Journal of Organometallic Chemistry, 181 (1979) 47–59 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

OXIDATIVE ADDITION OF TIN(IV) COMPOUNDS TO ETHYLENE BIS(TRIPHENYLPHOSPHINE)PLATINUM *

GREGORY BUTLER, COLIN EABORN * and ALAN PIDCOCK *

School of Molecular Sciences, University of Sussex, Brighton, BN1 9QJ (Great Britain) (Received May 20th, 1979)

Summary

Reactions between $[Pt(C_2H_4)(PPh_3)_2]$ and organotin halides have been investigated. With SnPh₂Cl₂ the product of insertion into the Sn—C bond, *cis*-[PtPh(SnPhCl₂)(PPh₃)₂], was obtained, whereas SnMe₂Cl₂, SnPhCl₃, SnMeCl₃ and SnCl₄ gave products of insertion into the Sn—Cl bond, viz. *cis*- and *trans*-[PtCl(SnCl_nR_{3-n})(PPh₃)₂]. The products were characterised by ³¹P-{¹H} NMR spectroscopy. Compounds of similar stoichiometry [PtR(SnCl₃)(PPh₃)₂] were examined for purposes of comparison and were obtained from SnCl₂ and the corresponding chloro complexes. The compounds *cis*- and *trans*-[PtCl(SnCl₃)-(PPh₃)₂] were obtained both by the oxidative-addition reaction and the SnCl₂ insertion route. A wide variety of similar products were obtained with organotin chlorides and bromides. Competition experiments indicated an order of reactivity in the oxidative addition reaction SnMe₄ < SnPh₄ < SnMe₃Cl < SnPh₃Cl, SnMeCl₂ < SnPh₂Cl₂, SnMeCl₃ < SnPhCl₃ < SnCl₄. The presence of radicals in the reaction mixture was not detected by radical transfer or spin-trapping experiments.

Introduction

An attempt to compare the *trans* influence of SnR_3 and Cl ligands by measurement of the NMR coupling constants ${}^{1}J(PtP)$ in complexes *cis*-[PtCl(SnR_3)-(PPh₃)₂] led us to repeat the reported procedures for the synthesis of these complexes. All the methods, and in particular the oxidative addition of R_3SnCl

^{*} In dedicating this paper to Professor Joseph Chatt, our colleague at the University of Sussex, on the occasion of his 65th birthday, we wish to acknowledge his contribution to our research efforts over many years. The discovery [1] of the very large and variable coupling constants ${}^{1}J(Pt-P)$ was made with complexes obtained from a sample of $p-Bu_{3}P$ given by him to A.P., and the entry of C.E. into the field of Group IV element derivatives of transition metals was greatly facilitated by his collaboration [2].

to platinum(0) complexes, were found, in fact, to form the complexes *cis*-[PtR(SnR₂Cl)(PPh₃)₂] (R = alkyl or aryl), which are formally the result of insetion of platinum into the Sn—R rather than the Sn—Cl bond [3]. Insertion of platinum(0) into Sn—R bonds has subsequently been demonstrated for a variety of triorgano- and tetraorganotin compounds [4]. Since the insertion of low-valent transition elements into Sn—Cl bonds is well-known for SnCl₄ it appeared probable that a changeover from Sn—R insertion (for SnR₄ and SnR₃Cl) to Sn—Cl insertion would occur for SnR_nCl_{4-n} (n = 1, 2), and the reactions of such compounds and SnCl₄ with [Pt(C₂H₄)(PPh₃)₂] are reported here.

Results and discussion

Reactions of diorganotin(IV) compounds

The reaction of SnPh_2Cl_2 with $[Pt(C_2H_4)(PPh_3)_2]$ in dry dichloromethane gives *cis*- $[PtPh(SnPhCl_2)(PPh_3)_2]$. This was established by elemental analysis of the product and from the ³¹P-{¹H} NMR spectrum of the product or the product mixture examined in situ in the NMR tube. The spectrum comprises a pair of strong doublets from the coupled (²J(PPtP) 15 Hz) non-equivalent PPh₃ ligands, each of which is associated with satellites due to coupling to ¹¹⁷Sn, ¹¹⁹Sn and ¹⁹⁵Pt nuclei. The coupling constants to the Sn nuclei permit unambiguous assignment of the P nuclei *trans* and *cis* to Sn, since indirect coupling

TABLE 1

³¹P NMR PARAMETERS OF COMPLEXES FORMED FROM [Pt(C₂H₄)(PPh₃)₂] AND SnR₂X₂^a

Tin reagent	Complex	Isomer b (%)	—δ <i>trans</i> to Sn (ppm)
SnPh ₂ Cl ₂	$[PtPh(SnPhCl_2)(PPh_3)_2]$	cis 100	114.2
SnPh ₂ Br ₂	$[PtPh(SnPhBr_{2})(PPh_{3})_{2}]$	<i>cis</i> 100	116.3
SnPh ₂ BrCl ^d	[PtPh(SnPhBrCl)(PPh_3)2] d	cis 100	115.3
SnMe ₂ Cl ₂	$[PtCl(SnMe_2Cl)(PPh_3)_2] f$	cis 42 trans 58	107.4
Sn-n-Bu ₂ Cl ₂	[PtCl(Sn-n-Bu ₂ Cl)(PPh ₃) ₂]	cis 69 trans 31	107.1
Sn(CH ₂ Ph) ₂ Cl ₂	$[PtCl{Sn(CH_2Ph)_2Cl}(PPh_3)_2]$	cis 95	107.1
$Sn(C_2H_4CO_2Me)_2Cl_2$	$[PtCl{Sn(C_2H_4CO_2Me)_2Cl}(PPh_3)_2$	trans 5 cis 85 trans 15	108.1
(SnMe ₂ Br) ₂ O	$[PtBr(SnMe_2OSnMe_2Br)(PPh_3)_2]$	cis 40 trans 60	110.9
(SnEt ₂ Br) ₂ O	$[PtBr(SnEt_2OSnEt_2Br)(PPh_3)_2]$	cis 80 trans 20	110.4
(Sn-n-Bu ₂ Br) ₂ O	[PtBr(Sn-n-Bu ₂ OSn-n-Bu ₂ Br)(PPh ₃) ₂]	cis 80 trans 20	110.6
${sn(C_6H_{13})_2Cl}O^{\mu}$	$[PtCl{Sn(C_6H_{13})_2OSn(C_6H_{13})_2Cl}(PPh_3)_2]$	cis 72 trans 28	107.1
${Sn(CH_2Ph)_2Cl}_2O$	$[PtCl{Sn(CH_2Ph)_2OSn(CH_2Ph)_2Cl}(PPh_3)_2]$	cis 100	105.8

^a In dichloromethane. ^b Relative abundance (%) of isomers as determined from the peak heights in the ³¹P {¹H} NMR spectra. ^c Separate ¹¹⁹Sn and ¹¹⁷Sn satellites were not usually resolved. ^d Mixture of SnPh₂Br₂ and SnPh₂Cl₂: complex present in 50% abundance with 25% each of complexes from SnPh₂Br₂ and SnPh₂Cl₂. ^e Signal to noise ratio insufficient for the observation of Sn satellites. ^{f 1}H

between ligand atoms in platinum(II) complexes is known to be much larger for trans than c s related ligands [5]. The phosphorus trans to Sn $({}^{2}J({}^{119}\text{SnPtP})$ 2961 Hz) is associated with ¹J(PtP) 3105 Hz and that cis to Sn (²J(SnPtP) 193 Hz; ¹¹⁷Sn and ¹¹⁹Sn satellites are not resolved) with ¹J(PtP) 2053 Hz. The well-established dependence of ${}^{1}J(PtP)$ on the nature of the ligand trans to phosphorus [5] can now be used to infer that the PPh₃ ligand with ${}^{1}J(PtP)$ 2053 Hz is trans to a Ph ligand derived from SnPh₂Cl₂ and not, for example, a Cl ligand in which case ${}^{1}J(PtP)$ would be ca. 4000 Hz [3]. The stoichiometry of the reaction then indicates that the stannio ligand is SnPhCl₂, and this is confirmed by the smooth change in ³¹P parameters for PPh₃ trans to the stannio ligand in cis-[PtPh(SnPh₃)(PPh₃)₂] (¹J(PtP) 2354 Hz, ²J(¹¹⁹SnPtP) 1938 Hz, ref. 3), cis-[PtPh(SnPh₂Cl)(PPh₃)₂] (¹J(PtP) 2688 Hz, ²J(¹¹⁹SnPtP) 2400 Hz, ref. 3) and in the complex under consideration cis-[PtPh(SnPhCl₂)(PPh₃)₂] $({}^{1}J(PtP) 3105 \text{ Hz}, {}^{2}J({}^{119}SnPtP) 2961 \text{ Hz})$ (Table 1). From the spectrum of the products of a reaction carried out in the NMR tube, formation of a small amount of $cis_{PtCl_2(PPh_3)_2}$ was detected. It is presumed that this derives from HCl formed from the tin compound by accidental hydrolysis; this dichloro complex and the product of oxidative addition account for all the lines in the ${}^{31}P-{}^{1}H$ spectrum.

The product from the reaction between the ethylene complex and $SnBr_2Ph_2$ has a ³¹P-{¹H} spectrum very similar to that of the product from $SnPh_2Cl_2$, and

¹ <i>J</i> (PtP) (Hz)	² J (¹¹⁹ SnP) (Hz)	² J (¹¹⁷ SnP) (Hz)	—δ cis to Sn (ppm)	l J (Pt—P) (Hz)	² J(SnP) ^c (Hz)	² <i>J</i> (PP) (Hz)
2105	2961		1 20 1	9052	10.9	15
3145	2001	2044	119.6	2000	103 183	15
9195	2334 e	2022 e	110.0	2004	150, 100 C	15
9901	0065	-	1 20 9	1258	59	13
2201	2265		115.6	9793	139	
2166	2045	1960	120.4	1468	56	13
	2045	1000	1146	2793	117	<u> </u>
0 2 2 9	2460	2280	193.9	4319	68	12
2002	2400		1157	2715	e	
	e —	e	192 5	4341	63	13
2215	-		176 3	2720	138	
2290	e	e	117.7	4465	e	
			117.5	2734	117	-
2250	2044	1953	118.7	4448	117	15
			116.8	2787	117	
2210	P	e	118.8	1450	e	14
2215		_	116.6	2586	e	
914A	2038	1980	120.3	4475	е	15
	2000		1147	2769	190	
2036	1719	1641	1209	4458	109	15

NMR parameters: *cis* isomer δ 1.76 ppm, ²J(SnH) 18 Hz; *trans* isomer δ 1.4 ppm, ²J(SnH) 19 Hz, ¹³C NMR parameters (see text): *cis* isomer δ 2.3 ppm (doublet), ³J(PC) 13 Hz; *trans* isomer δ 3.22 ppm, ²J(PtC) 111 Hz, ^g C₆H₁₃ = *n*-hexyl.

so is assigned the structure cis-[PtPh(SnBr₂Ph)(PPh₃)₂] (Table 1). The presence of two Br atoms on Sn in this complex is confirmed by the observation of two infrared bands at 226 and 257 cm⁻¹; Sn—Br stretching vibrations are normally in the region 200–280 cm⁻¹ (e.g. 240, 250 cm⁻¹ for SnBr₂Me₂ [6]), whereas the Pt—Br stretching frequency is nearly always below 200 cm⁻¹.

With $SnMe_2Cl_2$ the ³¹P-{¹H} NMR spectrum showed that the reaction had taken a different course. Two complexes were clearly present. The spectrum of one comprised two doublets (²J(PPtP) 13 Hz) from a *cis* complex with nonequivalent PPh₃ ligands, but in contrast to the products from $SnPh_2X_2$ (X = Cl, Br), the PPh₃ ligand *cis* to Sn (²J(SnPtP) 59 Hz) was associated with a large coupling constant ¹J(PtP) 4356 Hz indicating that the ligand in *trans* relationship to PPh₃ was Cl. The formulation *cis*-[PtCl(SnMe₂Cl)(PPh₃)₂] satisfies this requirement and is consistent with the other ³¹P parameters. In particular, for PPh₃ *trans* to SnMe₂Cl the value of ²J(¹¹⁹SnPtP) in this complex (2265 Hz) is very similar to that in *cis*-[PtMe(SnMe₂Cl)(PPh₃)₂] (2274 Hz) [3], and this coupling is known to be sensitive to the nature of the groups on the tin atom.

The spectrum of the second complex comprises a single resonance with satellites from ¹⁹⁵Pt (${}^{1}J$ (PtP) 2793 Hz) and Sn (${}^{2}J$ (SnPtP) 132 Hz; 119 Sn and 117 Sn satellites were not resolved). The intensity of the Sn satellites is such that there must be one Sn atom per molecule and the magnitudes of both coupling constants establish that two PPh3 ligands are mutually trans (for example, in trans-[PtPh(Cl)(PPh₃)₂], ¹J(PtP) 2800 Hz) and a stannio ligand is in cis-relationship to them. Further inference about the nature of the ligands cis to PPh₃ cannot be made on the basis of the magnitudes of the coupling constants since their dependence on the *cis* ligands is relatively small and poorly understood at present. The spectrum is, however, consistent with the formula trans- $[PtCl(SnMe_2Cl)(PPh_3)_2]$, and it is reasonable to expect both *cis* and *trans* isomers to be present, since *cis*—*trans* equilibration of chloroplatinum complexes in the presence of traces of phosphine is well known from the work of Chatt et al. [7]. This formula rather than, for example, *trans*-[PtMe(SnMeCl₂)(PPh₃)₂], is also supported by the ¹H NMR spectrum of the product mixture recorded under very favourable conditions of signal to noise with a Fourier transform spectrometer. The spectrum comprises two sharp lines in the SnCH₃ region (each with Sn satellites, see Table 1) with a relative intensity corresponding to that expected from the ³¹P-{¹H} spectrum, and with no evidence for the presence of a Pt-CH₃ group. The ¹³C-{¹H} NMR spectrum is also consistent with the formula (Table 1, footnote f), but such prolonged accumulation of the spectrum was required that we cannot exclude the possibility that some of the observed lines are due to decomposition products.

A number of other compounds SnR_2XY (R = alkyl or substituted alkyl; X = Cl, Br; Y = Cl, $OSnR_2Cl$, see Table 1) were available to us, and the ³¹P-{¹H} NMR spectra of the products of their reactions with $[Pt(C_2H_4)(PPh_3)_2]$ were qualitatively similar to that of the product from $SnMe_2Cl_2$, and the magnitudes of the coupling constants were also closely similar. In one instance, with $\{Sn(CH_2Ph)_2Cl\}_2O$, only the *cis* product was detected, but for the other compounds both *cis* and *trans* isomers were observed, with signal intensities generally indicating a prepondrance of the *cis* isomer (Table 1).

The products of the reactions with $SnMe_2Cl_2$ and $Sn-n-Bu_2$ were isolated and

gave satisfactory analyses; it is not clear whether the solid samples contain a single isomer or are mixtures of isomers.

The results for the diorganotin compounds may be summarized by eqs. 1 and 2.

$$[Pt(C_2H_4)(PPh_3)_2] + SnPh_2X_2 \rightarrow cis [PtPh(SnPhX_2)(PPh_3)_2] + C_2H_4 (X = Cl, Br)$$
(1)

 $[Pt(C_{2}H_{4})(PPh_{3})_{2}] + SnR_{2}XY \rightarrow cis \text{ and } trans - [PtX(SnR_{2}Y)(PPh_{3})_{2}] + C_{2}H_{4}$ (X = Cl, Br; R = alkyl, for Y see Table 1)(2)

Reactions of organotin trichlorides and tribromides

The products of the reactions of organotin trichlorides and tribromides with $[Pt(C_2H_4)(PPh_3)_2]$ are less soluble in dichloromethane than those from the diorganotin(IV) compounds, so we were unable to detect Sn-satellites in several of the spectra. A complete set of parameters was, however, obtained for the products from SnMeCl₃ (Table 1), and it is clear by analogy with the results for SnMe₂Cl₂ that they are formulated *cis*- and *trans*-[PtCl(SnMeCl₂)(PPh₃)₂]. The analytical results for the isolated product agree with this formula, and a possible alternative product *trans*-[PtMe(SnCl₃)(PPh₃)₂], prepared from *trans*-[PtMe(Cl)(PPh₃)₂] and SnCl₂, has ³¹P parameters (δ - 125.8 ppm, ¹J(PtP) 2493 Hz, ²J(SnPtP) 120 Hz, Table 3) which are clearly different from those of the *trans* product of the oxidative-addition reaction (Table 2).

Although the Sn-satellites could not be observed for the products from SnPhCl₃, the ³¹P parameters are similar to those of the products from SnMeCl₃, and the parameters of the *trans* isomer are also clearly different from those of *trans*-[PtPh(SnCl₃)(PPh₃)₂] (δ --120.7 ppm, ¹J(PtP) 2844 Hz, ²J(SnPtP) 242 Hz, Table 3). The products are, therefore, formulated *cis*- and *trans*-[PtCl(SnPhCl₂)-(PPh₃)₂], and this is consistent with the analytical results for the isolated product. The parameters of the remaining products listed in Table 2 are very similar to those for the SnMeCl₃ product, so for both phenyl- and alkyl-tin trihalides the oxidative-addition proceeds as in eq. 3.

$$[Pt(C_2H_4)(PPh_3)_2] + SnRX_3 \rightarrow cis- and trans-[PtX(SnRX_2)(PPh_3)_2]$$

$$(X = Cl, Br; R = alkyl, Ph)$$

The ³¹P-{¹H} parameters of a number of complexes obtained by reactions between chloroplatinum(II) complexes and an excess of SnCl₂ are given in Table 3, in all instances the coupling constants ¹J(PtP) are significantly different from those of the starting materials *trans*-[PtR(Cl)L₂].

Reactions of tin tetrahalides

The products of the reactions of SnX_4 (X = Cl, Br, I) with $[\text{Pt}(C_2H_4)(\text{PPh}_3)_2]$ are very insoluble in CH₂Cl₂ and considerable difficulty was experienced in obtaining good ³¹P-{¹H} NMR spectra. For SnCl₄ and SnBr₄ it was found that satisfactory spectra could be obtained after prolonged accumulation from reactions in the NMR tube between dilute solutions in CH₂Cl₂. For SnI₄ this procedure was ineffective, because the product precipitated too rapidly from CH₂Cl₂,

R	×	lsomer (%) ^b	—6 trans to Sn(ppm)	1 J(PtP) (11z)	² J(¹¹⁹ SnP) (Hz)	² J(¹¹⁷ SnP) (Hz)	-6 cis to Sn(ppm)	1 J(Pt-P) (Hz)	l J(SnP) c (Hz)	2 <i>J</i> (PP) (Hz)
Ph	ច	cis 80	109.3	2637	p	d	125.4	3950	с р	15
		trans 20	1	1	I	ł	118.7	2483	98	1
Me	ថ	cis ^e 55	1,00,1	2651	3105	2965	125,9	3987	124	14
		trans ^c 45	1	I	I	1	0,011	2.628	159	ł
C2H4CO2Me	ប	cis 70	111,2	2512	3286	3140	127,4	4038	114	15
1 , 1		trans 30	I	ł	ľ	I	119,3	2639	171	I
C2H4CO2Me	Br	cis 88	116.4	2 59 5	đ	q	125,8	4060	q	16
:		trans 12	1	1	1	I	121.7	2542	י סי	ł
C2H4CO2Et	อ	cis 70	111,4	2507	ą	q	127.7	4038	, T	15
t		trans 30	1	1	I	1	119.3	2544	146	I

•

³¹P NMR PARAMETERS OF COMPLEXES cis. AND trans-[PtX(SnRX₂)(PPh₃)₂] a

TABLE 2

52

•

Ľ

. •

TABLE 3

³¹ P NMR PARAMETERS FOR COMPLEXES OBTAINED BY SnCl ₂ INSERTION IN	SITU
---	------

Complex a	δ (ppm)	¹ J(PtP) (Hz)	² J(SnP) ^b (Hz)
trans-[PtPh(SnCl ₃)(PPh ₃) ₇]	120.7	2844	242
trans-[PtMe(SnCl ₃)(PPh ₃) ₂]	125.8	2493	c
trans-[PtH(SnCl ₃)(PPh ₃) ₂]	112.6	2688	с
trans-[PtPh(SnCI ₃)(PEt ₃) ₂]	130.3	2493	234
trans-[PtH(SnCl ₃)(PEt ₃) ₂]	119.6	2490	_ C
trans-[PtPh(SnCl ₃)(PMe ₂ Ph) ₂]	149.4	2576	с
trans-[Pt(4-FC6H4)(SnCl3)(PMe2Ph)2]	150.0	2527	c
trans-[Pt(SiPh 3)(SnCl 3)(PMe 2Ph)2]	146.0	2666	с

^a Complex trans-[PtR(SnCl₃)L₂] obtained from trans-[PtRClL₂] and SnCl₂ in CH₂Cl₂. ^b See Table 1 footnote c. ^c See Table 1 footnote c.

but it was slightly more soluble in $CHCl_3$ and quite soluble in pyridine, so ³¹P- $\{^{1}H\}$ NMR results were obtained using those solvents (Table 4).

The principal product from SnCl₄ is a *cis* complex with non-equivalent PPh₃ ligands and is formulated cis-[PtCl(SnCl₃)(PPh₃)₂]. The ³¹P-{¹H} spectra of this and related SnCl₃-containing complexes have been reported recently in a thorough study of systems containing dichloroplatinum complexes and SnCl₂ [8]. The parameters reported for cis-[PtCl(SnCl₃)(PPh₃)₂] in CH₂Cl₂ at -50°C (for example ¹J(PtP) 3083, 3637 Hz) are slightly different from those obtained by us at 25°C (Table 5), but differences of this magnitude can arise from differences in the temperature and concentration of the samples [9]. This was confirmed by recording the spectrum of a solution of cis-[PtCl₂(PPh₃)₂] with an excess of SnCl₂ in CH₂Cl₂ at 25°C; the spectrum was nearly identical to that obtained from the oxidative-addition reaction. The spectra obtained from the $SnCl_4$ and $SnCl_2$ routes also implied the presence of a small amount of a complex with mutually trans PPh₃ ligands (${}^{1}J(PtP)$ 2330 Hz). The parameters for the trans complex in a CH_2Cl_2 solution of $[PtCl(SnCl_3)(PPh_3)_2]$ at $-50^{\circ}C$ were not reported [8], but the *trans* complex in our solutions can be assigned the formula trans-[PtCl(SnCl₃)(PPh₃)₂] by comparison of ${}^{1}J$ (PtP) with that obtained for trans-[PtCl(SnCl₃) {P(C₆H₄Cl-p)₃} 2] (2334 Hz) in CHCl₃ at -50° C [8]; trans-bis(phosphine) complexes containing two SnCl₃ ligands have coupling constants ${}^{1}J(PtP) < 1900$ Hz [8].

TABL	E 4					
31 P N	MR PARAMETER	S OF COMPLEXE	S [PtX(SnX ₃)(1	$[Ph_3)_2]^{\alpha}$		
x	Isomer (%) b	—δ <i>trans</i> to Sn(ppm)	¹ J(PtP) (Hz)	—δ cis to Sn(ppm)	¹ J(PtP) (Hz)	² J(PP) (Hz)
Cl	cis 95 trans 5	113.0	3047	129.7	3662	15
Br	cis 100	121.1	3052	127.0	3716	15
I	trans ^c 100 trans ^d 100	_	_	128.1 127.5	2493 2498	·

^a From SnX_4 and $[Pt(C_2H_4)(PPh_3)_2]$ in dichloromethane. ^b See Table 1 footnote b. ^c In chloroform. ^d In pyridine.

Complex	Isomer (%) ^U	5 trans to Sn (ppm)	¹ J(PtP) (Hz)	h cis to Sn (ppin)	¹ J(PtP) (Hz)	² J(SnP) c (Hz)	2 <i>J</i> (PP)
[PtCl(snCl ₃)(PPh ₃) ₂] ^d	cis 95	113,0	3050	129.7	3660	2	15
{ ["{ "{ "{ "{ "{ "{ "{ "{ "{ "{ "{ "{ "{ "	cis 80	63.3	4739	8128 81.8	5759 5759	1 8	l og
[Pt(SnCl_a), { P(OPh) a } ,] f	trans 20	ł	ſ	44.4	3965	239	1
[[[[[]]]] [] [] [] [] [] [] [] [] [] []	trans 100	ł	I	125.9	2073	232	1
[PtCl(SnCl ₃)(PEt ₂ Ph) ₂] ^h	trans 100	I	ł	128.3	2156	Ð	I
a At 25°C in dichloromethane; fo	rtans 100 or analogous results	s at -50°C see ref. 8.	b Relative abun	dance (%) of prod	et as determine	d from the peak he	ight

³¹P NMR PARAMETERS OF COMPLEXES OBTAINED BY SnCl₂ INSERTION IN SITU⁴

TABLE 5

.

12/E1m • rZ / E / . 2 2 -----2 5 NMIC spectra, ~ see 1nu cis-[PtCl₂(PEt₂Ph)₂],

54

•

The products obtained from $[Pt(C_2H_4)(PPh_3)_2]$ and SnX_4 (X = Br, I) gave satisfactory analyses for $[PtX(SnX_3)(PPh_3)_2]$ and the ³¹P-{¹H} NMR spectra show that for X = Br the complex has the *cis* configuration (in CH₂Cl₂) and for X = I the complex is *trans* (in CHCl₃ and pyridine).

Satellites due to Sn were not observed in the spectra of the products from SnBr_4 or SnI_4 , or in the spectrum of *cis*-[PtCl(SnCl₃)(PPh₃)₂] at 25 or -50° C. At the higher temperature this may be due to exchange processes involving dissociation of SnX_2 ; at -50° C the insolubility of the PPh₃ complexes with SnCl_3 ligands presumably prevents their detection, but satellites have been observed at -50° C in spectra of complexes of other phosphines where the solubility is greater [8].

Course of oxidative addition reactions

Combining these observations with our earlier results [3], it is now clear that the pattern of oxidative addition reactions of organotin chlorides to $[Pt(C_2H_4)-(PPh_3)_2]$ is as indicated in Scheme 1.

Product	SnPh₄	$(SnMe_4)^a$
$cis-[PtR(PPh_3)_2(SnR_{n-1}Cl_4-n)]$	SnPh ₃ Cl	SnMe ₃ Cl
	$SnPh_2Cl_2$	$SnMe_2Cl_2$
Products <i>cis</i> - and <i>trans</i> -[PtCl(PPh ₃) ₂ (SnR _{n} Cl ₂)	(3-n)] SnPhCl ₃ Sn	SnMeCl₃ Cl₄

SCHEME 1. Products of reaction of SnR_nCl_{4-n} with $[Pt(C_2H_4)(PPh_3)_2]$. ^{*a*} Reacts only with more active Pt^0 complex $[Pt(PEt_3)_4]$ [3].

For some of the product mixtures small amounts of other complexes were also detected in the ³¹P-{¹H} spectra. For tin compounds containing more than one Sn—Cl bond it was difficult on the small scale of our experiments to avoid some formation of *cis*-[PtCl₂(PPh₃)₂] via hydrolysis of the tin compounds. Also, in the reaction of SnPhCl₃, despite repeated distillation of the tin compound, the product mixture always contained some *cis*-[PtCl(SnCl₃)(PPh₃)₂], the product of reaction of the platinum(0) complex with SnCl₄. The SnCl₄ was presumably formed by the redistribution reaction shown in eq. 4, and significant quantities of the SnCl₃ complex arise because the tin compound was used

$$2 \operatorname{SnPhCl}_3 \rightleftharpoons \operatorname{SnPh}_2 \operatorname{Cl}_2 + \operatorname{SnCl}_4$$

in excess in our experiments and $SnCl_4$ reacts more rapidly than $SnPhCl_3$ with the platinum(0) complex (vide infra).

Competition experiments

In order to obtain some information about the relative reactivities of organotin compounds towards $[Pt(C_2H_4)(PPh_3)_2]$ we carried out a number of competition experiments in which equimolar amounts $(2.5 \times 10^{-4} \text{ mol})$ of two tin compounds in CH₂Cl₂ were mixed with the platinum complex $(2.5 \times 10^{-4} \text{ mol})$ in CH₂Cl₂ and the ³¹P-{¹H} spectrum of the product mixture was recorded after complete reaction of the complex (ca. 30 min). Although the product mixtures

(4)

contained small amounts of such complexes as $[PtCl(X)(PPh_3)_2]$ (X = Cl, H, Me, Ph), probably because of reactions of the tin complexes with HCl formed by hydrolysis, and repetition of particular experiments showed that the quantitative accuracy was low, analysis of the intensities of the ³¹P-{¹H} lines led to the order of reactivity shown in Scheme 2. The reactivity of the tin compounds

$(SnMe_4) < SnPh_4, SnMe_3Cl < SnPh_3Cl, SnMe_2Cl_2 < SnPh_2Cl_2,$

 $SnMeCl_3 < SnPhCl_3 < SnCl_4$

SCHEME 2. Reactivity order towards $[Pt(C_2H_4)(PPh_3)_2]$; compounds in italics react via insertion into Sn-C bonds, and SnMe₄ reacts only with the more active platinum(0) complex $[Pt(PEt_3)_4][3]$.

increases with decreasing n in $\operatorname{SnR}_n \operatorname{Cl}_{4-n}$ for insertion into $\operatorname{Sn-C}$ or $\operatorname{Sn-Cl}$ bonds. The greater reactivity of $\operatorname{Sn-Ph}$ compared with $\operatorname{Sn-Me}$ bonds is consistent with the observation that $\operatorname{SnMe}_n\operatorname{Ph}_{4-n}$ (n = 1-3) and $\operatorname{SnMe}_n\operatorname{Ph}_{3-n}\operatorname{Cl}$ (n = 1, 2) form products of insertion into $\operatorname{Sn-Ph}$ rather than $\operatorname{Sn-Me}$ bonds [3].

Comparison of the rates of reaction of SnPh_2Cl_2 and SnPh_2Br_2 is not possible because of redistribution between Cl and Br which may involve the organotin halides and the product complexes. Thus, when an equimolar mixture of these tin compounds was used, the ³¹P-{¹H} spectrum indicated the formation of the complexes *cis*-[PtPh(SnPhXY)(PPh_3)₂] X, Y = Cl, Cl; Cl, Br; Br, Br) in approximately statistical proportions (1/2/1); the ³¹P parameters for the complex containing the SnBrPhCl ligand are close to the average of those for the dichloro and dibromo analogues (Table 1).

Mechanisms

The reactions of certain alkyl halides with platinum(0) complexes have been shown to involve production of alkyl radicals by means of spin trapping experiments with t-BuNO and nitrosodurene [10]. In similar experiments using nitrosodurene and reaction mixtures containing $[Pt(C_2H_4)(PPh_3)_2]$ with SnMe₃Cl, SnMe₂Cl₂ or SnPh₂Cl₂ only very weak ESR signals were detected, and these were similar to those obtained from mixtures of nitrosodurene and the products of the oxidative addition reactions. Also, the products of the reactions of $[Pt(C_2H_4)(PPh_3)_2]$ with SnMe₃Cl, SnMe₂Cl₂ and SnPh₂Cl₂ were the same in tetrahydrofuran as in CH₂Cl₂, and there were no indications of the presence of complexes containing the 2-C₄H₇O moiety formed by via radical transfer reactions (eq. 5). However, these experiments do not exclude the pres-

$$R^{*} + \bigvee_{O} \longrightarrow \bigvee_{O} + RH$$
 (5)

ence of carbon-centred radicals as intermediates and they would not reveal the presence of tin-centred radicals, should they be produced. At present we have no direct evidence concerning the mechanisms of these reactions, but the changeover from formal Sn—C to Sn—Cl insertion contrasts with the uniform Sn—Cl insertion found in the reactions of [PtMe₂(bipy)] (bipy = 2,2'-bipyridyl) with SnR_nCl_{4-n} (n = 0—3) [11]. The changeover of product form could result

TABLE 6

COMPLEXES PREPARED FROM [PI(C2H4)(PPh3)2]

Complex	Tin reagont	Solvent	Tine (h)	M.p. (^a C) (dec)	Yield (%)	Analysis (F (calcd.)(%)	puno	v(SnX)(cm ⁻¹)	I .
						υ	н		
cis-[PtPh(SnPhCl ₂)(PPh ₃) ₂]	SnPh 2Cl 2	PhMe	0,75	156	62	54.3	4.2	321, 309	1
	1					(54.2)	(3.8)		
cis-[PtPh(SnPhBr2)(PPh3)2]	SnPh ₂ Br ₂	PhMe	0.75	290	59	50.1	4.0	257, 226	
l S	e L					(20.0)	(3.5)		
[PtCl(SnMe ₂ Cl)(PPh ₃) ₂]	SnMe ₂ Cl ₂	PhMe	ū	182	55	48,8	4,1	325, 300, 288	
1 1	1					(48,6)	(3.9)		
[PtCl(Sn-n-Bu 2Cl)(PPh 3)2]	Sn-n-Bu ₂ Cl ₂	PhMe	5	200	63	52,0	4.5	332, 297, 282	
1 6	1					(21.6)	(4.9)		
[PtCl(SnMeCl ₂)(PPh ₃) ₂]	SnMeCl ₃	PhMe	5	238	58	45.2	3.8	329, 318, 299	
	L					(46.3)	(3.5)		
ois-[PtBr(SnBr 3)(PPh 3) 2	SnBr ₄	$c_{6}H_{6}$	0.1	228	80	37.7	2.8	248, 232	
1 k						(37.3)	(2,6)		
trans-[Ptl(SnI ₃)(PPh ₃) ₂]	Snl4	C ₆ H ₆	0.1	220	82	32.5	2.1	200	
2 1 *						(32.1)	(2.2)		

57

from different steps following a single initial process (such as transfer of an electron from Pt to the Sn compound), or from different initial processes. There are many possibilities involving three-centre, radical, polar and Sn^{II} intermediates and it is hoped that some definite conclusions may be reached as a consequence of work currently in progress.

Experimental

General

All the solvents were dry and oxygen-free, and reactions were carried out under nitrogen. The ³¹P-{¹H} NMR spectra were recorded at 40.48 MHz on a JEOL PFT100 instrument. Solutions in dichloromethane in 8-mm outsidediameter tubes were used. The field was locked to the ²H resonance of a solution of trimethyl phosphite in deuteriobenzene which served as external reference; positive values of the chemical shift are to high frequency of the reference. Proportions of complexes were inferred directly from the relative peak heights in the ${}^{31}P-{}^{1}H$ NMR spectra. The ${}^{13}C-{}^{1}H$ NMR spectra were recorded on the same instrument at 25.15 MHz using dichloromethane as solvent and tetramethylsilane or chloroform as internal standard. The ESR spectra were obtained with a Varian E-line EPR spectrometer. The tin compounds SnCl₄, SnBr₄, SnI₄ were obtained from commerical sources; SnPh₄, SnPh₃Cl SnMe₄ and SnMe₃Cl were prepared by published methods; SnMe₂Cl₂ was a gift from Chugoku Marine Paints Co., and Sn(CH₂CH₂CO₂Me)₂Cl₂, Sn(CH₂CH₂CO₂Me)-Cl₃, Sn(CH₂CH₂CO₂Me)Br₃, and Sn(CH₂CH₂CO₂Et)Cl₃ were a gift from Akzo Chemicals Ltd,; other tin compounds were available in this laboratory. The complex $[Pt(C_2H_4)(PPh_3)_2]$ was prepared by a published method [12].

Complexes

A solution of $[Pt(C_2H_4)(PPh_3)_2]$ (0.0050 mol) in toluene or benzene (5 cm³) was treated with a solution of a tin compound (0.0053 mol) in the same solvent (5 cm³) and the mixture stirred. After completion of the reaction the precipitate was washed with 3×5 cm³ of hexane and the products from the organotin compounds were recrystallised from dichloromethane/hexane. Details of the compounds obtained in this way are given in Table 6.

Complexes prepared in situ

The following procedure was employed for the preparation of complexes for ${}^{31}P-{}^{1}H$ NMR spectroscopy. The complex $[Pt(C_2H_4)(PPh_3)_2]$ (ca. 0.05 g) was dissolved in dichloromethane (1 cm^3) in an 8 mm NMR tube. An excess of tin compound was added and the mixture was shaken vigorously for ca. 5 min. during which period evolution of ethylene occurred. The mixture was then put aside for ca. 30 min. before being placed in the NMR probe.

Competition experiments

The competition experiments were carried out in a manner similar to the preparations in situ described above, but 2.4×10^{-4} mol of each of the complex $[Pt(C_2H_4)(PPh_3)_2]$ and the two tin compounds were used.

ESR experiments

The complex $[Pt(C_2H_4)(PPh_3)_2]$ was treated with tin compounds in dichloromethane in the presence of nitrosodurene under conditions that gave strong signals for the radicals 2,3,5,6-Me₄C₆HN(O)R when alkyl halides RC(MeI, EtBr, n-PrBr, n-BuBr, PhCH₂Br) were used in place of the tin compounds [13].

References

- 1 A. Pidcock, R.E. Richards and L.M. Venanzi, J. Chem. Soc. A, (1966) 1707.
- 2 J. Chatt, C. Eaborn and S.D. Ibekwe, J. Chem. Soc. Chem. Commun., (1966) 700; J. Chatt, C. Earborn, S.D. Ibekwe and P.N. Kapoor, ibid., (1967) 869.
- 3 C. Eaborn, A. Pidcock and B.R. Steele, J. Chem. Soc. Dalton, (1976) 767.
- 4 G. Butler, C. Eaborn, K. Kundu and A. Pidcock, unpublished observations.
- 5 J.F. Nixon and A. Pidcock, Ann. Rev. NMR Spectrosc., 2 (1969) 346.
- 6 R.J.H. Clark, A.G. Davies and R.J. Puddephatt, J. Chem. Soc. A, (1968) 1828.
- 7 J. Chatt and R.G. Wilkins, J. Chem. Soc., (1951) 2532.
- 8 P.S. Pregosin and S.N. Sze, Helv. Chim. Acta, 61 (1978) 1848.
- 9 K.R. Dixon, M. Fakley and A. Pidcock, Canad. J. Chem., 54 (1976) 2733.
- 10 M.F. Lappert and P.W. Lednor, Advan. Organometal. Chem., 14 (1976) 345.
- 11 J. Kuyper, Inorg. Chem., 16 (1977) 2171.
- 12 C.D. Cook and G.S. Jauhal, J. Amer. Chem. Soc., 90 (1968) 1464.
- 13 P.W. Lednor, D. Phil. Thesis, University of Sussex, 1974.