Journal of Organometallic Chemistry, 178 (1979) C1—C2
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

。我,我**你是你你我是我们**。

Preliminary communication

ELECTROCHEMICAL CONVERSION OF R₃SnCl TO ClR₂ SnOSnR₂ X (X = Cl, OH)*

Contracting to

laging a common to the second of a

JUNZO NOKAMI, HIROSHI NOSE and ROKURO OKAWARA

Okayama University of Science, Ridai, Okayama 700 (Japan)

(Received March 15th, 1979)

Summary the continuent of the continuent of the continuent of the section of the continuent of the con

Tetraalkyldistannoxane derivatives (ClR₂ SnOSnR₂ Cl or ClR₂ SnOSnR₂ OH) were prepared from trialkyltin chlorides by electrolysis.

the difference of the contract of the contract

Electrochemical reactions to prepare a variety of organotin compounds involving either tin or cadmium as the sacrificial anode have been reported [1]. In this communication we describe a new synthesis [2] of the tetraalkyldistannoxane derivatives from trialkyltin chlorides (eq. 1).

electrolysis
$$2 R_3 SnCl \xrightarrow{\text{electrolysis}} CIR_2 SnOSnR_2 X (X = Cl \text{ or OH}) (1)$$

The chloride (ca. 2 g) dissolved in an alcohol (5—10 ml) was electrolyzed in an undivided open cell, with stirring, at a constant current (0.01—0.2 A) using two platinum electrodes (3 cm²). Electrolysis in methanol and ethanol can be carried out without a supporting electrolyte. However, addition of a small amount (1—5 wt%) of supporting electrolyte was necessary for the electrolysis

TABLE 1

ELECTROLYSIS OF n-Bu₃SnCl TO ClBu₂SnOSnBu₂X (X = Cl or OH)

				•		
Solvent R'OH	Electricity (F/mol)	Supporting electrolyte	Reaction temp. (°C)	ClBu ₂ SnOSnBu ₂ X yield (%)		
				X = CI	X = OH	
R' = CH ₃	5.6	_	23		51	
	4.5	LiClO ₄	22	40^{a}	30 ^b	
CH ₃ CH ₂	2.5	_ "	23		64	
	5.0	LiClO ₄	25	95		
(CH ₃) ₂ CH	4.0	LiClO	14	88		
$(CH_3)_3C$	3.3	Bu ₄ NClO ₄	30	83		
(0:13/30		240104	00	00		

^aAnal. Found (calcd.): C, 34.69 (34.77); H, 6.75 (6.57); Sn, 43.11 (42.95) %. ^bAnal. Found (calcd.): C, 35.68 (35.96); H, 7.06 (6.98); Sn, 44.55 (44.43) %. ν(OH) 3660 cm⁻¹.

^{*} Dedicated to Professor E.G. Rochow on the occasion of his 70th birthday.

TABLE 2

ELECTROLYSIS OF R₃SnCl TO ClR₂SnOSnR₂X (X = Cl or OH)

R ₃ SnCl	Solvent R'OH	Electricity (F/mol)	Supporting electrolyte	Reaction temp. (°C)	ClR ₂ SnOSnR ₂ X yield (%)	
$R = n - C_8 H_{12}$	$R' = CH_3$	5.0	LiClO ₄	15	$X = Cl^{\alpha}$	80
	(CH ₃) ₃ C	5.0	LiClO ₄	30	Cl	76
C_6H_{11}	(CH ₃) ₂ C	H 5.0	LiClO ₄	30	Cl	65
C ₆ H ₅	CH ³	12	_	16	oh_p	23

^a Anal. Found (calcd.): C, 49.40 (49.45); H, 8.87 (8.82); Sn, 30.49 (30.54) %. ^b Anal. Found (calcd.): C, 46.77 (46.93); H, 3.50 (3.45) %. ν (OH) 3620 cm⁻¹.

in other alcohols. The reaction conditions and the results of the electrolysis of tri-n-butyltin chloride are summarized in Table 1.

Similarly, tri-n-octyltin, tricyclohexyltin, and triphenyltin chlorides were electrolyzed as shown in Table 2.

From the results, it is clear that one of the three Sn—C bonds in R₃SnCl is cleaved to give tetraalkyldistannoxane derivatives by anodic oxidation, probably via a cationic intermediate, R₂XSn⁺.

References

- 1 J.J. Habeeb and D.G. Tuck, J. Organometal. Chem., 134 (1977) 363, and references cited therein.
- 2 See A.K. Sawyer (ed.), Organotin Compounds, Vol. I-III, Marcel Dekker, New York, 1971.