Journal of Organometallic Chemistry, 194 (1980) 317-324 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

DARSTELLUNG UND MOLEKÜLSTRUKTUR EINER NEUARTIGEN σ -ALKYL/ π -OXOALLYL-TANTAL-VERBINDUNG

ERNST GUGGOLZ, MANFRED L. ZIEGLER,

Anorganisch-chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-6900 Heidelberg 1 (Deutschland)

HELMUT BIERSACK und WOLFGANG A. HERRMANN *

Institut für Chemie der Universität Regensburg, Universitätsstrasse 31, D-8400 Regensburg 1 (Deutschland)

(Eingegangen den 1. Februar 1980)

Summary

The novel tantalum compound $(\eta^5-C_5H_5)$ Ta $[O\cdots C(CH_3)\cdots CHC(CH_3)_2]Cl_2$ has been synthesized by reductive high-pressure carbonylation of $(\eta^5-C_5H_5)$ Ta Cl_4 and subsequent treatment of the reactive intermediate with mesityl oxide. The σ -alkyl/ π -oxoallyl coordination of the oxo ligand has been established by means of X-ray diffraction methods.

Zusammenfassung

Die neuartige Tantal-Verbindung (η^5 -C₅H₅)Ta[O:::C(CH₃):::CHC(CH₃)₂]Cl₂ wurde durch reduktive Hochdruckcarbonylierung von (η^5 -C₅H₅)TaCl₄ und nachfolgende Umsetzung des reaktiven Zwischenkomplexes mit Mesityloxid dargestellt. Die σ -Alkyl/ π -Oxoalkyl-Koordination des Oxo-Liganden ist durch eine Röntgenstrukturanalyse dokumentiert.

Die reduktive Hochdruckcarbonylierung der auf einfache Weise und in grossen Mengen darstellbaren Cyclopentadienyl—Niob-Verbindungen (η^5 - C_5H_5)₂NbCl₂ und (η^5 - C_5H_5)NbCl₄ hat sich als ergiebige Methode zur Synthese des bisher nur schwer zugänglichen Halbsandwich-Komplexes Tetracarbonyl-(η^5 -cyclopentadienyl)niob im 5—35 g-Massstab erwiesen [1,2]. Beim Versuch, dieses Verfahren für die Darstellung der homologen Tantal-Verbindung (η^5 - C_5H_5)Ta(CO)₄ zu nutzen, zeigte der Stammkomplex (η^5 - C_5H_5)TaCl₄ (I) unter vergleichbaren Reaktionsbedingungen eine vom Niob-System [1—3] völlig abweichende Chemie. Wir berichten deshalb jetzt über die Synthese und Mole-

külstruktur einer neuartigen Tantal-Verbindung, die wir im Zusammenhang mit unseren Versuchen zur Hochdruckcarbonylierung von Cyclopentadienyl—Tantal-Komplexen aufgefunden haben.

A. Präparative Ergebnisse

Ist (η⁵-C₅H₅)Nb(CO)₄ noch in Ausbeuten bis 94% aus (η⁵-C₅H₅)NbCl₄ zugänglich [2], so bildet sich (η⁵-C₅H₅)Ta(CO)₄ aus I unter den Bedingungen einer reduzierenden Druckcarbonylierung zu maximal 7% (360 bar CO, 80—170°C, Na/Cu/Al, THF/Benzol). Daneben tritt als Ergebnis einer Cyclopentadienyl-Übertragung der Carbonyl-Komplex (η⁵-C₅H₅)₂Ta(CO)Cl auf, der unter modifizierten Reaktionsbedingungen zu 28% entsteht.

Als Hauptprodukt wird ein carbonylhaltiger, in Substanz nicht isolierbarer Tantal-Komplex der vermutlichen Zusammensetzung (η^5 -C $_5$ H $_5$)Ta(CO) $_x$ Cl $_y$ gebildet (ν (CO) [THF]: 2010st-sst, 1939sst, 1908sst cm $^{-1}$), der sich durch eine hohe Reaktivität gegenüber α,β -ungesättigten Ketonen auszeichnet und auf diesem Wege in Derivate definierter Stöchiometrie überführbar ist: So ergibt die Umsetzung mit Mesityloxid (2-Methyl-2-penten-4-on) bei Raumtemperatur nach Gleichung 1 unter Carbonyl-Substitution den im kristallinen Zustand längere

$$(\eta^{5}-C_{5}H_{5})$$
 TaCl₄ $\frac{\cdot co (370 \text{ bar})}{\cdot N_{6}/C_{6}H_{6}/THF}$... $(\eta^{5}-C_{5}H_{5})$ Ta(CO)_xCl_y" $\frac{H_{3}c-c}{\cdot H_{5}}$ (1)

(1)

Zeit luftstabilen Tantal-Komplex II, der elementaranalytisch und anhand seiner IR-, ¹H-NMR, ¹³C-NMR-Spektren sowie der niedrig- und hochaufgelösten Massenspektren charakterisiert ist (Tab. 1 und 2). Da die Konstitution der auf überraschend einfache Weise entstandenen Komplexverbindung spektroskopisch nicht geklärt werden konnte, führten wir eine Kristallstrukturanalyse durch (Fig. 1, Tab. 3 und 4).

Wie die bevorzugte Bildung chlorhaltiger Produkte beweist, lässt sich (η^5 - C_5H_5)TaCl₄ (I) im Gegensatz zur homologen Niob-Verbindung nur in untergeordnetem Masse zur Ta^I-Stufe reduzieren und eignet sich somit nicht zur rationellen Synthese des Halbsandwich-Komplexes (η^5 - C_5H_5)Ta(CO)₄. Auffälligerweise tritt unter den Produkten der in Tetrahydrofuran durchgeführten Druckcarbonylierung von I als Ergebnis einer Cyclopentadienyl-Übertragung

TABELLE 1

SPEKTROSKOPISCHE DATEN DER TANTAL-VERBINDUNG II

¹H-NMR (CDCl₃; int. TMS; +33°C; Varian T60-A): $(C_5\underline{H}_5)$ 3.47 [s, 5 H], $\tau(C\underline{H})$ 4.17 [s, 1 H], $\tau(C(1)$ $\underline{H}_3)$ 8.19 [s, 3 H], $\tau(C(5)$ $\underline{H}_3)$ und $\tau(C(6)$ $\underline{H}_3)$ 7.45 [s, 3 H] bzw. 7.68 [s, 3 H] (Signalzuordnung durch Spektrenvergleich mit Mesityloxid).

 ${^{1}H}_{-}^{13}$ C-NMR (CDCl₃; int. TMS; +33°C; Bruker WH-90): $\delta(\underline{C}_{5}H_{5})$ 115.65; $\delta(\underline{C}H)$ 112.06; $\delta(\underline{C}H_{3})$ 17.35, 28.37, 32.66; $\delta(\underline{TaC}(4))$ 152.77; $\delta(C(2))$ 84.08 (Signalzuordnung durch off-resonance-Teilent-kopplung).

IR (ausgewählte Banden; KBr; cm $^{-1}$; Beckman 4240; Datenkoppler 4060-A); 1541m (ν (CO)); 3122m, 3110(Sch), 3004s-m, 2935s-m, 2874m (ν (CH)); 1435m-st, 1089m-st, 866st, 846sst (C₅H₅-Normal-schwingungen).

Massenspektrum (Varian MAT CH5; 70 eV, 300 μ A, T_Q 120°C, T_E 90°C): M^{+} (m/e 414 bzgl. 35 Cl, 181 Ta; rel. Int. 58%), CpTaCl₂(OH) $^{+}$ (333; 48), CpTaCl₂ $^{+}$ (316; 100), OpTa(Cl)O $^{+}$ (297; 18), C₃H₃TaCl₂ $^{+}$ (290; 15), C₆H₁₀ (82; 100), C₅H₇ $^{+}$ (67; >100).

TABELLE 2 ${\tt AUSZUG~AUS~DEM~HOCHAUFGEL\"{O}STEN~MASSENSPEKTRUM~VON~II}~^a$

m/e	gef.	ber.	ΔmM	(ppm)	Summenformel
414	413.99715	413.99802	-0.87	(2.1)	$C_{11}H_{15}^{35}Cl_{2}O^{181}Ta$ $C_{5}H_{6}^{35}Cl_{2}O^{181}Ta$
333	332.92741	332.92760	-0.18	(0.5)	C5H635Cl2O181Ta
316	315.92489	315.92486	+0.03	(0.9)	C ₅ H ₅ ³⁵ Cl ¹⁸¹ Ta
82	82.07853	82.07825	+0.28	(3.4)	С ₆ H ₁₀
67	67.05465	67.05477	-0.12	(1.7)	C ₅ H ₇

^a Varian MAT 311-A.

die Bis(cyclopentadienyl)-Verbindung (η^5 -C₅H₅)₂Ta(CO)Cl (III) in immerhin 28% Ausbeute auf, die auch durch Reduktion des schwerer zugänglichen (η^5 -C₅H₅)₂TaCl₂ mit Natrium in CO-Atmosphäre entsteht [4]. Wegen der Schwerflüchtigkeit sowie der schlechten Löslichkeit des als "(η^5 -C₅H₅)TaCl_x(CO)_y" formulierten Primärprodukts (s.o.) gelang dessen eindeutige Charakterisierung nicht; es enthält als Hauptkomponente möglicherweise solvat-stabilisiertes (η^5 -C₅H₅)TaCl₂(CO)₂, das von Schrock et al. als Produkt der Normaldruckcarbonylierung von (η^5 -C₅H₅)₂Cl₂TaCH₂CH₂CH₂CH₂CH₂ angenommen wird, aber auch dort noch nicht analytisch und spektroskopisch einwandfrei gesichert ist [5,15] *. Da die Bildung von II bei Durchführung der Druck-Carbonylierung in Benzol anstelle von Benzol/Tetrahydrofuran ausbleibt, scheint der Sauerstoffligand eine entscheidende, wahrscheinlich produktstabilisierende Funktion zu erfüllen.

B. Molekülstruktur von Dichloro(η^5 -cyclopentadienyl)[{(2-oxo-4-methylpenten(3)} (C^2 , C^3 , C^4 , O)]tantal (II)

Der Tantal-Komplex II kristallisiert aus Diethylether (-20° C) monoklin in der Raumgruppe C_{2h}^5 - $P2_1/c$ mit a 824.41(194) pm, b = 1483.39(67) pm, c 1362.98(312) pm und β 130.02(11)°; Z = 4; $d_{r\"{o}ntg}$. 2.15 g cm⁻³. Es wurden 2737 unabhängige von Null verschiedene Reflexe im Bereich 61.99° $\geq 2\theta \geq$

TABELLE 3
AUSGEWÄHLTE STRUKTURPARAMETER DER TANTAL-VERBINDUNG II

Bindungslängen (p	om)	Winkel (°)	Winkel (°)		
Ta-Cl(1)	238.8(3)	Cl(1)—Ta—Cl(2)	84.18(16)		
Ta-Cl(2)	244.0(6)	Cl(1)—Ta—O	143.70(26)		
Та-О	200.5(6)	Cl(2)—Ta—C(4)	138.45(37)		
Ta-C(2)	239.0(12)	Cl(2)—Ta—O	87.05(35)		
Ta-C(3)	242.0(13)	Cl(1)—Ta—C(4)	86.84(32)		
Ta-C(4)	226.2(15)	TaO-C(2)	87.96(56)		
Ta-C(7)	239.6(19)	C(4)—C(3)—C(2)	117.7(12)		
Ta-C(8)	240.0(13)	O-C(2)-C(3)	116.3(13)		
Ta-C(9)	241.1(14)	O-C(2)-C(1)	117.5(11)		
Ta-C(10)	243.8(14)	C(8)-C(7)-C(11)	108.8(17)		
Ta-C(11)	242.0(23)	C(9)-C(8)-C(7)	110.0(15)		
C(3)-C(2)	135.8(16)	C(10-C(9)-C(8)	106.6(20)		
C(2)-O	138.0(16)	C(11)-C(10)-C(9)	109.0(13)		
C(2)-C(1)	153.4(25)	C(10)-C(11)-C(7)	105.5(20)		
C(7)-C(8)	137.9(35)	Ta-C(4)-C(5)	122.1(10)		
C(8)-C(9)	141.7(20)	Ta-C(4)-C(3)	77.4(9)		
C(9)-C(10)	140.2(29)	Ta-C(4)-C(6)	114.9(8)		
C(10)-C(11)	145.1(35)	C(5)-C(4)-C(3)	113.3(11)		
C(11)C(7)	142.7(19)	C(5)-C(4)-C(6)	110.1(15)		
C(5)-C(4)	155.0(14)	C(3)-C(4)-C(6)	115.6(10)		
C(4)-C(3)	149.0(21)	,			
C(4)-C(6)	154.7(26)				

 4.77° mit einem automatischen Einkristalldiffraktometer (Siemens) aufgenommen und in der üblichen Weise korrigiert. $R_{\rm isotrop} = 0.089$, $R_{\rm anisotrop} = 0.042$. Ausgewählte Bindungsparameter finden sich in Tab. 3, die Lageparameter in Tab. 4*.

Wie Fig. 1 und Tab. 3 zeigen, besitzt II ein nur wenig verzerrtes quadratischpyramidales Strukturgerüst, wenn nur der an der Spitze dieses Koordinationspolyeders befindliche, zentrisch gebundene, praktisch planare CyclopentadienylRing, die Chlor-Liganden sowie die beiden endständig koordinierten Atome des
Oxoliganden [C(4) bzw. O] betrachtet werden. Wegen der *cis*-Positionen der beiden Cl-Liganden müsste II hiernach dem von Brunner et al. beschriebenen
chiralen Verbindungstyp (η^5 -C₅H₅)M(L—L')(L")₂ [6] zugerechnet werden,
dessen Metallzentrum ein Asymmetriezentrum repräsentiert. Wie die Bindungsparameter des im Gegensatz zu dem von uns synthetisierten und strukturell aufgeklärten planaren Fünfring-Cobaltacyclus (η^5 -C₅H₅)Co[O—C(OEt)—C(CO₂Et)—C=O](CO) [10,11] zeigen, weisen neben der ursprünglich erwarteten
Metallkoordination der Ligandatome C(4) und O auch die übrigen GerüstKohlenstoffatome C(2) und C(3) kurze Abstände zum Tantal-Atom auf (Tab. 3).

Obwohl nur verhältnismässig wenig Vergleichsdaten über Organotantal-Verbindungen bekannt sind, ist die Strukturchemie des Oxo-Liganden in II eindeutig in zwei Anteile auftrennbar:

1. Der Ta—C(4)-Abstand (226.2 pm) fällt in den Bereich der authentischen Ta—C(sp^3)-Distanzen, die für (η^5 -C₅H₅)₂Ta(=CH₂)(CH₃) zu 224.6(12) pm [7]

^{*} Vollständige Listen der Strukturfaktoren sowie der thermischen Parameter stehen auf Wunsch zur Verfügung (M.L.Z.).

TABELLE 4
LAGEPARAMETER (T2 × 10 ⁵ ; Cl, C, O × 10 ⁴) IN BRUCHTEILEN DER ZELLKONSTANTEN ^a

	x/a	x/b	x/c	
Ta	62885(7)	19185(3)	18564(4)	
Cl(1)	3838(6)	1518(3)	-0358(3)	
Cl(2)	8885(6)	1895(4)	1541(4)	
C(1)	0057(23)	0063(12)	3394(17)	
C(2)	8176(19)	0593(9)	3079(12)	
C(3)	6110(18)	0342(8)	2237(12)	
C(4)	4532(17)	0924(7)	2132(12)	
C(5)	2205(19)	0649(9)	1021(14)	
C(6)	4879(23)	1048(10)	3382(13)	
C(7)	6437(24)	3073(10)	3142(15)	
C(8)	7475(25)	3408(9)	2734(15)	
C(9)	6036(25)	3503(10)	1383(13)	
C(10)	4037(25)	3254(9)	0964(16)	
C(11)	4252(26)	2957(9)	2057(18)	
o	8583(11)	1437(4)	3621(7)	

 $[^]a$ Die in Klammern angegebenen Standardabweichungen beziehen sich jeweils auf die letzte(n) Ziffer(n).

und für $(\eta^5\text{-}C_5H_5)_2\text{Ta}[=\text{CH}(C_6H_5)][\text{CH}_2(C_6H_5)]$ zu 230(1) pm gefunden wurden [8], und ist noch signifikant länger als die kürzesten bisher gemessenen Ta—C- (sp^3) -Abstände (durchschnittlich 223 pm in Ta(CH $_2\text{CMe}_3$) $_3$ (\equiv C—CMe $_3$)[Li-(dmp)] [9a] bzw. im Tantalacyclus (η^5 -C $_5\text{Me}_5$)TaCl $_2$ (C $_4H_8$) [9b]). Hiermit im Einklang ist C(4) aufgrund der betreffenden Bindungswinkel verzerrt tetraedrisch konfiguriert und unter zusätzlicher Berücksichtigung des auffallend langen C(4)—C(3)-Abstands (149.0(21) pm) zweifelsfrei als ein im wesent-



Fig. 1. ORTEP-Darstellung von Dichloro(η^5 -cyclopentadienyl)[{2-oxo-4-methylpenten-3 } (C^2 , C^3 , C^4 , O)]tantal (II) (links). Die Detaildarstellung rechts zeigt den Oxoallyltantal-Baustein. Die thermischen Schwingungsellipsoide entsprechen 50% Wahrscheinlichkeit.

lichen sp^3 -hybridisiertes, metallgebundenes Kohlenstoffatom ausgewiesen (vgl. d[C(4)-C(6)] 154.7(26) pm). Die Ta- $C(sp^2)$ -Abstände in den Carben-Komplexen (η^5 - C_5H_5)₂Ta(= CH_2)(CH_3) (202.6(10) pm [7] sowie (η^5 - C_5H_5)₂Ta[C-(H)CMe₃]Cl (203.0(6) pm [9c]) sind demgegenüber erheblich kürzer als die für II gefundene Ta-C(4)-Bindungslänge (Tab. 3).

2. Gegenüber der C(3)-C(4)-Bindung, die den Oxo-Liganden in zwei komplexchemisch unterschiedliche Struktureinheiten trennt, sind die Abstände C(2)—C(3) sowie C(2)—O stark verkürzt (135.8(16) bzw. 138.0(16) pm); beide Bindungen weisen also einen erheblichen Zweifachbindungscharakter auf, der sich IR-spektroskopisch anhand einer $\nu(CO)$ -Absorption bei 1541 cm⁻¹ [KBr] ausweist (Tab. 1). Auch durch die kurzen Abstände der drei zueinander benachbarten Ligandatome C(3), C(2) und O zum Metallzentrum ist die π -allylartige Koordination dieses Strukturelements belegt, was eine alternativ denkbare Formulierung von II als Tantalacyclus zwingend ausschliesst. Aus den Bindungswinkeln folgt ferner, dass das Fünfring-System Ta, C(4), C(3), C(2), O nicht planar sondern um den C(4)...O-Vektor nach unten geknickt ist (Ta, C(3), C(2)). Die Atome C(4), C(3), C(2) und O liegen zwar in einer Ebene (maximale Abweichung 4 pm), die Ebenen Ta, C(4), O sowie C(4), C(3), C(2), O bilden jedoch einen Diederwinkel von 77.1°. Auch C(1) und das am C(3) gebundene H-Atom liegen annähernd in der C(4), C(3), C(2), O-Ebene; hier beträgt die maximale Abweichung jedoch schon 18 pm (H) bzw. 16 pm (O). In der wannenartigen Anordnung des Fünfring-Systems bilden die Ebenen Ta, C(4), C(3) bzw. Ta, O, C(2) einen Winkel von 86.2°.

Experimenteller Teil

Für die Darstellung der Tantal-Verbindung II sowie deren Vorstufen (η^5 - C_5H_5)TaCl₄ (I) [12,13] bzw. (η^1 - C_5H_5)Sn(n-C₄H₉)₃ [13] gelten sinngemäss die Vorbemerkungen zum Experimentellen Teil von Ref. 2. Die Hochdruckcarbonylierung von I wurde in senkrechtstehenden 500 ml-Rührautoklaven aus CrNiMo-Stahl durchgeführt (Fa. Ernst Haage, Mülheim/Ruhr), die mit stopfbuchslosen, wassergekühlten Permanentmagnet-Rührwerken ausgerüstet waren (Mischkreisel-Rührkopf, max. 2000 Upm). Die Elementaranalysen wurden im Institut für Chemie der Universität Regensburg und in den Mikroanalytischen Laboratorien, vorm. A. Bernhardt, Gummersbach/Elbach, durchgeführt.

Dichloro(η^5 -cyclopentadienyl)[{(2-oxo-4-methylpenten(3)} (C^2 , C^3 , C^4 , O)]-tantal (II):

In einem trockenen 0.5 l-Rührautoklaven wird unter Argon-Atmosphäre eine Suspension von 3–4 g (0.13–0.17 gatom) feinem Natrium-Sand, ca. 1 g Kupfer-Pulver (Korngrösse ca. 0.04 mm; Riedel de Haen) und ca. 1 g Aluminium-Staub in einem Gemisch aus 100 ml Tetrahydrofuran und 150 ml Benzol vorgelegt und dann mit 14.4 g (37.1 mmol) (η^5 -C₅H₅)TaCl₄ (I) versetzt. Das Drucksystem wird sodann dicht verschlossen, mit 100 bar CO gespült und anschliessend mit einem Anfangsdruck von 370 bar CO belastet (≈ 5300 p.s.i.; Sättigungskaltdruck). Unter kräftigem Rühren (ca. 1000 Upm) steigert man die Reaktionstemperatur innerhalb von 2–3 h auf 70–80°C (Innentemperatur) und lässt unter diesen Bedingungen (max. Betriebsdruck 430 bar) noch 60–70 h rühren. Nach

dem Abkühlen des Autoklaven auf Raumtemperatur (ca. 8 h, Enddruck ca. 340 bar/25°C) brennt man unverbrauchtes Reaktionsgas vorsichtig ab und überführt den dunkelbraunen Autoklaveninhalt (Suspension!) im Argon-Gegenstrom in einen 500 ml-Kolben. Die Suspension filtriert man über eine mit trockener Filterwatte belegte D3-Fritte *, setzt dem Filtrat 20 ml Mesityloxid (Merck, z. Synth.) zu und engt anschliessend im Wasserstrahlvakuum ein. Hierbei erhält man ein rotbraunes, violettstichiges, öliges Rohprodukt, das über eine wassergekühlte, mit Kieselgel/n-Pentan gefüllte Säule (SiO₂ 0.063-0.200 mm; Akt. II-III; 20 × 3.5 cm) filtriert wird. Dabei wird das Rohprodukt als benzolische Lösung aufgetragen; mit Benzol eluiert man das unter den Bedingungen dieser Reaktion in geringen Mengen entstandene (η^5 -C₅H₅)Ta(CO)₄ ($\leq 3\%$; orangefarbene, rasch wandernde Zone). Mit ca. 250 ml Aceton eluiert man anschliessend den Tantal-Komplex II in einer violetten Zone. Es empfiehlt sich, das Produkt II vor der abschliessenden Kristallisation aus Diethylether/Methylenchlorid (30/1; $-35/-78^{\circ}$ C) erneut an Kieselgel 60 (Akt. I; Säule 50×1.6 cm) mit Diethylether als Laufmittel zu chromatographieren. Die bei der Kristallisation anfallenden tiefvioletten, metallisch glänzenden rautenförmigen Kristalle sind nach dem Waschen mit n-Pentan sowie kurzzeitiger Trocknung im Hochvakuum analysenrein. II sintert in der abgeschmolzenen Kapillare ab 80°C und zersetzt sich schlagartig bei 131°C. Luft- und hydrolysestabile Kristalle. Unlöslich in aliphatischen Kohlenwasserstoffen, mässig löslich in Diethylether, gut bis sehr gut löslich in Methylenchlorid, Tetrahydrofuran und Aceton; die violetten Lösungen sind kurzzeitig an Luft stabil, zersetzen sich aber bei längerer Einwirkung von Luftsauerstoff allmählich. Ausb. 3.7 g (24%, bez. auf I). Gef.: C, 31.64; H, 3.61; Cl, 17.08; Ta, 43.44. $C_{11}H_{15}Cl_{7}OTa$ (415.09) ber.: C, 31.83; H, 3.64; Cl, 17.08; Ta, 43.59%. Molmasse 414 (dampfdruckosmometrisch in Chloroform)

Wird die Hochdruckcarbonylierung von $(\eta^5-C_5H_5)$ TaCl₄ (I) in Tetrahydrofuran unter sonst gleichen Reaktionsbedingungen (s.o.) ohne nachfolgenden Zusatz von Mesityloxid zum Rohprodukt durchgeführt, so lässt sich durch Säulenchromatographie (η^5 -C₅H₅), Ta(CO)Cl (III) gewinnen. Hierzu wird der beim Einengen des filtrierten Autoklaveninhalts erhaltene Rückstand an Kieselgel $(0.063-0.200 \text{ mm}; \text{Akt. II-III}; 20 \times 3.5 \text{ cm}; +15^{\circ}\text{C})$ chromatographiert, wobei man zuerst 840 mg (6.3%) (η^5 -C₅H₅)Ta(CO)₄ mit Benzol in einer orangefarbenen, rasch wandernden Zone abtrennt. Mit Aceton als Elutionsmittel folgt die olivgrüne Zone von (η^5 -C₅H₅)₂Ta(CO)Cl (III), das nach dem Abdampfen des Lösungsmittels im Wasserstrahlvakuum aus Aceton/Diethylether oder Aceton/Methylenchlorid (-35°C) umkristallisiert wird. Ausb. 3.9 g (28%). Olivfarbene bis braunschwarze Kristalle, die in polaren organischen Solventien gut löslich sind. Langsame Zers. ab. ca. 130° C. IR (ν (CO); cm⁻¹): 1911sst [CH₂Cl₂]; 1905st-sst, 1885sst [KBr]. ${}^{1}H$ - ${}^{13}C$ -NMR (int. TMS; $+40^{\circ}C$; 0.9 M in CD₂Cl₂ mit 0.07 M Cr(acac)₃): $\delta(C_5H_5)$ 93.93, $\delta(CO)$ 246.62. ¹H-NMR(Aceton- d_6 , int. TMS; $+33^{\circ}$ C): τ (C₅H₅) 4.57 (Singulett). Gef. C, 35.32; H, 2.73; Cl, 9.55; Ta, 48.24. $C_{11}H_{10}ClOTa$ (374.60) ber.: C, 35.27; H, 2.69; Cl, 9.46; Ta, 48.30%. Molmasse 374 (bzgl. ³⁵Cl; massenspektrometrisch).

(η⁵-C₅H₅)Ta(CO)₄ wurde elementaranalytisch (C, H) und anhand seiner ¹H-

^{*} Vorsicht beim Reinigen der Fritte, da der Filterrückstand noch Natrium-Staub enthält!

NMR-, IR- und Massenspektren charakterisiert, die mit den Daten einer authentischen Probe [14] übereinstimmten. Höhere Ausbeuten als 7% liessen sich für $(\eta^5\text{-}C_5H_5)\text{Ta}(\text{CO})_4$ auch durch Optimierungsversuche nicht erzielen (Temperaturbereich 50–180°C; Lösungsmittel: Benzol, Benzol/THF, THF, Dioxan, Toluol; Druckbereich: 270–480 bar CO; Reduktionsmittel: Zn, Zn/Cu, Devarda-Legierung, Zn/Na/Al/Cu; Reaktionszeiten: 8–150 h). II bildet sich nicht bei der Umsetzung von I mit Na/Cu/Al (s.o.) in Abwesenheit von Kohlenmonoxid unter sonst gleichen Bedingungen.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Hoechst AG für die grosszügige Unterstützung dieser Arbeit durch Sach- und Personalmittel. Herr Dr. K.K. Mayer und Herr E. Fischer seien für die Aufnahme der niedrig- und hochaufgelösten Massenspektren, Herr Dr. Th. Burgemeister für die Aufnahme der Kernresonanzspektren herzlich bedankt.

Literatur

- 1 W.A. Herrmann und H. Biersack, Chem. Ber., 112 (1979) 3942.
- 2 W.A. Herrmann und H. Biersack, J. Organometal. Chem., 191 (1980) 397.
- 3 W.A. Herrmann, M.L. Ziegler, K. Weidenhammer und H. Biersack, Angew. Chem., 91 (1979) 1026; Angew. Chem. Internat. Edit. Engl., 18 (1979) 960.
- 4 A.H. Klazinga und J.H. Teuben, J. Organometal. Chem., 165 (1979) 31.
- 5 S.J. McLain, C.D. Wood und R.R. Schrock, J. Amer. Chem. Soc., 99 (1977) 3519.
- 6 (a) I. Bernal, S.J. LaPlaca, J. Korp, H. Brunner und W.A. Herrmann, Inorg. Chem., 17 (1978) 382; (b) Übersicht: H. Brunner, Top. Curr. Chem., 56 (1975) 67.
- 7 L.J. Guggenberger und R.R. Schrock, J. Amer. Chem. Soc., 97 (1975) 6578.
- 8 R.R. Schrock, L.W. Messerle, C.D. Wood und L.J. Guggenberger, J. Amer. Chem. Soc., 100 (1978)
- 9 (a) L.J. Guggenberger und R.R. Schrock, J. Amer. Chem. Soc., 97 (1975) 2935; (b) M.R. Churchill und W.J. Youngs, J. Amer. Chem. Soc., 101 (1979) 6462; (c) M.R. Churchill, F.J. Hollander und R.R. Schrock, J. Amer. Chem. Soc., 100 (1978) 647; M.R. Churchill und F.J. Hollander, Inorg. Chem., 17 (1978) 1957
- 10 M.L. Ziegler, K. Weidenhammer und W.A. Herrmann, Angew. Chem., 89 (1977) 557; Angew. Chem. Internat. Edit. Engl., 16 (1977) 555.
- 11 W.A. Herrmann, I. Steffl, M.L. Ziegler und K. Weidenhammer, Chem. Ber., 112 (1979) 1731.
- 12 M.L.H. Green, persönliche Mitteilung; vgl. M.J. Bunker, A. DeCian und M.L.H. Green, J. Chem. Soc. Chem. Commun., (1977) 59.
- 13 W.P. Fehlhammer, W.A. Herrmann und K. Öfele, Metallorganische Komplexverbindungen, in G. Brauer (Herausgeber), Handbuch der präparativen anorganischen Chemie. 3. Auflage, Band 3, Ferdinand Enke Verlag, Stuttgart, im Erscheinen.
- 14 R.P.M. Werner, A.H. Filbey und S.A. Manastyrskyj, Inorg. Chem., 3 (1964) 298; K.N. Anisimov, N.E. Kolobova und A.A. Pasynskii, Izv. Akad. Nauk SSSR, Ser. Khim., (1969) 2238; vgl. Bull. Acad. Sci. USSR, Ser. Chem., (1969) 2087, Chem. Abstr., 72 (1970) 31967.
- 15 Anmerkung bei der Korrektur (17.4.1980): Soeben wurde über die Darstellung von (η^5 -C₅H₅)-Ta(CO)₃Cl₂ aus cpTaCl₄ und CO/Al/HgCl₂ in THF berichtet; Ausb. <10% (A.M. Cardoso, R.J.H. Clark und S. Moorhouse, J. Organometal. Chem., 186 (1980) 237).