Journal of Organometallic Chemistry, 178 (1979) C1—C2 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands 。我,我**你是你你我是我们**。 ## Preliminary communication ELECTROCHEMICAL CONVERSION OF R₃SnCl TO ClR₂ SnOSnR₂ X (X = Cl, OH)* Contracting to laging a common to the second of a JUNZO NOKAMI, HIROSHI NOSE and ROKURO OKAWARA Okayama University of Science, Ridai, Okayama 700 (Japan) (Received March 15th, 1979) ## Summary the continuent of the continuent of the continuent of the section of the continuent con Tetraalkyldistannoxane derivatives (ClR₂ SnOSnR₂ Cl or ClR₂ SnOSnR₂ OH) were prepared from trialkyltin chlorides by electrolysis. the difference of the contract Electrochemical reactions to prepare a variety of organotin compounds involving either tin or cadmium as the sacrificial anode have been reported [1]. In this communication we describe a new synthesis [2] of the tetraalkyldistannoxane derivatives from trialkyltin chlorides (eq. 1). electrolysis $$2 R_3 SnCl \xrightarrow{\text{electrolysis}} CIR_2 SnOSnR_2 X (X = Cl \text{ or OH}) (1)$$ The chloride (ca. 2 g) dissolved in an alcohol (5—10 ml) was electrolyzed in an undivided open cell, with stirring, at a constant current (0.01—0.2 A) using two platinum electrodes (3 cm²). Electrolysis in methanol and ethanol can be carried out without a supporting electrolyte. However, addition of a small amount (1—5 wt%) of supporting electrolyte was necessary for the electrolysis TABLE 1 ELECTROLYSIS OF n-Bu₃SnCl TO ClBu₂SnOSnBu₂X (X = Cl or OH) | | | | | • | | | |------------------------------------|------------------------|-----------------------------------|------------------------|---|-----------------|--| | Solvent
R'OH | Electricity
(F/mol) | Supporting electrolyte | Reaction
temp. (°C) | ClBu ₂ SnOSnBu ₂ X
yield (%) | | | | | | | | X = CI | X = OH | | | R' = CH ₃ | 5.6 | _ | 23 | | 51 | | | | 4.5 | LiClO ₄ | 22 | 40^{a} | 30 ^b | | | CH ₃ CH ₂ | 2.5 | _ " | 23 | | 64 | | | | 5.0 | LiClO ₄ | 25 | 95 | | | | (CH ₃) ₂ CH | 4.0 | LiClO | 14 | 88 | | | | $(CH_3)_3C$ | 3.3 | Bu ₄ NClO ₄ | 30 | 83 | | | | (0:13/30 | | 240104 | 00 | 00 | | | ^aAnal. Found (calcd.): C, 34.69 (34.77); H, 6.75 (6.57); Sn, 43.11 (42.95) %. ^bAnal. Found (calcd.): C, 35.68 (35.96); H, 7.06 (6.98); Sn, 44.55 (44.43) %. ν(OH) 3660 cm⁻¹. ^{*} Dedicated to Professor E.G. Rochow on the occasion of his 70th birthday. TABLE 2 ELECTROLYSIS OF R₃SnCl TO ClR₂SnOSnR₂X (X = Cl or OH) | R ₃ SnCl | Solvent
R'OH | Electricity
(F/mol) | Supporting electrolyte | Reaction
temp. (°C) | ClR ₂ SnOSnR ₂ X
yield (%) | | |-------------------------------|-----------------------------------|------------------------|------------------------|------------------------|---|----| | $R = n - C_8 H_{12}$ | $R' = CH_3$ | 5.0 | LiClO ₄ | 15 | $X = Cl^{\alpha}$ | 80 | | | (CH ₃) ₃ C | 5.0 | LiClO ₄ | 30 | Cl | 76 | | C_6H_{11} | (CH ₃) ₂ C | H 5.0 | LiClO ₄ | 30 | Cl | 65 | | C ₆ H ₅ | CH ³ | 12 | _ | 16 | oh_p | 23 | ^a Anal. Found (calcd.): C, 49.40 (49.45); H, 8.87 (8.82); Sn, 30.49 (30.54) %. ^b Anal. Found (calcd.): C, 46.77 (46.93); H, 3.50 (3.45) %. ν (OH) 3620 cm⁻¹. in other alcohols. The reaction conditions and the results of the electrolysis of tri-n-butyltin chloride are summarized in Table 1. Similarly, tri-n-octyltin, tricyclohexyltin, and triphenyltin chlorides were electrolyzed as shown in Table 2. From the results, it is clear that one of the three Sn—C bonds in R₃SnCl is cleaved to give tetraalkyldistannoxane derivatives by anodic oxidation, probably via a cationic intermediate, R₂XSn⁺. ## References - 1 J.J. Habeeb and D.G. Tuck, J. Organometal. Chem., 134 (1977) 363, and references cited therein. - 2 See A.K. Sawyer (ed.), Organotin Compounds, Vol. I-III, Marcel Dekker, New York, 1971.