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Summary

Tertiary phosphines rapidly add to the ring in dicarbonylnitrosyl(cyclobuta-
diene)iron cation and tricarbonyl(cyclcheptatriene)manganese cation to form
phosphonium adducts. Kinetic studies of this reaction support a mechanism
consisting of direct bimolecular attack on the ring. Reactivity towards nucleo-
philic attack by phosphines follows the order: [(C,H,)Mn(CO),1" > [(C,H.)Fe-
(CO),NOJY* > [(CsH,)Fe(CO);1" > [(C.HOMe)Fe(CO);1" 2 [(C,H,)M(CO)T
(M = Cr, Mo, W) > [(C,H,)Mn(CO),]*. Coordinated cycloheptatriene is about
10* times more electrophilic towards phosphine nucleophiles than is coordinated
benzene.

Introduction

The addition of tertiary phosphines to coordinated cyclic m-hydrocarbons to
yield phosphonium adducts has attracted recent attention [1—7]. Quantitative
kinetic studies of this reaction have been reported [8—10] for the cationic sys-
tems [(C.H,)Fe(CO)s1*, [(CH,)Fe(CO),NOT*, [(arene)Mn(CO),]", and [(C/H,)-
M(CO),;1" (M = Cr, Mo, W). Such work provides information concerning the
mechanism of nucleophilic addition to coordinated rings and allows the formu-
lation of a reactivity order towards nucleophilic attack.

Herein we report the kinetics of tertiary phosphine addition to [(C,H,)Fe-
(C0O),NOT* and [(C,Hz)Mn(CO);]" (reactions 1 and 2).

* To whom correspondence should be addressed.
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Experimental

All solvents were distilled and dried prior to use. The tertiary phosphines
were crystallized from ethanol. Spectral measurements were made using
Perkin—Elmer 337 {(IR), Perkin—Elmer 323 (VIS/UV), and Hitachi Perkin—
Elmer R-20B (NMR) instruments.

Complex I was prepared as described by Efraty et al. [11], and its identity
confirmed by IR, NMR, and analytical data. (Found: C, 21.5; H, 1.2; N, 3.9.
C,H. F ,FeNO,P caled.: C, 21.3; H, 1.2, N, 4.1%.) The phosphonium adducts
IT were precipitated from methylene chloride upon the addition of ether to a
solution containing compiex I and excess tertiary phosphine. This method is
essentially the same as that reported by Efraty et al. [12,13] who have fully
characterized these compounds. With P(p-CICcH.)s reaction 1 is readily rever-
sible at room temperature and attempted precipitation of II from methylene
chloride vields only the less soluble reactant I. This adduct was prepared,
however, by precipitation at —50°C, at which temperature reaction 1 is essen-
tialty complete (Keq large). The adducts II have IR bands in CH;NO,; at »(CO)
2055, 2008 cm™ and »(NO) 1765 cm™.

Complex 1 was synthesized as described by Pauson et al. [14]. (Found: C,
37.7; H, 2.5. C;(HgBF;MnOj; caled.: C, 37.4; H, 2.7%.) The IR spectrum in
CH;NO; has CO bands at 2075 and 2015 em™, and the 'H NMR spectrum in
CD3;NO, contains multiplets at 7 3.09 (H3+%), 4.20 (H*%), 5.43 (H'-%), 6.67
(H” endo), and 8.34 ppm (H? ex0). [(C;Hs)Mn(CO);]BF, is very reactive towards
nucleophiles, and it is essential that the CH3;NO, solvent be carefully purified.
In our work the CH3NO, was freshly distilled from P,0Os and stored over mole-
cular sieve in the dark.

Two phosphonium adducts of [(C,Hg)Mn(CO);]1BF, were prepared as white
crystalline solids by the method described above for the adducts II. With
P(o-tolyl); a low temperature (= —50°C) was necessary because of the reversi-
bility of reaction 2. However, even at low temperature the product contained
some starting material {(complex III). The tris(p-chlorophenyl)phosphine adduct,
[(C;Hg)P(p-CICsH,4)sMn(CO);1BF,; was analyzed. (Found: C, 49.5; H, 3.2.
C231-12°BC13F4MHO3P caled.: C 49. 2 H 2. 90%.) The adducts IV have IR bands
in CH3NO; at »(CO) 2020, 1945 cm™.
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The kinetics of reactions I and 2 were studied in CH;NO, and/or acetone
using a Durrum stopped-flow apparatus. The metal complex concentration was
(1.0—2.0) X 10™ M and the nucleophile concentration was kept in pseudo-first-
order excess (1.0—12.0) X 1073 M. The kinetics were monitored at 455 and 390

nm for reactions 1 and 2, respectively.
Results and discussion

Mechanism of phosphine addition

1. [(C4H,)Fe(CO),NOJPF 4. Efraty et al. [13] have shown that tertiary phos-
phines rapidly add to the cyclobutadiene ring in [(C.H4)Fe(CO),NO]" to yield
the exo-phosphonium adducts. We found that adduct formation in CH;NO, is
accompanied by changes in IR frequencies from »(CO) 2125, 2100 cm™, »(NO)
1880 cm™ to »(CO) 2055, 2008 cm™, y(NO) 1765 cm™. Reaction 1 was shown
to be reversible by IR dilution experiments and the equilibrium constant (X)
for addition of P(p-CIC4H,); in acetone calculated to be 1600 M™! at 25°C. With
excess nucleophile the rate constants for reaction 1, which are given in Table 1,
were found to obey equation 3, from which one can calculate K as k;/k_;. The

kovs = R1[PR3] + ko, 3)

value of K calculated from kinetic data (Table 1) at 24°C agrees well with the
value found by the static IR method.

In view of the known exo configuration of the phosphonium adducts [13]
it would seem that the most likely mechanism of addition is simply bimolecular
or direct attack on the ring. It has recently been suggested [15] that in some
cases nucleophilic addition may be preceded by attack at the metal. This does
not seem to be the case with coordinated cyclobutadiene since the full absor-
bance change calculated for reaction 1 was observed experimentally with no

TABLE 1
RATE CONSTANTS FOR THE ADDITION OF PR3 TO [(C4H4)Fe(CO);NO1PF¢

PR3 Solvent T CC) ky (M 1sY) k(s
P(CgHs)3 (CH3),CO 0 18600(500) ¢ —
P(CgHs)3 (CH3),CO 10 27800(5C0) —
P(CeHs)s (CH3)2CO 16.5 41900(1700) —
P(CeHs)3 (CH3)2CO 25 47300(1800) —
P(p-ClCgHa)s (CH3),CO 0.5 1840(100) -
P(p-ClCgHg)3 (CH3),CO 7.5 2580(40) 0.58(0.07)
P(p-ClCgHy)3 (CHj3),CO 13.5 3180(70) 1.33¢0.17)
P(p-CICgHg)3 (CH3),CO 19.5 4020(70) - 2.00(0.21)
P(p-CICgHg)3 (CH3)2CO 24 5110(70) 3.07(0.17)
P(p-ClCgHg)3 (CH3)2CO 27 5380(1230) 5.19¢0.37)
P(p-CIlCgHy)3 CH3NO, 0.5 3200(70) —
P(p-CICgH4)3 CH3NO, 20 6350(80) 2.03(0.23)
P(p-CICgHy)3 CH3NO» 25 7410(90) 3.84(0.25)
P(p-CICgH1)3 CH3NO, 30 9100(120) 5.44(0.35)
P(p-CICgH4)3 CH3NO2 324 10000(90) 7.35(0.24)

€ Numbers in parentheses are standard deviations.
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TABLE 2 .
RATE CONSTANTS FOR THE ADDITION OF PR3 TO [(C7H3g)Mn(CO)3]BF4 IN NITROMETHANE

PR3 T CO) kR (Aris LY O
P(-ClCgH3)3 1 30000 —_
P(p-ClCgHa)3 20 53000 —
P(p-ClCgHg)3 S5 98000 —
P(o-tolyl)s o i70 —
P(o-tolyl)s 18 295(5) ¢ 0.13(0.02)
P(o-tolyl)3 23.5 350(10) 0.20(0.10)
P(o-tolyDs . 30 505(5) _ 0.31(0.03)
‘P(o-tolyl)3 35 665(15) 0.77(0.13)

9% Numbers in parentheses are standard deviations.

evideizce for an intermediate. Also, initial attack at the metal would be expected
to yield the endo product.

The activation parameters for reaction 1 (Table 3) are very reasonable for a
bond formation step (k;) and a bond breaking step (%.,) and are similar to
activation parameters obtained for coordinated arene complexes [10].

2. j[(C5H)Mn(CO).]BF,. The ccordinated ring in [(C;Hs)Mn(CO)s]* is very
reactive towards nucleophiles. Pauson et al. [14] reported the addition of
nucelophiles such as OR™, H™, and CN~, but to our knowledge the phosphonium
adducts have not been previously reported. Tertiary phosphines rapidly add to
the ring producing a shift in IR bands (in CH;NO,) from v(CO) 2075, 2015 to
2020, 1945 cm™'. The spectral shifts are almost identical to those found with
phosphine addition to [(arene)Mn(CO),]1* [4,10]. As was the case for coordi-
nated cyclobutadiene, phosphine addition to complex III was shown to be rever-
sible by IR diiution experiments and for P(o-tolyl); the equilibrium constant
was found to be 2000 M in CH3NO, at 25°C. This value agrees with that
derived from the kinetic data (eq. 3, Table 2).

All of the absorbance change calculated for reaction 2 was observed. This
coupled with the known [14,16] exo stereochemistry of the ring adducts of
compound III with R™, CN™ or OR™, suggests, as discussed above, that the
mechanism of phosphine addition is direct bimolecular attack on the ring.

The activation parameéters are given in Table 4 and are seen to be consistent
with bond making and bond breaking steps. The reaction with P(p-CICsH.:)s

TABLE 3 .
ACTIVATION PARAMETERS FOR THE ADDITION OF PR3 TO [(C4H4)Fe(CO)2NO1PFg

PR3 Solvent Step AHT (kcal mol™1) AS¥ (cal deg~! mol™?)
P(CeH5)3 (CH3)2CO k) 5.8¢(0.7) ¢ —17.5¢0.6)

P(p-CICsH )3 (CE3),C0 k3 5.9(0.3) —21.8(0.9)
P(p-CICgH4)3 (CH3),CO kg 16.7(1.3) 0¢4)

P(p-CICgHs)3 CH3NO, Ry 5.1¢0.1) —23.6(0.4)
P(p-ClCgH)3 CH3NO,» kg 16.1(1.4) —2(5)

¢ Numbers in parentheses are standard deviations.
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TABLE 4

ACTIVATION PARAMETERS FOR THE ADDITION OF PR3 TO [(C7Hg)Mn(CO)3]1BF,4 IN NITRO-
METHANE

PR; Step AH™ (kcal mol™1) AS¥ (cal deg™! mol~1)
P(p-ClCgHg)3 ky 4.9(2.0)¢ —20(10)

P(o-tolyl)s Ry 5.7(0.6) —27(2)

P(o-tolyl)s ke 19.3(3.0) 3(7)

9 Numbers in parentheses are standard deviations.

is very rapid and the corresponding rate constants and activation parameters are
mu.h less reliable than with P(o-tolyl);.

It is interesting to note that P(p-tolyl); reacts with compound IIl'at a rate we
estimate to be at least 2000 times faster than P(o-tolyl); due, presumably, to
steric effects. It is only because of the great electrophilicity of the coordinated
cycloheptatriene ring that this reaction can be studied. P(o-tolyl)s, unlike P(p-
tolyl)s, does not react with other coordinated cyclic 7-hydrocarbons reported
to date, including {(C,H;)Fe(CO),NOJ*, which is one of the most electrophilic
systems yet found.

Electrophilicity of coordinated cyclic m-hydrocarbons

Kinetic studies of nucleophilic addition to coordinated w-hydrocarbons have
been reported for only a few systems [8—10, 17—20]. This work significantly
extends this area and allows a reactivity order towards addition of tertiary
phosphines to be formulated: {(C;Hg)Mn(CO);]* > [(CsH4)Fe(CO),NO]J* >
[(CeH,)Fe(CO)s]* > [(CsHOMe)Fe(CO)s1* 2 [(C_H;)M(CO)s1* (M = Cr, Mo, W)
> [(CcHe)Mn(CO)s]*. The relative reactivities are approximately 10000/1000/
150/30/30/1. It is of interest to note that the arene ring in [(CsHs)Mn(CO)s]" is
less electrophilic than coordinated cycloheptatriene in [(C;Hg)Mn(CO);]* by a
factor of about 10%. This is primarily due, no doubt, to the resonance energy
of the arene ring.
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