Journal of Organometallic Chemistry, 161 (1978) C59—C62
© Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

LA DIETHYLGERMATHIONE Et₂Ge=S: FORMATION ET CARACTERISATION

H. LAVAYSSIERE, G. DOUSSE, J. BARRAU, J. SATGE[★] et M. BOUCHAUT

Laboratoire de Chimie des Organominéraux, Université Paul Sabatier 31077, Toulouse Cedex (France)

(Reçu le 1er août 1978)

Summary

(X = S, PhN)

The adducts of some germaoxazolidines and germadiazolidines with CS_2 or PhNCS give by β -elimination reactions transient dialkylgermathione, $R_2Ge=S$, which is characterized by addition on the germanium—sulfur bond of Et_3GeSMe and by insertion and ring expansion reactions with ethylene oxide or thiirane and formation of germaoxathiolane or germadithiolane.

The equilibrium between monomeric (Et₂Ge=S) and trimeric species (Et₂GeS)₃ is established.

The desulfuration reaction of germadithiolane by tributylphosphine leads to germathione probably via transient germathiacyclobutane.

Nous avons récemment montré que les dialcoylgermanones R_2 Ge=O pouvaient être formées par réaction de β -élimination thermique d'oxétannes germaniés ou d'adduits des germa-dioxolannes, -oxazolidines et -diazolidines aux dérivés carbonylés [1].

Nous décrivons ici des réactions assez analogues qui aboutissent à la formation et mise en évidence de dialcoylgermathiones $R_2Ge=S$. L'addition d'hétérocumulènes à groupement C=S (CS_2 ou PhNCS) sur certaines oxazolidines ou diazolidines germaniées conduit aux adduits correspondants [2-4] (eq. 1). Ces derniers donnent par réaction de β -élimination, la diéthylgermathione (eq. 2).

(I)

$$R'-N$$
 $X = C - Y$
 $S = GeEt_2$
 $(Et_2Ge=S) + X = C$
 (2)

Les conditions expérimentales de cette β -élimination thermique dépendent d la nature des différents substituants portés par le cycle I:

Ia,
$$X = PhN$$
, $Y = NMe$, $R' = Me$, $T 150^{\circ}C$
Ib, $X = S$, $Y = NMe$, $R' = Me$, $T 150^{\circ}C$
Ic, $X = S$, $Y = O$, $R' = H$, $T 0^{\circ}C$

La diéthylgermathione est une espèce intermédiaire qui évolue rapidement ve la formation de sulfure de diéthylgermanium trimère (Et₂GeS)₃.

Les réactions de caractérisation de l'espèce monomère sont assez analogues aux réactions de caractérisation des dialcoylgermanones [1]. En présence d'un excès de 300% de Et₃GeSMe, la diéthylgermathione s'additionne sur la liaison Ge—S de ce dérivé. L'adduit formé peu stable évolue rapidement avec formatio de sulfure de bis(triéthylgermanium), de bis(méthylthio)diéthylgermanium et d diéthylgermathione qui peut à nouveau réagir avec Et₃GeSMe (ou Et₂Ge(SMe)₂ ou se trimériser. On caractérise en fin d'expérience environ 30% de (Et₂GeS)₃.

2 Et₂Ge=S + 2 Et₃GeSMe
$$\frac{150^{\circ}\text{C}}{2 \text{ h}}$$
 2 $\left[\text{Et}_{3}\text{Ge}-\text{S}-\text{Ge}-\text{SMe}\right]$ $\left[\text{(Et}_{2}\text{Ge}\text{SMe)}_{2}\text{S}\right]$ + $\left(\text{Et}_{3}\text{Ge}\right)_{2}\text{S}$ $\left[\text{(Et}_{2}\text{Ge}\text{(SMe)}_{2}\right]$ + $\left(\text{Et}_{3}\text{Ge}\right)_{2}\text{S}$ $\left(\text{Et}_{2}\text{Ge}\text{(SMe)}_{2}\right)$ + $\left(\text{Et}_{2}\text{Ge}\text{=S}\right)$

SCHEMA 1

Le mécanisme de l'insertion de la diéthylgermathione dans la liaison Ge—S c Et₃GeSMe ne peut être exactement précisé. On peut penser que cette insertion est facilitée par le caractère polaire des liaisons multiples germanium—hétéro-élément comme cela a été postulé pour les espèces isologues siliciées [5, 6].

La diéthylgermathione, comme son isologue la diéthylgermanone [1] s'addi tionne aux hétérocycles tendus du type oxyde d'éthylène ou thiirane.

$$Et_2Ge=S + \sum_{Z} - Et_2Ge$$
 (Z = 0,S)

Après 3 heures en tube scellé à 160° C, l'adduit (Ia) en présence d'un excès d'oxyde d'éthylène conduit au diéthylgerma-2 oxathiolanne-1,3 [7] (Rdt. 40%). A côté de (Et₂GeS)₃ (50%), on note la formation de diéthylgerma-2 dioxolanne-1,3 et -dithiolanne-1,3 [7] (\simeq 5% respectivement). Bien que l'origine de ces produits reste à préciser, nous pensons qu'ils proviennent de dérivés de polyinsertion de l'oxyde d'éthylène dans le cyclotrigermathiane (Et₂GeS)₃.

L'adduit Ia, dans les mêmes conditions expérimentales que précédemment, en présence de thiirane, conduit au diéthylgerma-2 dithiolanne-1,3 avec un rendement de 60% et à (Et₂GeS)₃ (40%).

Au cours de nos réactions de caractérisation de la diéthylgermathione sur Et₃GeSMe, l'oxyde d'éthylène ou le thiirane, nous observons toujours une proportion importante de (Et₂GeS)₃.

Cependant, cette proportion diminue avec le temps. Ceci suggère un équilibre entre la forme monomère Et₂Ge=S et la forme trimère (Et₂GeS)₃. Nous avons pu vérifier effectivement que (Et₂GeS)₃ réagit à 160°C avec Et₃GeSMe en excès selon le schéma réactionnel:

$$(Et_2GeS)_3 \xrightarrow{160^{\circ}C} 3 Et_2Ge=S \xrightarrow{Et_3GeSMe} \begin{bmatrix} Et \\ Et_3Ge-S-Ge-SMe \\ Et \end{bmatrix} \rightarrow (cf. le Schéma 1)$$

La formation de diéthylgermathione à partir de (Et₂GeS)₃ a également été observée en utilisant l'oxyde d'éthylène et le thiirane comme agent de piégeage. Les rendements respectifs en germaoxathiolanne et germadithiolanne sont 41 et 65% en utilisant les réactifs en quantité stoechiométrique (température de la réaction: 150°C, 2 h).

Nous signalerons pour terminer cette note préliminaire, un autre type de synthèse des germathiones. En présence d'agents de désulfuration comme la n-tributylphosphine, en quantité stoechiométrique, le diéthylgerma-2 dithiolanne-1,3 conduit à la formation d'éthylène et de diéthylgermathione Et₂Ge=S caractérisée par addition sur Et₃GeSMe. Cette réaction implique vraisemblablement la formation transitoire de germathiacyclobutane instable (du moins dans les conditions de l'expérience).

$$Et_{2}Ge \xrightarrow{S} \frac{Bu_{3}P}{140^{\circ}C} \quad Bu_{3}P(S) \quad + \quad Et_{2}Ge \xrightarrow{S}$$

$$Et_{2}Ge = S \quad + \quad C = C$$

Une réaction de 6-élimination du même type a été observée à partir de germaazetidines avec formation de germa-imine Ph-Ge=NMe [8]. En série siliciée la fo mation de R₂Si=S (R = Me, Ph) a été signalée dans une réaction de type pseudo-Wittig entre RaSi=CHa et la thiobenzophénone. PhaSi=S s'insère dans la liaison Si-O de (Me,SiO). La diméthylsilathione Me,Si=S a été essentiellement caractérisée sous forme dimère (Me2SiS)2 [6].

Bibliographie

- 1 H. Lavayssiere, J. Barrau, G. Dousse, J. Satge et M. Bouchaut, J. Organometal. Chem., 154 (1978) C9.
- 2 G. Dousse, H. Lavayssiere et J. Satgé, C.R. Acad. Sci. Paris Sér. (C), 280 (1975) 1227. 3 H. Lavayssiere, G. Dousse et J. Satgé, Helv. Chim. Acta, 59 (1976) 1009.
- 4 G. Dousse, H. Lavayssiere et J. Satgé, Helv. Chim. Acta, 59 (1976) 2961.
- 5 D. Seyferth, T.F.O. Lim et D.P. Duncan, J. Amer. Chem. Soc., 100 (1978) 626 et ref. citées.
- 6 L.H. Sommer et S. McLick, J. Organometal. Chem., 101 (1975) 171.
- 7 G. Dousse, J. Satgé et M. Riviere-Baudet, Synth. Inorg. Metalorg. Chem., 3 (1973) 11.
- 8 M. Riviere-Baudet, P. Riviere et J. Satgé, J. Organometal. Chem., 154 (1978) C23.