Journal of Organometallic Chemistry, 170 (1979) 293–297 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

THE RAMAN SPECTRUM AND STRUCTURE OF DICYCLOPENTADIENYLBERYLLIUM

J. LUSZTYK and K.B. STAROWIEYSKI

Institute of Organic Chemistry and Technology, Warsaw Technical University (Politechnika), 00-662 Warsaw (Poland)

(Received November 15th, 1978)

Summary

The Raman spectra of solid and liquid dicyclopentadienylberyllium are described. They suggest the presence of two π -bonded rings in the molecule, one *pentahapto* and one *polyhapto* coordinated to the Be atom.

Introduction

In 1951 the first metallocene, Cp_2Fe , was discovered [1], and shown to have the sandwich structure of D_{5d} symmetry (Fig. 1A). Dicyclopentadienylberyllium, Cp_2Be , the smallest metallocene, was first synthesized by Fischer and Hoffmann in 1959 [2]. In 1964 Haaland et al. [3,4] concluded from electron diffraction studies that in the gas phase Cp_2Be had a structure of C_{5v} symmetry (Fig. 1B), highly unusual for metallocenes. On the other hand, Wong et al. [5, 6] showed by X-ray diffraction studies that in the solid state Cp_2Be had a slip sandwich structure. Wong et al. [5] proposed a $\sigma-\pi$ bond system in the molecule at low temperatures (Fig. 1C). However, Drew and Haaland [7] interpreted Wong's results differently, suggesting the presence of two π -bonded rings in the molecule, one *pentahapto* and one *polyhapto* coordinated to the Be atom (Fig. 1D).

The structure of Cp_2Be was also investigated by means of vibrational spectroscopy. Fritz et al. [8,9,10] concluded from the IR spectrum of Cp_2Be in the solid state that the molecule contained two equivalent centrally σ -bonded rings. After the structure of C_{5v} symmetry has been proposed for the gas phase [3,4], Fritz and Sellmann [11] and McVicker and Morgan [12] suggested the same structure for the solid state and solutions on the basis of new IR data. McVicker and Morgan found the model (CpBe)⁺ Cp⁻ to be the most consistent with their IR data for solid Cp_2Be.

The IR spectra mentioned above are not consistent. Furthermore, no papers

Fig. 1. Possible structures of Cp₂Be.

concerned with the vibrational spectra of Cp_2Be have appeared since the slip sandwich structure was established by X-ray diffraction [5,6]. Thus, there is a disagreement between X-ray and IR results. Moreover, the Raman spectrum of this compound has not been reported. We thus decided to undertake measurements of Raman spectra of Cp_2Be in order to remove the inconsistency between vibrational and X-ray data and provide a new approach to the question of the bonding in this compound.

Results and discussion

The Raman spectra of solid Cp_2Be at $-160^{\circ}C$ and $25^{\circ}C$ and the spectrum of liquid Cp_2Be at $65^{\circ}C$ were recorded. They are shown in Fig. 2. The band positions are listed in Table 1.

We have considered the four models presented in Fig. 1 in analysing the obtained spectra. The simplest spectrum is expected for the structure of the highest symmetry, A. The spectrum obtained is much more complicated than the spectra of compounds of D_{5d} symmetry, e.g. ferrocene [14] or magnesocene [15]. Thus we conclude that the molecule contains two nonequivalent Cp rings.

The obtained spectrum contains all the bands corresponding to the normal modes of one Cp ring of local C_{5v} symmetry π -bonded to Be atom, see Table 1. Their positions and intensities are very similar to those observed in the spectra of monocyclopentadienylberyllium derivatives which are believed to have a CpBe moiety of C_{5v} symmetry as CpBeCl [16,17,18], CpBeBr, CpBeCH₃, CpBeC=CH [18].

The character of the second Cp ring is not so clear. For the model B we expect two sets of bands corresponding to two different Cp rings, both of local C_{5v} symmetry, as assumed in the analyses of the IR spectrum of Cp₂Be [11, 12]. However, in our opinion the existence of a polarized band at 3000 cm⁻¹ in the C—H stretching region and polarized bands in the region 1380—1420 cm⁻¹, which are unexpected for a Cp ligand of C_{5v} symmetry, excludes this model.

The model with an electrostatically bonded second ring of local D_{5h} symmetry is rejected for similar reasons.

In the case of the σ -bonded ring, model C, a more complicated spectrum is expected [10,19,20]. The most characteristic bands should appear in the C—H stretching region 2800—3000 cm⁻¹ (unexpected for any other models), and in the C=C stretching region, 1500—1600 cm⁻¹. We have not observed such bands in our spectra and the model C has accordingly been rejected.

Thus we are left with model D, with *pentahapto/polyhapto* bonded Cp rings, which we assume to be most consistent with our data. The only published vibrational spectra of a *polyhapto*-bonded Cp ring of which we are aware are those presented by Stadelhofer et al. [21] for CpAlEt₂ and CpGaEt₂. These are similar to those obtained for Cp₂Be, especially in the C—H stretching region.

Our conclusions can be summarized as follows: (a) there are two different Cp rings in the molecule of solid and liquid Cp₂Be, (b) one of the rings possesses C_{5v} local symmetry, (c) the second ring deviates from the local C_{5v} symmetry and is probably *polyhapto*-bonded to the metal, and (d) the proposed bond system of Cp₂Be is consistent with X-ray data obtained by Wong et al. at room temperature [6]. We have not observed any significant differences between the spectrum of Cp₂Be in the solid at -160 and 25°C and that of the liquid at 65°C. Hence in the case of the crystals at low temperature we are inclined to

Solid —160°C	Solid 25°C	Liquid 65°C	Polariza- tion ratio	Proposed assignments for CpM (C _{5v}),[13]		
				Normal mode	Symmetry	Approximate description
87 s			·····			
124 s						
136 s						
150 s						
165 m						
187 s						
320 s	313 s	313 s	0.23			$v(Cn-Be)^{a}$
447 vs	430 s(br)	447 m	0.26	<i>v</i> (10)	F.	$v(C_{D}-B_{e})$
461 s	100 5(01)	111 111	0.10	P(10)	~1	P(OP DC)
600 s	598 m	598 m	0.37			$u(Cn-Be)^{a}$
630 vw	627 w(sh)	628 yw(sh)	0.60	v(16)	Fa	V(CCC)
736 yyw	027 (0.0)	020 (11(51))	0.00	P(10)	112	10000
769 w	750 ym	745	0.80			
780 w(ch)	130 VW	145 VVW	0.00			
780 w(sir)	795	795	0.97		•	~(011)
789 w	755 W	155 W	0.27	<i>v</i> (3)	A1	p(CH)
838 w(sh)						
000 ((3.1)	841 ur	830	· 0 50		F	0/011
846 ur	041 W	635 W	0.50	<i>v</i> (15)	μj	$\rho(CH)$
960 w(ab)						
009 W(SII)	970	070	0.75			
992	870 W	8/3 W	0.75	v(9)	E ₁	$\rho(CH)$
003 W						
905 VVW	020	0.05	0.55		-	
934 VW	930 VW	925 VVW	0.75	$\nu(14)$	E2	V(CCC)
1020 w	1001 VW	994 VW	0.50		-	A
1030 VW	1026 vw	1030 vw(sh)		v(8)	E_{1}	β(CH)
1058 m		1055 w(sh)	0.30			
10/5 m	1000	1000			_	
1000	1083 m	1082 m	0.68	ν(13)	E_2	β(CH)
1089 m						
1118 vs	1118 s(sh)	1116 s(sh)	0.15			
1129 VS	1127 VS	1130 vs	0.12	v(2)	A_1	ν (CC)
1227 vvw	1225 vvw					
1256 vvw						
	1249 vw	1246 vw	0.28	$2\nu(16)$	A_1	
1267 vvw						
1325 vw						
1356 m	1360 m	1362 m	0.75	$\nu(12)$	E_2	ν(CC)
1390 s	1388 m	1395 m	0.28			
1420 w	1420 w	1420 m	0.19			
1440 vvw	1440 vw(sh)	•		v(7)	E _l	ν(CC)
	1506 vvw		0.10	C ₅ H ₆ im	р.	
	2783 vvw					
	2869 vvw					
3013 s	3020 w	3002 w(br)	0.25			
3069 m						
0070	3070 m(sh)	3074 m(sh)	0.60			
3076 m						
3087 s						
3094 s	3102 s	3100 s	0.25			
3100 m(sh)				_	_	
3110 m				v(6), v(11)	E_{1}, E_{2}	ν(CH)
5116 m(sh)]						
3122 s	3123 s	3128 s	0.15	ν(1)	A_1	ν(CH)

TABLE 1. RAMAN SPECTRAL FREQUENCIES (cm⁻¹) OF Cp₂Be

^a We believe, those two bands belong to symmetric stretching $\nu(h^5$ -Cp—Be) and $\nu(h^2/h^3$ -Cp—Be), but we failed to assign them specifically. We found [18] the bands corresponding to $\nu(h^5$ -Cp—Be) in the spectra of CpBeX as follows: CpBeCl 313 cm⁻¹, CpBeBr 246 cm⁻¹, CpBeCH₃ 396 cm⁻¹, CpBeC=CH 351 cm⁻¹.

accept the *pentahapto/polyhapto* bond description proposed by Drew and Haaland, rather than the $\sigma - \pi$ bond description proposed by Wong et al. [5].

Experimental

 Cp_2Be was obtained by the method described by Fischer et al. [2] and purified by vacuum transfer. The melting point of Cp_2Be was 59–60°C, its purity was also checked by mass spectrometry.

The Raman spectra were recorded on a Coderg Spectrophotometer, with the 4880 Å line of an Ar ion laser as exciting radiation.

Acknowledgement

The authors thank Dr. A. Okniński and Prof. S. Pasynkiewicz for valuable discussion and the Institute of Low Temperature and Structural Investigation PAN Wroclaw for financial support of this work.

References

- 1 T.J. Kealy and P.L. Pauson, Nature, 168 (1951) 1039.
- 2 E.O. Fischer and H.P. Hoffmann, Chem. Ber., 92 (1959) 482.
- 3 A. Almenningen, O. Bastiansen and A. Haaland, J. Chem. Phys., 40 (1964) 3434.
- 4 A. Haaland, Acta Chem. Scand., 22 (1968) 3030.
- 5 C.H. Wong, T.Y. Lee, K.J. Chao and S. Lee, Acta Cryst. B, 28 (1972) 1662.
- 6 C.H. Wong, T.Y. Lee, T.J. Lee, T.W. Chang and C.S. Liu, Inorg. Nucl. Chem. Lett., 9 (1973) 667.
- 7 D.A. Drew and A. Haaland, Acta Cryst. B, 28 (1972) 3671.
- 8 H.P. Fritz, Chem. Ber., 92 (1959) 780.
- 9 H.P. Fritz and R. Schneider, Chem. Ber., 93 (1960) 1171.
- 10 H.P. Fritz, Advan. Organometal. Chem., 1 (1964) 262.
- 11 H.P. Fritz and D. Sellmann, J. Organometal. Chem., 5 (1966) 501.
- 12 G.B. McVicker and G.L. Morgan, Spectrochim. Acta A, 26 (1970) 23.
- 13 V.T. Aleksanyan and B.V. Lokshin, J. Organometal. Chem., 131 (1977) 113.
- 14 D. Hartley and M.I. Ware, J. Chem. Soc. A, (1969) 138.
- 15 V.T. Aleksanyan, I.A. Garbuzova, V.V. Gavrilenko and L.I. Zacharkin, J. Organometal. Chem., 129 (1977) 139.
- 16 D.A. Coe, J.W. Nibler, T.H. Cook, D. Drew and G.L. Morgan, J. Chem. Phys., 63 (1975) 4842.
- 17 K.B. Starowieyski and J. Lusztyk, J. Organometal. Chem., 133 (1977) 281.
- 18 J. Lusztyk, Ph.D. Thesis, Warsaw Technical University, 1978.
- 19 P.C. Angus and S.R. Stobart, J. Chem. Soc. Dalton Trans., (1973) 2374.
- 20 E. Maslovsky, Jr. and K. Nakamoto, Inorg. Chem., 8 (1969) 1108.
- 21 J. Stadelhofer, J. Weidlein, P. Fischer and A. Haaland, J. Organometal. Chem., 116 (1976) 55.