Journal of Organometallic Chemistry, 155 (1978) 203—206 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

HETERONUCLEARE CLUSTERSYSTEME

XIV *. DARSTELLUNG UND EIGENSCHAFTEN VON μ_3 -TRIS- $(\eta$ -CYCLOPENTADIENYL)URANOXY-METHYLIDYN-cyclo-TRIS-(TRICARBONYLKOBALT)(3Co-Co), $(CO)_9Co_3COU(\eta$ - $C_5H_5)_3$

BERND STUTTE und GÜNTER SCHMID **

Sonderforschungsbereich 127 (Kristallstruktur und Chemische Bindung) im Fachbereich Chemie der Universität Marburg/Lahn, Lahnberge, 355 Marburg (B.R.D.)

(Eingegangen den 16. März 1978)

Summary

[(CO)₉Co₃CO]Li and $(\eta$ -C₅H₅)₃UCl react to form the methylidynetricobalt nonacarbonyl cluster (CO)₉Co₃COU(η -C₅H₅)₃. This first uranium and cobalt containing organometallic compound is paramagnetic with a μ_{eff} value of 3.0 BM. The IR data show the complex to be a typical oxymethylidyne cluster compound.

Zusammenfassung

[(CO)₉Co₃CO]Li und $(\eta$ -C₅H₅)UCl reagieren zum Methylidyntrikobaltnonacarbonyl-Cluster (CO)₉Co₃COU $(\eta$ -C₅H₅)₃. Diese erste Uran und Kobalt enthaltende metallorganische Verbindung ist paramagnetisch mit einem μ_{eff} -Wert von 3.0 BM. Die IR-Daten weisen den Komplex als typischen Oxymethylidyne Cluster aus.

Die aus $Co_2(CO)_8$ und elementarem Lithium in Ether entstehenden dunkelroten Lösungen können vielfach als Überträger der Oxymethylidyngruppe $(CO)_9Co_3CO$ benutzt werden. Verbindungen wie $(CO)_9Co_3COBH_2 \cdot NEt_3$ [1], $(CO)_9Co_3COC(O)CH_3$ [2], $(CO)_9Co_3COSi(Cl)(CH_3)_2$ [1] oder $(CO)_9Co_3COM(Cl)(\eta-C_5H_5)_2$ (M = Ti, Zr, Hf) [3], die aus den jeweiligen Elementhalogeniden gebildet werden, belegen dies eindeutig. In einer Reihe anderer Fälle treten diese roten Lösungen jedoch als $[Co(CO)_4]^-$ -Spender auf. Über diese bifunk-

^{*} XIII. Teil s. Lit. [6].

^{**} Korrespondenzautor. Neue Anschrift: Fachbereich Chemie der Universität Essen, Universitätsstrasse 5-7, 4300 Essen 1 (B.R.D.)

tionellen Eigenschaften der "Li[Co₃(CO)₁₀]"-Lösungen [4] haben wir verschiedentlich berichtet [5,6].

Darstellung und Eigenschaften von (CO)₉Co₃COU(η-C₅H₅)₃

Tris(η -cyclopentadienyl)uranchlorid reagiert mit [(CO), Co₃CO]Li in Toluol bei Raumtemperatur in 65 proz. Ausbeute zu (CO), Co₃COU(η -C₅H₅)₃. Dieses bildet schwarze, luftempfindliche Kristalle, die in dünner Schicht durchscheinend rot sind. Beim Erhitzen tritt ab 170°C Zersetzung ein.

Im IR-Spektrum von (CO) $_9$ Co $_3$ COU(η -C $_5$ H $_5$) $_3$ treten neben den Schwingungen der C $_5$ H $_5$ -Ringe die für den (CO) $_9$ Co $_3$ C-Cluster typischen ν (CO)-Banden zwischen 1950 und 2100 cm $^{-1}$ auf [3]. Neben der bei höchster Frequenz gelegenen scharfen Schwingungsbande $\nu_1(a_1)$ bei 2070st cm $^{-1}$ beobachtet man 4 weitere Banden bei 2000sst, 1985st, 1970m und 1940s cm $^{-1}$ (in Nujol). Für Oxymethylidyncluster typisch ist die Schwingung der apikalen CO-Gruppe, die im (CO) $_9$ Co $_3$ COU(η -C $_5$ H $_5$) $_3$ bei 1370 cm $^{-1}$ als sehr starke Bande zu beobachten its.

Das ¹H-NMR-Spektrum in C_6D_6 zeigt nur ein einziges scharfes Singulett bei δ 3.32 ppm (tieffeld gegen TMS), was die Äquivalenz sämtlicher C_5H_5 -Ringe und ihrer Protonen beweist. Da $(\eta-C_5H_5)_3$ UCl unter gleichen Bedingungen ein Singulett bei 3.28 ppm zeigt, kann der Einfluss des Clusterrestes (CO) $_9$ Co $_3$ CO auf die C_5H_5 -Protonen als gleichartig mit demjenigen des Chlors angesehen werden *.

Magnetische Suszeptibilitätsmessungen weisen $(CO)_9Co_3COU(\eta-C_5H_5)_3$ mit $\mu_{eff}(293 \text{ K})$ 3.0 BM als paramagnetischen Komplex aus, der 2 ungepaarte Elektronen aufweist, was formal Uran(IV) entspricht. In Fig. 1 und 2 sind die Temperaturabhängigkeiten von $1/\chi_m$ und μ_{eff} dargestellt.

Da die $1/\chi_m$ vs. T-Kurve bei ca. 110 K ihre Linearität verliert, erlaubt sie keine eindeutige Extrapolation, so dass ein θ -Wert nicht ermittelt werden kann. Die effektiven magnetischen Momente wurden nach $\mu_{\rm eff}=2.84\sqrt{\chi_mT}$ berechnet. Der ermittelte $\mu_{\rm eff}$ -Wert bei Raumtemperatur stimmt mit dem theoretisch zu erwartenden spin-only-Wert von 2.83 BM sowie mit Literaturdaten verwandter $(\eta$ -C₅H₅)₃U-Verbindungen [8,9] gut überein. Auch die $\mu_{\rm eff}/T$ -Kurve zeigt in ihrem Verlauf gute Übereinstimmung mit Literaturangaben, z.B. für $(C_5H_5)_3$ UCN [10] oder $(C_5H_5)_4$ U [11]. Die Summe der Ergebnisse erlaubt den in Fig. 3 wiedergegebenen Strukturvorschlag für $(CO)_9CO_3$ -COU $(\eta$ -C₅H₅)₃.

Das Uran ist tetraedrisch von 3 C₅H₅-Ringen (Mittelpunkte) und dem Clusterrest (CO)₉Co₃CO umgeben. Dieser gleicht nach den vorliegenden Daten vollständig denen in anderen Oxymethylidynclustern des Typs (CO)₉Co₃COR [2,3,12].

^{*} Aus der von Fischer et al. für $(\eta-C_5H_5)_3$ UCl gefundenen chem. Verschiebung von δ 9.56 ppm [7] in C_6H_6 gegenüber $(\eta-C_5H_5)_3$ ThCl errechnet sich eine chem. Verschiebung gegen TMS von 3.36 ppm, in guter Übereinstimmung mit dem von uns ermittelten Wert.

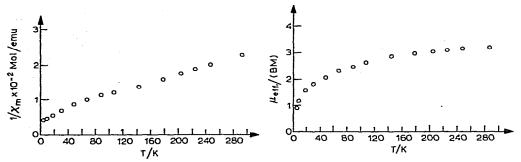


Fig. 1. Temperaturabhängigkeit der reziproken Molsuszeptibilität χ_m von (CO) $_9$ Co $_3$ COU(η -C $_5$ H $_5$) $_3$.

Fig. 2. Temperaturabhängigkeit des effektiven magnetischen Moments $\mu_{\rm eff}$ von (CO)₉Co₃COU(η -C₅H₅)₃.

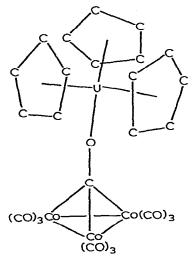


Fig. 3. Strukturvorschlag für (CO)₉Co₃COU(η-C₅H₅)₃.

Experimentelles

 $(C_5H_5)_3$ UCl wurde nach Literaturvorschrift aus UCl₄ und TlC₅H₅ synthetisiert [13]. UCl₄ konnte ebenfalls nach Literaturangaben aus UO₂(NO₃)₂ · 6 H₂O über UO₄ · 2 H₂O und UO₃ erhalten werden [14—16]. Etherische Lösungen von [(CO)₉Co₃CO]Li bilden sich aus Co₂(CO)₈ und Lithium [4].

Das IR-Spektrum wurde mit einem Perkin—Elmer-Spektrophotometer 457, das ¹H-NMR-Spektrum mit einem Varian T 60-Gerät aufgenommen. Die magnetischen Suszeptibilitätsmessungen zwischen 5 K und 293 K erfolgten an einem Foner-vibrating-sample-magnetometer der Firma Princeton Applied Research. Sämtliche Versuche wurden unter Reinststickstoff und in absolutierten Lösungsmitteln vorgenommen.

Darstellung von $(CO)_9Co_3COU(\eta-C_5H_5)_3$

Zu einer Lösung von ca. 4.18 mMol [(CO)₉Co₃CO]Li in 300 ml Toluol wird unter Rühren bei Raumtemperatur eine Lösung/Suspension von 1.94 g

 $(C_5H_5)_3$ UCl (4.14 mMol) in 100 ml Toluol innerhalb von 5 Stunden zugetropft. Nach weiterem 24-stündigem Rühren wird auf 50°C erwärmt und die dunkelrote Lösung vom grau-grünen Rückstand (0.55 g) abgefrittet. Durch dreitägiges Abkühlen der Reaktionslösung auf -25°C kristallisieren 1.65 g (CO) $_9$ Co $_3$ COU- $(\eta$ -C $_5H_5)_3$ in schwarzen Kristallen aus. Durch Einengen der Mutterlauge auf 150 ml und erneutes Abkühlen auf -25°C können weitere 0.74 g des Komplexes erhalten werden. Gesamtausbeute: 2.39 g (64.9%, bezogen auf eingesetztes $(C_5H_5)_3$ UCl). (Gef.: C, 34.37; H, 1.50; Co, 19.58; U, 26.60. $C_{25}H_{15}$ Co $_3$ O $_{10}$ U ber.: C, 33.73; H, 1.70; Co, 19.86; U, 26.74%. Mol.-Gew. osmometr. in THF: gef.: 939; ber.: 890.2.)

Dank

Unser Dank gilt der Deutschen Forschungsgemeinschaft und dem "Fonds der Chemischen Industrie" für die finanzielle Unterstützung. Herrn Dr. P. Köhler danken wir für die Durchführung der magnetischen Suszeptibilitätsmessungen.

Literatur

- 1 C.D.M. Mann, A.J. Cleland, S.A. Fieldhouse, B.H. Freeland und R.J. O'Brien, J. Organometal. Chem., 24 (1970) C61.
- 2 V. Bätzel und G. Schmid, Chem. Ber., 109 (1976) 3339.
- 3 B. Stutte, V. Bätzel, R. Boese und G. Schmid, Chem. Ber., 111 (1978) 1603.
- 4 S.A. Fieldhouse, B.H. Freeland, C.M.D. Mann und R.J. O'Brien, J. Chem. Soc. D, (1970) 181.
- 5 G. Schmid, K. Bartl und R. Boese, Z. Naturforsch. B, 32 (1977) 1277.
- 6 J.C. Burt, R. Boese und G. Schmid, J. Chem. Soc. (Dalton), im Druck.
- 7 R. v. Ammon, B. Kanellakopulos, R.D. Fischer und P. Laubereau, Inorg. Nucl. Chem. Lett., 5 (1969) 315.
- 8 A.E. Gebala und M. Tsutsui, Chem. Lett., (1972) 775.
- 9 B. Kanellakopulos und K.W. Bagnall, MTP International Review of Science, Inorganic Chemistry, Ser. 1, Vol. 7, Butterworths, London, Univ. Park Press, Baltimore, 1972, S. 299.
- 10 H.D. Amberger, R.D. Fischer und B. Kanellakopulos, Z. Naturforsch. B, 31 (1976) 12.
- 11 B. Kanellakopulos, E. Dornberger und H. Billich, J. Organometal. Chem., 76 (1974) C42.
- 12 G. Schmid, V. Bätzel und B. Stutte, J. Organometal. Chem., 113 (1976) 67.
- 13 T.J. Marks, A.M. Seyam und W.A. Watcher, Inorg. Syn., 16 (1976) 147.
- 14 P.W. Wilson, Syn. Inorg. Metal. Org. Chem., 3 (1973) 381.
- 15 J. Selbin, J.D. Ortego und G. Gritzner, Inorg. Chem., 7 (1968) 976.
- 16 J.A. Hermann und J.F. Suttle, Inorg. Syn., 5 (1957) 143.