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Summary

The 'H and >C NMR data for some N-methyi-5,5-dialkyldiptychthiaazstan-
nolidines are reported. The differing coupling constants of the proton signals of
the two nonequivalent Sn-alkyl groups suggest apical/equatorial positions for
these groups at the pentacoordinated tin atom. The observed intramclecular pro-
cess 1s explained by a dissociation-inversion mechanism.

In previous papers [1,2] we proposed a structure for N-alkyl-5,5-di-t-butyl-
diptychoxazstannolidines in which there is an approximate bipyramidal arrange-
ment of the ligands around the tin atom. The electronegative oxygen atoms
must lie in the apical positions [3], and the t-butyl group and N atoms in
equatorial positions (structure A, X = O). The temperature dependence of the
'H, '3C and !'9Sn spectra of that compound is explicable in terms of a dissocia-
tion—inversion mechanism {1,2,4]. An alternative structure B (X = S) must be
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considered in the case of N-methyl-5,5-dialkyldiptychthiaazstannolidines I—II1
(I,X=8,R=R'=Me; I, X=§, R=R'=t-Bu; III, X = S, R = Me, R’ = t-Bu).

The 'H NMR spectrum (see Table 1) of I at —20° C displays two Sn-methyl
signals (a and b) of equal intensity but only one N-methyl signal. At +41°C the
two Sn-methyl signals coalesce. In the 'H NMR spectrum of II the two t-Bu
signals (a and b) coalesce at —49° C. The 'H NMR spectrum of III shows no
temperature dependence.
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The 3C NMR spectra exhibit similar behaviour (see Table 2). At low tempera-
ture in the spectra of I and II only the '3C signals of the Sn-alkyl groups are
split, the SCH,, NCH, and NCHj signals remaining unchanged.

For reasons previously discussed a dissociation-inversion suggested to be the
process whereby both methyl groups in I (or t-butyl groups in II) become equiv-
alent.

Me /\
R N
.o R. S Me Ve
T e
S R S\/ l\

u s
Nz=—V R’
/ \\/
Me
(o) (A

For I and II both confermers (¢ and ) are equivalent; for III, however, one
conformer dominates to such a degree that only one signal appears for each Sn-
altkyl group even at low temperature.

In the *-alkyl-5,5-di-t-butyldiptychoxaazstannolidines the two Sn-alkyl sig-
nals, which appear at low temperature have almost the same coupling-constants
3J(11°Sn—C—C—'H) and 3J(''’Sn—C—C—'H). The 'H NMR spectrum of II, how-
ever, gives a different value for the coupling constants 3J(}'°Sn— C—C—'H) and
3J(1'7Sn—C—C—'H) for both Sn-alkyl signals (see Table 3). The coupling con-
stants 2J(1'9Sn—C—'H), 2J(*'"Sn—C—"'H), 'J(*'°Sn—'3C) and 'J(*'’Sn—'>C) of
the two methyl signals in I also differ considerably. Signal a: 'J(*'*Sn—'>C}
472.2 Hz, 'J(*'’Sn—'*.0) 452 Hz; signal b: 'J(}'°Sn—'3C) 341 Hz, 'J(*'"Sn—'3C)
326 Hz at —20°C, solvent: CDCl,.

TABLE 1
IH NMR CHEMICAL SHIFTS 4(ppm) OF I, II AND III

Com- Sn—CHj Sn—C—CH; N—CHj3 Tempera- Solvent
pound —_— _— ture (°C)
(a) (b) (a) (b)
I . 0.65 0.02 st 2.3 —70 CH,Cl»
0.66 0.06 © 216 —26 CHaCla
0.71 0.20 2.21 —10 CDCly
2.47 2.25 +60 CDCl3
0.29 —0.37 1.83 —26 (CD3)2CO
0.62 0.25 2.05 —3 o-DCB ¢
0.5 2.10 +97 o-DCB
11 1.21 1.13 2.16 —12 CH>CI»
1.30 2.20 +34 CHCl;,
0.97 0.89 1.94 —72 (CD3)-CO
1.13 211 +34 (CD3)>CO
1§11 0.55 0.93 2.16 —60 CH>Cl»
0.62 1.04 2.20 +34 CH>Cl,

2 5-DCB = o-dichlorobenzene, conc. ca. 1 M.
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TABLE 2
13C NMR CHEMICAL SHIFTS §(ppm) OF I, II AND IIL

Com- Sn—gH3 Sn—C—gH?, Sn—g—CH?, S—Q_Hz N—gHz N—EH:; Tempera-

pound _— ture (°C)
(a) )
1 4.4 2.7 23.7 58.4 42.7 —20
2.5 23.7 58.4 42.7 +40
14 30.1 37.4 23.1 59.1 41.2 —30

jaed —2.6 28.9 33.3 23.4 58.5 43.0 +40

2 Solvent-CDCl3, conc. ca. 1 M.

These facts suggest apical/equatorial positions for the Sn-alkyl groups at the
pentacoordinated tin atom (see structure B).

The small difference between the electronegativities of sulfur and carbon
would favour similar stabilities for structures A and B. Because these two struc-
tures never appear as conformers in the low-temperature spectrum we believe
the partial Berry process [5,6] between A and B to be fast on the NMR time
scale even at the lowest accessible temperatures. In I, IT and III structure B must
dominate in the equilibrium. An alternative explanation, involving an interme-
diate structure between A and B, cannot be excluded [7].

The difference in the free activation enthalpies for I and IT demonstrates that
in comparison with the methyl group the t-butyl group weakens the Sn—N bond,
both electronic and steric factors being responsible for this.

Experimental

All reactions were carried out under dry oxygen-free argon. The solvents were
purified by standard methods. N-Methyl-bis(-mercaptoethylamine) was made as
previously described [8].

The N-methyl-5,5-dialkyldiptychthiaazstannolidines was prepared by a method
as previously described for the N-alkyl-5,5-dialkyldiptychoxazstannolidines [1,2}.
The 'H NMR spectra (100 MHz) were recorded on a Varian-HA-100 spectrom-
eter; proton-decoupled '3C NMR spectra were recorded on a Brunker HX-90E-
spectrometer.

N-Methyl-5,5-dimethyldiptychthiaazstannolidine (I). Dimethyltin oxide (5.8
g 0.035 mol), N-methyl-bis(f-mercaptoethylamine) (0.035 mol, 5.28 g) and a
catalytic amount of potassium hydroxide in 125 ml of xylene yield, after
recrystallisation from benzene/n-pentane, 9.85 g (94%) of N-methyl-5,5-dimethyl-
diptychthiaazstannolidine (m.p. 66° C). {Anal.: Found: C, 28.14; H, 5.77; N,
4.62; Sn, 39.51. C;;H,,NS,8n caled.: C, 28.22; H, 5.71; N, 4.70; Sn, 39.87%).

N-Methyl-5,5-di-t-butyldiptychthiaazstannolidine (II). Di-t-butyltin oxide
(10 g, 0.04 mol), N-methyl-bis-3-mercaptoethylamine (6.079, 0.04 mol), and a
catalytic amount of potassium hydroxide in 159 ml of xylene gave, after evap-
oration of the solvent and distillaticn, 14.5 g (94.5%) of N-methyl-5,5-di-t-butyl-
diptychthiaazstannolidine (b.p. 152° C/0.8 mmHg: m.p. 38°C). (Anal.: Found: C,
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TABLE 4
ACTIVATION PARAMETERS ¢ (kJ/mol) OF I AND II

Compound Te CO) GT¢ H* E, ' Solvent

I 41.0 65.3 61.1 (* 4.0) 63.2 (+ 4.0 cDcl;

40.5 65.7 64.0 (+ 2.0) 66.5 (+ 2.0) Pyr.ds

I —49.4 48.5 44.8 (+ 4.5) 46.9 (+ 4.5) cH,ClL,
—49.5 48.5 56.5 (+10.5) 58.2 (+10.5) (CD3)2C0O

@ T coalescence temperature; G free activation enthalpie; H * activation enthalpie; Ea Arrhenius activation
energy.

40.81; H, 17.72; N, 3.60; Sn, 30.92. C;3H,9NS,5n caled.: C, 40.87; H, 17.60; N,
3.66; Sn, 31.10%).

N-Methyl-5-methyl-5-t-butyldiptychthiaazstannolidine (III). Methyl-t-butyltin
oxide (8.7 g, 0.0179 mol), N-methyl-bis(8-mercaptoethylamine) (2.7,, 0.0179
mol), and a catalytic amount of potassium hydroxide in 100 ml of xylene gave
after recrystallisation from benzene/pentane, 5.5 g (90.5%) of N-methyl-5-methyl-
5-t-butyldiptychthiaazstannolidine, m.p. 94—9£°C. (Anal.: Found: C, 35.32; H,
6.55; N, 4.07; Sn, 34.75. C;oH,3NS,Sn caled.: C, 35.32; H, 6.77; N, 4.12; Sn,
34.94%). _

All the products are soluble in common organic solvents such as benzene,
chloroform, acetone, and pyridine.
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