have been observed to vary as a function of the size of the central hole. ${ }^{7}$ The values observed in (Acetonyl)CoTPP are in agree-
ment with these general trends. Individual values of bond aistances and bond angies are listed in rables 3 and 4.

The average co-N bond aistance of 2.948 (4) \AA is at the lower end of the observed rance of porphinato nitroger-cobalt bond distances. ${ }^{7,8}$ It is comparable to the 1.949 \& value observed

Table 4. Bond Angles in the Coordination Group, Porphinato Skeleton, and Acetonyl Group ${ }^{\text {a }}$

Angle	Value, deg	Angle	Value, deg	Angle	Value, deg
$\mathrm{N}_{1} \mathrm{CoN}_{2}$	90.21 (9)	$\mathrm{CaS} \mathrm{C}_{\mathrm{m} 2} \mathrm{C}_{7}$	118.2(2)		
$\mathrm{N}_{1} \mathrm{CON}_{3}$	178.5 (7)	$\mathrm{c}_{26} \mathrm{C}_{\mathrm{m} 3} \mathrm{C}_{13}$	119.2(2)	$\mathrm{N}_{3} \mathrm{C}_{\mathrm{a}}{ }^{\text {C }} \mathrm{b} 6$	$110.7(2)$
$\mathrm{N}_{1} \mathrm{CON}_{4}$	89.93 (9)	$\mathrm{Ca7} \mathrm{C}_{\mathrm{m} 3} \mathrm{C}_{13}$	$118.7(2)$	$c_{m 3} C_{a 6} C_{b 6}$	124.3 (2)
$\mathrm{N}_{1} \mathrm{CoC}_{25}$	89.0 (1)	$\mathrm{CaI}_{\mathrm{al}} \mathrm{C}_{4} \mathrm{C}_{19}$	119.6 (2)	$\mathrm{N}_{4} \mathrm{Ca}_{\mathrm{a} 7} \mathrm{C}_{\mathrm{m} 3}$	126.i (2)
$\mathrm{N}_{2} \mathrm{CoN}_{3}$	89.54 (9)	$\mathrm{C}_{\mathrm{a8}} \mathrm{C}_{\mathrm{m4} 4} \mathrm{C}_{19}$	117.8(2)	$\mathrm{N}_{4} \mathrm{C}_{\mathrm{a7}} \mathrm{C}_{\mathrm{b} 7}$	110.0 (2)
$\mathrm{N}_{2} \mathrm{CoN}_{4}$	167.1 (1)	$\mathrm{N}_{1} \mathrm{Cal}_{\mathrm{al}} \mathrm{C}_{\mathrm{m} 4}$	124.8(2)	$C_{m 3} C_{a 7} C_{b 7}$	123.8(2)
$\mathrm{N}_{2} \mathrm{CoC}_{25}$	100.6 (1)	$\mathrm{N}_{1} \mathrm{Cal} \mathrm{C}_{\mathrm{bl}}$	110.6(2)	$\mathrm{N}_{4} \mathrm{Ca}_{28} \mathrm{Cm}_{4}$	125.1(2)
$\mathrm{N}_{3} \mathrm{CON}_{4}$	89.97 (9)	$C_{m 4} C_{a I} C_{b I}$	124.3(2)	$\mathrm{N}_{4} \mathrm{C}_{28} \mathrm{C}_{68}$	110.0(2)
$\mathrm{N}_{3} \mathrm{CoC}_{25}$	92.5 (1)	$\mathrm{N}_{1} \mathrm{Ca}_{2} \mathrm{C}_{\mathrm{ml}}$	124.5(2)	$C_{m 4} C_{a 8} C_{b 8}$	124.5i2)
$\mathrm{N}_{4} \mathrm{CoC}_{25}$	92.3 (1)	$\mathrm{N}_{1} \mathrm{C}_{\mathrm{a} 2} \mathrm{C}_{\mathrm{b} 2}$	110.9 (2)	$c_{a 1} c_{b 1} c_{b 2}$	107.0(2)
$\mathrm{Cal}_{\mathrm{al}} \mathrm{C}_{\mathrm{a} 2}$	104.3 (2)	$\mathrm{c}_{\mathrm{ml}} \mathrm{Ca}_{\mathrm{a} 2} \mathrm{c}_{\mathrm{b} 2}$	124.4(2)	$c_{a 2} c_{b 2} c_{b 1}$	107.2(2)
$\mathrm{Ca3}^{\mathrm{N}_{2} \mathrm{Ca}_{4}}$	104.6 (2)	$\mathrm{N}_{2} \mathrm{Ca3} \mathrm{Cml}$	124.8(2)	$\mathrm{C}_{\mathrm{a} 3} \mathrm{C}_{\mathrm{b} 3} \mathrm{C}_{\mathrm{b} 4}$	$107.7(2)$
$\mathrm{C}_{35} \mathrm{~N}_{3} \mathrm{C}$ a6	104.3 (2)	$\mathrm{N}_{2} \mathrm{C}_{\mathrm{a} 3} \mathrm{C}_{\mathrm{b} 3}$	110.3(2)	$C_{a 4} \mathrm{C}_{\mathrm{b} 4} \mathrm{c}_{\mathrm{b} 3}$	107.4(2)
$\mathrm{Ca7} \mathrm{~N}_{4} \mathrm{C}_{28}$	104.9 (2)	$\mathrm{c}_{\mathrm{ml}} \mathrm{Ca3} \mathrm{c}_{\mathrm{b} 3}$	124.7(2)	$\mathrm{C}_{\mathrm{a5}} \mathrm{C}_{\mathrm{b} 5} \mathrm{C}_{\mathrm{b6}}$	107.1(2)
$\mathrm{Ca2}^{2} \mathrm{CmI}_{\mathrm{ml}} \mathrm{Ca}$	123.2 (2)	$\mathrm{N}_{2} \mathrm{C}_{\mathrm{a}} \mathrm{C}^{\mathrm{C}} 2$	125.1(2)	$\mathrm{C}_{a 6} \mathrm{C}_{\mathrm{b}} \mathrm{C}_{\mathrm{b} 5}$	107.2(2)
$\mathrm{Ca4} \mathrm{C}_{\mathrm{m} 2} \mathrm{C}_{\mathrm{a} 5}$	122.4 (2)	$\mathrm{N}_{2} \mathrm{Ca4} \mathrm{C}_{\mathrm{b} 4}$	109.8 (2)	$c_{a 7} C_{b 7} C_{b 8}$	107.6(2)
$\mathrm{C}_{\mathrm{a} 6} \mathrm{C}_{\mathrm{m} 3} \mathrm{C}_{\mathrm{a} 7}$	122.1 (2)		124.8(2)	$\mathrm{C}_{\mathrm{a8}} \mathrm{C}_{\mathrm{b} 8} \mathrm{C}_{\mathrm{b} 7}$	107.3(2)
$C_{a l} C_{m 4} C_{a 8}$	122.5 (2)	$\mathrm{N}_{3} \mathrm{Ca5}^{\text {C }} \mathrm{m} 2$	125.0(2)	$\mathrm{C}_{25} \mathrm{C}_{26} \mathrm{C}_{27}$	119.3 (3)
$\mathrm{Ca2} \mathrm{C}_{\mathrm{ml}} \mathrm{C}_{1}$	117.0 (2)	$\mathrm{N}_{3} \mathrm{C}_{\mathrm{a} 5} \mathrm{C}_{\mathrm{b} 5}$	110.7 (2)	$\mathrm{C}_{25} \mathrm{C}_{26} \mathrm{O}$	121.1(3)
$\mathrm{Ca}_{\mathrm{a}} \mathrm{C}_{\mathrm{ml}} \mathrm{C}_{1}$	119.8 (2)	$\mathrm{C}_{\mathrm{m} 2} \mathrm{C}_{\mathrm{a5}} \mathrm{C}_{\mathrm{b} 5}$	124.3(2)	$\mathrm{C}_{27} \mathrm{C}_{26}{ }^{\circ}$	119.6 (3)
$\mathrm{Ca4}_{\mathrm{a}} \mathrm{C}_{2} \mathrm{C}_{7}$	119.3 (2)	$\mathrm{N}_{3} \mathrm{C}_{\mathrm{a} 6} \mathrm{C}_{\mathrm{m} 3}$	124.8(2)	$\mathrm{CoC}_{25} \mathrm{C}_{26}$	109.1(2)

[^1]Table 5. 1_{H} NMR Spectra (τ values)

Compound ${ }^{\text {a }}$	Proton assignments for axial ligands					
$\mathrm{C}\left(\mathrm{H}_{\mathrm{C}}\right)_{3} \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right)_{2} \mathrm{COTPF}$	13.68		11.78			b
$\mathrm{PhC}(\mathrm{O}) \mathrm{C}\left(\mathrm{H}_{\mathrm{a}} \mathrm{I}_{2} \mathrm{COTPP}\right.$	12.84			3.6	5.16	b
(CN) $2_{2} \mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right) \mathrm{COTPP}$	13.45					b
$\mathrm{C}\left(\mathrm{H}_{\mathrm{d}}\right)_{3} \mathrm{C}\left(\mathrm{H}_{\mathrm{C}}\right)_{2} \mathrm{C}\left(\mathrm{H}_{\mathrm{b}}\right)_{2} \mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right)_{2} \mathrm{Co}$ (etio I)	14.3	15.3	11.65	11.0		c
$\mathrm{C}\left(\mathrm{H}_{\mathrm{b}}\right)_{2}(\mathrm{CN}) \mathrm{C}\left(\mathrm{Ha}_{\mathrm{a}}\right)_{2} \mathrm{COOEP}$	1.4.					d
cis-PhC $\left(H_{b}\right)=C\left(H_{a}\right) \operatorname{COOEP}$	9.94	11.3		3.50	6.10	d
trans - PhC $\left(\mathrm{H}_{\mathrm{b}}\right)=\mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right) \operatorname{CoOEP}$	10.12	11.0		3.79	5.10	d
$\mathrm{C}_{3}\left(\mathrm{H}_{\mathrm{d}}\right)_{4}\left(\mathrm{H}_{\mathrm{c}}\right) \mathrm{C}(\mathrm{O}) \mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right)_{2} \mathrm{Rh}$ (etio I)	16.0		14.1	11.2,11.6		e
$\mathrm{p}-\mathrm{F}-\mathrm{PhC}(\mathrm{O}) \mathrm{C}\left(\mathrm{H}_{\mathrm{c}}\right)_{2} \mathrm{C}\left(\mathrm{H}_{\mathrm{b}}\right)_{2} \mathrm{C}\left(\mathrm{H}_{\mathrm{a}}\right)_{2} \mathrm{Rh}$ (etio I)	16.15	14.9	11.18	3.3		e
a. The free bases of the porphyrin ligands are abbreviated as follows: H_{2} TPP, tetraphenylporphyrin; $\mathrm{H}_{2} \mathrm{OEP}$, octaethylporphyrin; H_{2} (etio I), etioporphyrin I. b. This work. c. D. A. Clark, R. Grigg and A. W. Johnson, Chem. Commun., (1966) 208. d. Ref. 15 . e. A. M. Abeysekera, R. Grigg, J. Trochambrimshaw and V. Viswanatha, J.C.S. Chem. Comm., (1976) 227.						

in four-coordinate CoTpp^{9} (a cobalt(II) derivetive) and the 1.954-A value found for six-ccordinate (3,5-inticine)-meso-tetraphenylporphinato (nitro) cobalt(III). ${ }^{10}$ The perpininato cores in these two derivatives are also quite rufflea and, as noted earlier, 11 the porphinato core conformation appears to heve a greater effect on the $C O-N$ bond distance then any other variable. The co-c bond distance of 2.028 (3) A is within the range (1.93-2.05 \&) reported ${ }^{12}$ for a variety of six-ccordinate organocobalt(III) complexes. The Com bond distance in five-coordinate N, N'-ethylene-bis-(acetylacetoneiminato) m=thylcobalt(III) is 1.95 (2) A. ${ }^{13}$ The Rh-C bond distance in a five-coordinate porpinatc derivative is 2.031 (6) A. ${ }^{14}$ These three Eive-coorainate derivatives all have small metal atom displacements from the basal plane $=0.11 \mathrm{~A}$ in (Acetonyl)CoTPP, 0.12 in N, N '-ethylene-bis(acetylacetoniminato) methylcobalt(III) and 0.05 A in (methyl)octaethylporphinatorhodium(III). 14

Tetrahedral geonetry is maintained at C_{25} of the ligand with a Co- $\mathrm{C}_{25}-\mathrm{C}_{26}$ angle of 109.1 (2) ${ }^{\circ}$ and trigonal geometry at C_{26}, the carbonyl carbon atom. is can be seen from Figures 1 and 2, the $\mathrm{C}_{25}-\mathrm{C}_{26}$ bond almost projects onto the $\mathrm{Co}-\mathrm{N}_{2}$ bond. The dihedral angle between the $\mathrm{C}_{25}-\mathrm{Co-N} 2$ plane and the $\mathrm{C}_{26}-\mathrm{C}_{25}$-Co plane is $13.2(2)^{\circ}$. This orientation of the acetonyl ligand leads to a $\mathrm{C}_{25}-\mathrm{Co}-\mathrm{N}_{2}$ angle that is sabstantiaily larger than the other three C_{25}-Co-N angles. The C_{27} atom makes two rather close nonbonded contacts of 3.3 and $3.4 ~ \AA_{\text {to }} N_{2}$ and $C_{a 4}$, respectively. The (Acetonyl)CoTPP molecules are well separated in the crystal with no unusual intermolecular contacts.

The preparation of or janccobalt(III) porphyrin derivatives has been reported previously. ${ }^{15,16 \text { These preparations utilized }}$ the reaction of cobalt(I) porphyrins with organic halides. Recently the preparation of organocobalt(III) porphyrin derivatives by the reaction of halocobalt(III) porphyrin species with diazoalkanes has been reported. 17 The compounds reported nere are the first to be prepared by the direct reaction of cobalt(II) porphyrins utilizing aeriai oxidation. Such methods have been used for the preparation of other organocobalit(III) species however. ${ }^{12,18}$ (Acetyl) COTPP and the other derivatives appear to be stable in the solid state and in benzene solution and relatively stable to light. They are rather unstable in chloroform solution, decomposing in a few hours to uncharacterized products.

All derivatives are found to be diamagnetic. The IR spectra of the complexes show a decrease of $\sim 55-60 \mathrm{~cm}^{-1}$ in the carbonyl stretch of the coordinated ligand. The mass spectrum of (Acetonyl) CoTPP shows as the largest peak that of CoTPP ${ }^{+}$(671.155 amu, observed). Peaks at 727.161 and 685.160 are assigned to $\mathrm{CH}_{2} \mathrm{C}\left(\mathrm{O}^{\circ}\right) \mathrm{CH}_{2} \mathrm{CoTPP}^{+}$and $\mathrm{CH}_{2} \mathrm{CoTPP}^{+}$, respectively. Below the CoTPP ${ }^{+}$ peak, the fragmentation pattern is typical of a metallotetra.phenylporphyrin. 19

The ${ }^{1}{ }_{H}$ NMP spectra of (Acetonyl) CoTPP and the related derivatives shows the porphinato hydrogen atoms at 1.27τ (β-pyirole), 1.85τ (o-phenyl) and 2.3τ (\underline{m} p-phenyl). The corresponding values for tetraphenylporphyrin itself are 1.25, 1.7 and 2.2 T^{20} The observed shifts for the axial ligand protons are summarized in Tabie 5. The protons of the axial ligand experience the influence of the ring current of the porphyrin. As can be seen from Table 5, the shifts are comparabie to those observed in a variety of closely related porphyrin derivatives.

Acknowledgments. We thank the National Institutes of Health (Grant HL-15627) for support of this research. We thank Professor Larry Garber for use of the Faraday balance and Mr. Donald Schifferl for assistance with the NMR spectra.

References and Notes

1. Prepared by adaption of the methoa reported by A. D. Adler, F. R. Longo, and V. Varadi, Inorg. Synth., is (l976) 213.
2. F. Lions and E. Ritchie, J. Proc. Koy. Soc., N. S. Wales, 74 (1941) 365.
3. W. R. Scheidt, J. Am. Chem. Soc., $9 \underset{\sim}{6}$ (1074) 84.
4. In addition to various local programs, Jacobson's ALFF, Busing and Levy's ORFFE, Park's REFINE, and Johnson's ORTEP were employed.
5. D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A. 24 (1968) 321. Scattering factors for hydrogen were taken from R. F. Stewart, E. R. Davidson, and W. T. Simpson, J. Chem. phys. 42 (1065) 3175.
6. Real and imaginary corrections for anomalous dispersion in the form factor for cobalt were from D. T. Cromer and D. Liberman, J. Chem. Phys., 53 (1970) 1891.
7. J. L. Hoard in "Porphyrins and Metalloporphyrins", K. M. Smith, Ed., Elsevier, Amsterdam, Chapter 8 (1975); W. R. Scheidt in "The Porphyrins", D. Dolphin, Ed., Academic Press, N. Y., Volume III, Chapter 10, in press.

8 . W. R. Scheidt, Acc. Chem. Res.. 10 (1977) 339.
9. P. Madura and W. R. Scheidt, Inorg. Chem., 15 (1976) 3182.
10. J. A. Kaduk and W. R. Scheidt, Inorg. Chem., 13 (1974) 1875.
11. W. R. Scheidt, J. Am. Chem. Soc., 96 (1974) 90.
12. D. Dodd and M. D. Johnson, J. Organometal. Chem. . 52, (1973) 1.
13. S. Brückner, M. Calligaris, G. Nardin and L. Randaccio, Inorg. Chim. Acta, 3 (1969) 308.
14. A. Takenaka, S. K. Syal, Y. Sasada, T. Omura, H. Ogoshi, and Z. I. Yoshida, Acta Crystallogr., Sect. B, 32 (1976) 52.
15. H. Ogoshi, E. Watanabe, N. Koketsu and Z. I. Yoshida, Bull. Chem. Soc. Jpn.r 42 (1976) 2529.
16. D. A. Clarke, D. Dolphin, R. Grigg, A. Johnson, and ti. A. Pinnock, J. Chem. Soc. (1968) 881.
17. H. J. Callot and E. Schaefier, J. Organometal. Chem., 145 (1978) 91.
18. See for example, D. Cummins, B. M. Higson, ard E. D. McKenzie, J. Chem. Soc. Dalton Trans. (1973) 414.
19. A. D. Adler, J. H. Green, and M. Mautrer, Org. Mass Spectry.. 3 (1970) 955.
20. C. B. Storm, Y. Teklu, and E. A. Sokolski, Ann. N.Y. Acad. Sci.r $20 \underset{\sim}{6}$ (1973) 631.

[^0]: *See NAPS document no. 03296 for 30 pages of supplementary material. Order from Nafs c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, New York 10017. Remit in advance for each NAPS accession number. Institutions and Organizations may use purchase orders when ordering, however, there is a billing charge of $\$ 5.00$ for this service. Make checks payable to Microfiche Publications. Photocopies are $\$ 7.50$. Microfiche are $\$ 3.00$ each. Outside the United States and Canada, postage is $\$ 3.00$ for a photocopy and $\$ 1.00$ for a fiche.

[^1]: a $_{\text {The }}$ numbers in parentheses are the estimated standard deviations.

