Journal of Organometallic Chemistry, 247 (1983) 259-270 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

LIGANDENEIGENSCHAFTEN VON Fe₃(CO)₉(μ_3 -S)(μ_3 -ER) (R = ALKYL, ARYL; E = P, As)

ANDREAS WINTER, IBRAHIM JIBRIL und GOTTFRIED HUTTNER*

Lehrstuhl für Synthetische Anorganische Chemie, Fakultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstantz (B.R.D.)

(Eingegangen den 30. November 1982)

Summary

The clusters $Fe_3(CO)_9(\mu_3-S)(\mu_3-ER)$ (E = P, As; R = Alkyl, Aryl) react with $(CO)_5 M \cdot THF$ (M = Cr, W) to give the violet crystalline adducts $Fe_3(CO)_9(\mu_3-SM(CO)_5)(\mu_3-ER)$. Spectroscopic data and X-ray structure analyses show that adduct formation occurs via the triply bridging sulfur (S-Cr 242.8(5), S-W 254.7(6) pm).

Zusammenfassung

Die Cluster $Fe_3(CO)_9(\mu_3-S)(\mu_3-ER)$ (E = P, As; R = Alkyl, Aryl) reagieren mit $(CO)_5 M \cdot THF$ (M = Cr, W) zu violett gefärbten kristallinen Addukten $Fe_3(CO)_9$ - $(\mu_3-SM(CO)_5)(\mu_3-ER)$. Spektroskopische Daten und Röntgenstrukturanalysen zeigen, dass die Adduktbildung über den dreifach verbrückenden Schwefel erfolgt (S-Cr 242.8(5), S-W 254.7(6) pm).

Einleitung

Durch die Umsetzung von $[Fe_3(CO)_9(\mu_3-S-t-C_4H_9)]^-$ mit RECl₂ (E = P, As) sind die durch zwei verschiedene μ_3 -Brückenliganden verknüpften Cluster Fe₃(CO)₉(μ_3 -S)(μ_3 -ER) leicht zugänglich [1]. Für die Identifizierung der μ_3 -S-Gruppe in diesen Komplexen haben wir mitunter ihre Farbreaktion mit (CO)₅Cr · THF benützt, bei der aus den orangeroten Edukten die violett gefärbten Verbindungen Fe₃(CO)₉(μ_3 -SCr(CO)₅)(μ_3 -ER) (E = P, As) entstehen. Da sich diese Produkte als Ausgangsstoffe für die Synthese heterometallischer Cluster anbieten und da ihre eingehende Untersuchung Aussagen darüber erwarten lässt, wie die Eigenschaften des als Ligand wirkenden Clusters Fe₃(CO)₉(μ_3 -S)(μ_3 -ER) durch die zusätzliche Komplexierung des μ_3 -Schwefels an ein M(CO)₅-Fragment (M = Cr, W) beeinflusst werden, haben wir einige Komplexe dieser Art isoliert, über deren Darstellung und Eigenschaften wir hier berichten.

Präparative, spektroskopische und strukturanalytische Ergebnisse

Fe₃(CO)₉(μ_3 -S)(μ_3 -ER) (E = P, As; R = Alkyl, Aryl) [1] reagiert mit (CO)₅M · THF (M = Cr, W) zu Fe₃(CO)₉(μ_3 -SM(CO)₅)(μ_3 -ER) I-IV. Die violett gefärbten Addukte lassen sich allerdings erst nach abkondensieren von THF erhalten, da Tetrahydrofuran die M(CO)₅-Einheit als M(CO)₅ · THF aus den Addukten verdrängt. Die Reinigung der Addukte, deren Bildung an der intensiven Violettfärbung der Festkörper sowie ihrer Lösungen in nichtkoordinierenden Lösungsmitteln zu erkennen ist, erfolgt durch Chromatographie und Kristallisation bei Temperaturen unter -30° C.

In kristalliner Form sind die Komplexe I-IV auch bei Raumtemperatur beständig. Sie zersetzen sich thermisch erst ab etwa 90°C (vgl. Tab. 6), wobei IR-spektroskopisch als Zersetzungsprodukte die Eduktcluster $Fe_3(CO)_9(\mu_3-S)(\mu_3-ER)$ [1] neben $M(CO)_6$ nachgewiesen werden können.

Die IR-Spektren der Verbindungen I-IV lassen erkennen, dass weder Geometrie noch Elektronendichte am Fe₃(CO)₉-Fragment durch die zusätzliche Koordination des Schwefels stark beeinflusst werden (Tab. 1). Absorptionen um 2090, 2060, 2040, 2020 und 2010 cm⁻¹ entsprechen in ihrer Struktur jeweils den Banden der Eduktcluster Fe₃(CO)₉(μ_3 -S)(μ_3 -ER). In ihrer Lage sind sie geringfügig (5-10 cm⁻¹) gegenüber entsprechenden Banden der M(CO)₅-freien Edukte [1] kurzwellig verschoben, was mit dem erwarteten Abzug von Elektronendichte durch die Komplexbildung im Einklang steht. Von den für die M(CO)₅-Fragmente erwarteten Banden wird die kurzwellige A₁-Schwingung um 2060 cm⁻¹ in einigen der Addukte von einer Schwingung des Clusters im selben Wellenlängenbereich überdeckt; meist ist sie jedoch wenigstens als Schulter erkennbar. Die langwelligen A₁- und E-Absorptionen der M(CO)₅-Liganden treten, vom Rest des Spektrums deutlich abge-

SPEKTROSKOPISCHE DATEN DER VI	RBINDUNC	EN Fe ₃ (CO) ₉ (μ ₃ -SM(CO) ₅)(μ ₃ -ER) I-IV	(M = Cr, W; E = P, As)	
Verbindung		IR(v(CO)-Streekschwingungen) ^{a.d}	¹ H-FT-NMR (ppm)	³¹ P-FT-NMR (ppm)
Fe ₃ (CO) ₉ (μ ₃ -SCr(CO) ₅)(μ ₃ -PC ₆ H ₅) ((a)	2094w, 2061vs, 2058m, 2042s, 2021 2005 10545, 1048-	7.53(M, 5H) ^b	362.4
$Fe_{3}(CO)_{9}(\mu_{3}-SCr(CO)_{5})(\mu_{3}-P-t-C_{4}H_{9})$ ((q)	2021w, 2059vs, 2040s, 2018m, 2092w, 2059vs, 2040s, 2018m,	1.08 (D, 9H, J(PH) 18 Hz)"	439.4
Fe ₃ (CO) ₉ (μ ₃ -SCr(CO) ₅)(μ ₃ -PCH ₃) ((c)	2008m, 1994s, 1948sn 2095w, 2062vs, 2058m, 2043s, 2022w, 2008w, 1954s, 1949s	1.53 (D, 3H, J(PH) 13 Hz) ^c	365.8
$Fe_{3}(CO)_{9}(\mu_{3}-SCr(CO)_{5})(\mu_{3}-AsC_{6}H_{5})$ ((1)	2094w, 2060vs, 2058m, 2042s, 2023w, 2010w, 1955s, 1948s	7.54 (M, 5H) ^b	ł
Fe ₃ (CO) ₉ (μ ₃ -SW(CO) ₅)(μ ₃ -PC ₆ H ₅) ((IIIa)	2095w, 2062vs, 2042s, 2022w, 2010w 1950s 1947m	7.57 (M, 5H) ^b	366.1
Fe ₃ (CO) ₉ (μ ₃ -SW(CO) ₅)(μ ₃ -P-t-C ₄ H ₉) ((911)	2094w, 2005m, 2059w, 2040s, 2018w, 2005w, 1951s, 1948s, 1947m	1.06 (D, 9H, J(PH) 18 Hz) ^c	442.8
Fe ₃ (CO) ₉ (μ ₃ -SW(CO) ₅)(μ ₃ -PCH ₃) ((IIc)	2096w, 2063vs, 2043s, 2023w, 2006w, 1050e, 1942m	1.50 (D, 3H, J(PH) 13 Hz) ^c	369.7
Fe ₃ (CO) ₉ (μ ₃ -SW(CO) ₅)(μ ₃ -PC ₆ H ₁₁) ((PII)	2094w, 2062sh, 2060vs, 2041s, 2020w, 2007w, 1951s, 1949s, 1942m	0.4–2.9 (M, 11H) ^c	408.9
$Fe_{3}(CO)_{9}(\mu_{3}-SW(CO)_{5})(\mu_{3}-AsC_{6}H_{5})$ ((Va)	2094w, 2062sh, 2060vs, 2041s, 2018w - 2008w - 1949s - 1941m	7.52 (M, 5H) ^b	I
Fe ₃ (CO) ₉ (μ ₃ -SW(CO) ₅)(μ ₃ -As-t-C ₄ H ₉) ((dvb)	2092w, 2062m, 2056vs, 2038s, 2012w, 2004w, 1949s, 1939m	1.08 (S, 9H) ^c	I
Fe ₃ (CO) ₉ (μ ₃ -SW(CO) ₅)(μ ₃ -AsC ₆ H ₁₁) ((Vc)	2092w, 2062m, 2057vs, 2039s, 2015w, 2006w, 1950s, 1948s, 1940m	0.8–3.0 (M, 11H) ^c	I

^{*a*} In n-Pentan. ^{*b*} In CCl₄. ^{*c*} In Benzol- d_6 . ^{*d*} vs = sehr stark, s = stark, m = mittel, w-schwach, sh = Schulter.

261

MASSENSPEKTREN I	DER V	VERBINDUNGEN	$Fe_3(CO)_9(\mu$	13-SM(CO)5)(u ₃ -ER) I	-IV	(M = Cr,	W;
E = P, As) m/e (rel. Int	ensität	in %)"						

Ion	Ia	Ib	Ic	II	IIIa
 M ⁺	752(2)	732(3)	690(3)	796(3)	
$M^+ - 4CO$	640(2)	620(-)	578(-)	684(-)	
$M^+ - 5CO$	612()	592(2)	550(2)	656(2)	
$M^+ - 6CO$	584(3)	564(3)	522(5)	628(4)	
<i>M</i> ⁺ - 7CO	556(6)	536(6)	494(7)	600(7)	
$Fe_3(CO)_9(S)(ER)^+$	560(2)	540(1)	498(4)	604(3)	560(1)
$Fe_3(CO)_9(S)(ER)^+ - CO$	532(36)	512(31)	470(58)	576(41)	532(22)
$Fe_3(CO)_9(S)(ER)^+ - 2CO$	504(3)	484(19)	442(33)	548(28)	504(2)
$Fe_3(CO)_9(S)(ER)^+ - 3CO$	476(12)	456(18)	414(16)	520(20)	476(10)
$Fe_3(CO)_9(S)(ER)^+ - 4CO$	448(18)	428(19)	386(22)	492(19)	448(15)
$Fe_3(CO)_9(S)(ER)^+ - 5CO$	420(20)	400(35)	358(65)	464(48)	420(16)
$Fe_3(CO)_9(S)(ER)^+ - 6CO$	392(47)	372(48)	330(78)	436(6)	392(39)
$Fe_1(CO)_9(S)(ER)^+ - 7CO$	364(35)	344(26)	302(27)	408(28)	364(28)
$Fe_{3}(CO)_{9}(S)(ER)^{+}-8CO$	336(28)	316(17)	274(34)	380(23)	336(21)
$Fe_1(CO)_9(S)(ER)^+ - 9CO$	308(100)	288(42)	246(100)	352(100)	308(74)
Fe ₃ SE ⁺	231(30)	231(100)	231(75)	275(81)	231(11)
Fe ₂ SE ⁺	175(8)	175(23)	175(25)	219(20)	175(11)
Fe ₂ S ⁺	144(10)	144(8)	144(29)	144(18)	144(3)

^a Neben den in der Tabelle aufgeführten Fragmentionen treten für alle Verbindungen I-IV im niedrigeren Massenbereich die Ionen $M(CO)_6^+$ (M = Cr, W) sowie die durch sukzessive Abspaltung von bis zu 6 CO-Gruppen entstehenden Fragmente auf. Das Signal für $M(CO)_3^+$ bildet dabei in IIIa, IIIc, IIId und IVc den Basispeak.

setzt, um 1950 cm⁻¹ auf (Tab. 1). Die Messungen müssen bei 0°C zügig durchgeführt werden, da selbst bei dieser Temperatur die Addukte langsam unter Bildung von $Fe_3(CO)_9(\mu_3-S)(\mu_3-ER)$ und $M(CO)_6$ zerfallen.

Ebenso wie in den IR-Spektren zeigt sich auch in den FT-NMR-Spektren der nur geringe Einfluss, den die Komplexierung des μ_3 -Schwefels auf die Elektronenverteilung im Cluster hat. Die ¹H-FT-NMR-Signale erscheinen praktisch unverändert an den Stellen, wo sie auch für die entsprechenden Edukte gefunden werden (Tab. 1, [1]).

Die ³¹P-FT-NMR-Resonanzen (Tab. 1) weisen durchwegs Tieffeldverschiebungen gegenüber den Signalen der Eduktcluster [1] auf. Die Verschiebungen sind allerdings klein und betragen für die Pentacarbonylchromderivate I kaum mehr als 2 ppm und liegen für die Pentacarbonylwolframaddukte III bei 6 ppm. Die beobachtete Verschiebungsrichtung lässt sich ebenso wie die bereits diskutierte Verschiebung der IR-Signale mit dem Abzug von Elektronendichte durch die Komplexbildung deuten.

Unter den Bedingungen der Elektronenstoss-Ionisation lassen sich nur für die Pentacarbonylchromderivate I und II die Signale der Molekülionen beobachten (Tab. 2). Daneben treten jeweils intensive Signale für das Ion $M(CO)_6^+$ und dessen Decarbonylierungsfragmente auf. Das Molekülionensignal für die Eduktcluster tritt nur schwach oder gar nicht auf, jedoch werden wie in den Spektren der Eduktcluster selbst [1] alle Fragmentionen Fe₃(CO)_n(S)(ER)⁺, n = 0-8, sowie die charakteristischen Bruchstücke Fe₃SE⁺, Fe₂SE⁺ und Fe₂S⁺ beobachtet (Tab. 2).

Шь	IIIc	IIId	IVa	IVb	IVc
540()	498(2)	566()	604(-)	584(7)	610(2)
512(37)	470(15)	538(5)	576(16)	556(48)	582(13)
484(16)	442(24)	510(4)	548(9)	528(21)	554(11)
456(14)	414(12)	482(4)	520(5)	500(5)	526(2)
428(15)	386(17)	454(2)	492(8)	472(24)	498(9)
400(44)	358(13)	426(6)	464(9)	444(42)	470(14)
372(53)	330(42)	398(9)	436(26)	416(57)	442(18)
344(30)	302(24)	370(4)	408(27)	388(51)	414(21)
316(18)	274(25)	342(2)	380(16)	360(30)	386(13)
288(100)	246(60)	314(6)	352(100)	332(51)	358(21)
231(56)	231(17)	231(15)	275(38)	275(100)	275(59)
175(8)	175(8)	175(2)	219(10)	219(42)	219(20)
144(-)	144(5)	144(1)	144(9)	144(21)	144(6)

Für die Verbindungen Fe₃(CO)₉(μ_3 -SCr(CO)₅)(μ_3 -P-t-C₄H₉) (Ib) und Fe₃(CO)₉ (μ_3 -SW(CO)₅)(μ_3 -P-t-C₄H₉) (IIIb) wurden Röntgenstrukturanalysen durchgeführt.

Geeignete Einkristalle mit maximal 0.5 mm Kantenlänge wurden aus Toluol bei -30° C erhalten. Auf einem Syntex-P3-Diffraktometer wurden die Beugungsdaten bestimmt (Mo- K_{α} , λ 71.069 pm, Graphitmonochromator; ω -scan, $\Delta \omega = 1.1^{\circ}$, $2.2 \le \dot{\omega} \le 29.3^{\circ}$ min⁻¹, $2^{\circ} \le 2\theta \le 42^{\circ}$). Die Lösung (direkte Methoden) und Verfeinerung der Strukturen wurden mit dem Programmsystem SHELXTL durchgeführt.

Ib: $C_{18}H_9CrFe_3O_{14}PS$; Molmasse 731.84, $P\overline{1}$, a 958.2(6), b 1104.5(6), c 1477(1) pm, α 107.1(4), β 98.0(5), γ 109.5(4)°, V 1353 × 10⁶ pm³, Z = 2, d_{ber} 1.79 g cm⁻³, μ (Mo- K_{α}) 22.1 cm⁻¹, T 233 K, 2167 unabhängige signifikante ($I > 2\sigma$) Reflexe, $R_1 = 0.078$.

IIIb: C₁₈H₉Fe₃O₁₄PSW, Molmasse 863.69, $P\bar{1}$, *a* 963.2(5), *b* 1115.3(6), *c* 1484.5(6) pm, α 107.3(4), β 98.1(4), γ 109.2(4)°, *V* 1386 × 10⁶ pm³, *Z* = 2, *d*_{ber} 2.07 g cm⁻³, μ (Mo- K_{α}) 61.4 cm⁻¹, *T* 243 K, 2818 unabhängige signifikante ($I > 2\sigma$) Reflexe, $R_1 = 0.075$.

Die Strukturparameter sowie die wichtigsten Abstände und Winkel der untersuchten Verbindungen sind in den Tabellen 3, 4 und 5 aufgeführt. Fig. 1 gibt jeweils eine Ansicht der Moleküle.

Die Strukturanalysen der Verbindungen Ib und IIIb belegen, dass die $M(CO)_5$ -Gruppen terminal an den μ_3 -Schwefel gebunden sind, wobei die Geometrie der als Donor auftretenden Clustereinheit Fe₃(CO)₉(μ_3 -S)(μ_3 -P-t-C₄H₉) gegenüber der-

STRUKTURPARAMETER VON Ib

Atom-Parameter^a

Atom	x/a	y/b	z/c	<i>U</i>
Fe(1)	0.6411(3)	-0.1727(2)	0.1242(2)	
Fe(2)	0.6207(3)	-0.0051(2)	0.2917(2)	
Fe(3)	0.9056(3)	-0.1266(2)	0.2399(2)	
Cr	0.5508(3)	-0.3844(2)	0.3239(2)	
S	0.6735(5)	-0.1941(4)	0.2730(3)	
Р	0.8201(5)	0.0329(4)	0.2273(3)	
C(1)	0.567(2)	-0.511(2)	0.212(1)	0.031(4)
où	0.571(1)	-0.594(1)	0.1450(9)	0.047(3)
C(2)	0.457(2)	-0.523(2)	0.367(1)	0.038(5)
0(2)	0.394(1)	-0.612(1)	0.3928(9)	0.047(3)
C(3)	0.536(2)	-0.258(2)	0.435(1)	0.033(4)
O(3)	0.531(2)	-0.182(1)	0.5055(9)	0.055(4)
C(4)	0.355(2)	-0.418(2)	0.251(1)	0.037(5)
0(4)	0.229(2)	-0.446(1)	0.210(1)	0.056(4)
C(5)	0.739(2)	-0.370(2)	0.396(1)	0.042(5)
O(5)	0.850(2)	-0.368(1)	0.440(1)	0.067(4)
C(6)	0.928(2)	0.196(2)	0.210(1)	0.035(4)
C(7)	0.994(2)	0.309(2)	0.315(1)	0.054(6)
C(8)	1.057(2)	0.187(2)	0.168(2)	0.067(6)
C(9)	0.821(2)	0.236(2)	0.146(1)	0.052(5)
cín	0.437(2)	-0.241(2)	0.092(1)	0.035(4)
o(II)	0.303(2)	-0.288(1)	0.0696(9)	0.050(4)
C(12)	0.646(2)	-0.108(2)	0.030(1)	0.042(5)
0(12)	0.647(2)	- 0.073(2)	-0.039(1)	0.076(5)
C(13)	0.672(2)	-0.318(2)	0.058(1)	0.034(4)
O(13)	0.686(2)	-0.416(1)	0.0099(9)	0.056(4)
C(21)	0.566(2)	0.121(2)	0.267(1)	0.034(4)
O(21)	0.523(2)	0.207(1)	0.258(1)	0.062(4)
C(22)	0.429(2)	-0.087(2)	0.306(1)	0.033(4)
O(22)	0.311(2)	-0.132(1)	0.3187(9)	0.049(3)
C(23)	0.724(2)	0.094(2)	0.416(1)	0.032(4)
O(23)	0.795(2)	0.161(1)	0.4980(9)	0.055(4)
C(31)	0.925(2)	-0.285(2)	0.232(1)	0.034(4)
O(31)	0.937(2)	-0.387(1)	0.229(1)	0.057(4)
C(32)	1.027(2)	-0.023(2)	0.359(1)	0.033(4)
O(32)	1.111(2)	0.051(1)	0.436(1)	0.055(4)
C(33)	1.039(2)	- 0.105(2)	0.165(1)	0.039(5)
O(33)	1.124(2)	-0.095(2)	0.118(1)	0.078(5)

Anisotrope Temperaturfaktoren a.b

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
Fe(1)	0.030(2)	0.022(1)	0.021(1)	0.007(1)	0.003(1)	0.010(1)
Fe(2)	0.032(2)	0.025(1)	0.023(1)	0.009(1)	0.006(1)	0.013(1)
Fe(3)	0.028(2)	0.027(1)	0.030(1)	0.013(1)	0.006(1)	0.011(1)
CrÌ	0.030(2)	0.021(1)	0.024(1)	0.009(1)	0.004(1)	0.009(1)
S	0.020(3)	0.025(2)	0.027(2)	0.011(2)	0.007(2)	0.011(2)
Р	0.028(3)	0.024(2)	0.024(2)	0.010(2)	0.012(2)	0.012(2)

^a In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle.^b Die anisotropen Temperaturfaktoren U_{ij} bezeihen sich auf: $T = \exp(-2\pi^2 [U_{11}h^2a^{*2} + ...2hka^*b^*U_{12} + ...]); U_{(ij)}$ in 10⁴ pm².

STRUKTURPARAMETER VON IIIb

Atom-Parameter^a

Atom	x/a	У/	/b	z/c	U	
w	0.5484(1)	0.	61133(9)	0.32237(6)		
Fe(1)	0.6451(3)	0.	8306(3)	0.1243(2)		
Fe(2)	0.9083(4)	0.	8768(3)	0.2401(2)		
Fe(3)	0.6240(4)	0.	9953(3)	0.2901(2)		
S	0.6778(6)	0.	8099(6)	0.2712(4)		
Р	0.8216(6)	1.	0339(6)	0.2272(4)		
C(1)	0.751(3)	0.	626(2)	0.400(2)	0.046	(6)
O(1)	0.860(2)	Ū.	625(2)	0.440(1)	0.081	(6)
C(2)	0.565(2)	0.	473(2)	0.205(2)	0.036	(5)
O(2)	0.575(2)	0.	394(2)	0.138(1)	0.056	(4)
C(3)	0.445(2)	0.	465(2)	0.364(1)	0.034	(5)
où	0.386(2)	0.	377(2)	0.396(1)	0.065	(5)
C(4)	0.335(3)	0	575(2)	0.245(2)	0.038	(5)
0(4)	0.213(2)	0	550(2)	0.201(1)	0.064	(5)
α s	0.532(3)	0.	749(2)	0.443(2)	0.045	(6)
0(5)	0.529(2)	0. 0	827(2)	0 514(1)	0.042	(5)
C(6)	0.929(2)	0.	195(2)	0.214(1)	0.008	(5)
C(7)	1.063(3)	1.	189(3)	0.168(2)	0.040	(0)
C(8)	0.995(3)	1.	307(3)	0.100(2) 0.31A(2)	0.000	(2)
C(0)	0.995(3)	J. 1	227(2)	0.31 + (2) 0.147(2)	0.074	(8)
C(1)	0.020(4)	1.	763(2)	0.147(2)	0.079	(5)
$\alpha(1)$	0.400(2)	0.	716(2)	0.091(2)	0.057	(5)
C(12)	0.509(2)	0.	710(2) 906(2)	0.009(1)	0.002	(J) (7)
O(12)	0.033(3)	0.	070(3)	0.032(2)	0.005	(7) (7)
C(12)	0.047(3)	0.	733(Z) 670(2)	-0.030(2)	0.090	(7)
	0.671(3)	0.	0/9(3) 595(2)	0.056(2)	0.058	(/)
O(13)	0.090(2)	0.	282(2) 079(2)	0.011(1)	0.075	(6)
C(21)	1.037(3)	0.	978(3)	0.358(2)	0.050	(6)
O(21)	1.111(2)	1.	050(2)	0.435(1)	0.073	(5)
C(22)	1.045(3)	0.	904(2)	0.172(2)	0.049	(6)
U(22)	1.126(2)	0.	904(2)	0.120(2)	0.082	(6)
(23)	0.921(3)	0.	/13(3)	0.230(2)	0.058	(7)
O(23)	0.940(2)	0.	617(2)	0.227(1)	0.068	(5)
C(31)	0.566(3)	1.	122(3)	0.266(2)	0.060	(7)
0(31)	0.517(2)	1.	198(2)	0.253(1)	0.073	(5)
C(32)	0.728(3)	1.	095(2)	0.415(2)	0.044	(6)
O(32)	0.798(2)	1.	160(2)	0.495(1)	0.067	(5)
C(33)	0.435(3)	0.	914(2)	0.305(2)	0.044	(6)
0(33)	0.315(2)	0.	870(2)	0.317(1)	0.057	(4)
Anisotro	pe Temperaturfak	toren ^{a,b}				
Atom	<i>U</i> 11	<i>U</i> ₂₂	U ₃₃	U ₂₃	<i>U</i> ₁₃	<i>U</i> ₁₂
W	0.0357(6)	0.0367(6)	0.0259(5)	0.0144(4)	0.0082(4)	0.0129(4)
Fe(1)	0.038(2)	0.040(2)	0.025(2)	0.012(1)	0.008(1)	0.012(2)
Fe(2)	0.038(2)	0.043(2)	0.037(2)	0.018(2)	0.012(2)	0.016(2)
Fe(3)	0.040(2)	0.039(2)	0.029(2)	0.015(2)	0.010(1)	0.018(2)
S	0.033(3)	0.040(3)	0.028(3)	0.012(3)	0.007(2)	0.013(3)
-	0.000(0)	0.0404				• • •

^a In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle. ^b Die anisotropen Temperaturfaktoren U_{ij} beziehen sich auf: $T = \exp(-2\pi^2 [U_{11}h^2a^{*2} + ...2hka^*b^*U_{12} + ...]); U_{(ij)}$ in 10⁴ pm².

Abstände/Winkel	Ib	ШЬ	
Fe(1)-Fe(2)	269.6(4)	265.4(5)	
Fe(1)-Fe(3)	265.2(4)	267.7(4)	
$Fe(3) \cdots Fe(2)$	350.1(5)	348.8(6)	
Fe(1)-S	226.9(5)	225.0(7)	
Fe(2)-S	225.7(6)	225.9(7)	
Fe(3)-S	226.9(5)	224.1(8)	
Fe(1)-P	225.1(4)	224.4(5)	
Fe(2)-P	222.2(6)	221.9(8)	
Fe(3)-P	221.9(6)	220.7(7)	
P···S	276.2(6)	274.7(8)	
P-C(6)	186(2)	187(3)	
S-Cr	242.8(5)	_	
S-W	-	254.7(6)	
Fe-C _{CO} (Mittelwert)	178	180	
Cr-C _{CO}	184(2)-190(2)	-	
W-C _{co}	-	194(2)-205(2)	
(C-O) _{Fe} (Mittelwert)	117	116	
(C-O) _{Cr} (Mittelwert)	116	-	
(C-O) _w (Mittelwert)	_	117	
Fe(2)-Fe(1)-Fe(3)	81.8(1)	81.7(1)	
$Fe(1)-Fe(2)\cdots Fe(3)$	48.6(1)	49.4(1)	
$Fe(1)-Fe(3)\cdots Fe(2)$	49.7(1)	48.8(1)	
Fe-P-C(6)	125.8(7)-133.2(5)	126.4(9)-132.8(7)	
Fe-S-Cr	127.2(2)-131.5(2)	-	
Fe-S-W	-	126.9(3)-130.8(2)	
Fe-C-O	174(2)-179(2)	171(2)-178(2)	
Cr-C-O	174(2)-178(1)	-	
W-C-O	-	175(2)-179(2)	
C _{CO} -Fe-C _{CO}	87.0(9)-101.7(8)	89(1)-100(1)	
C_{co} -Cr- C_{co}	86.6(9)-92.0(8)	-	
$C_{co}-W-C_{co}$	-	86(1)-89(1)	

ABSTÄNDE (pm) UND WINKEL (Grad) ^a DER VERBINDUNGEN Fe₃(CO)₉(μ_3 -SCr(CO)₅)(μ_3 -P-t-C₄H₉) (Ib) UND Fe₃(CO)₉(μ_3 -SW(CO)₅)(μ_3 -P-t-C₄H₉) (IIIb)

^a In Klammern: Standardabweichungen in Einheiten der letzten jeweils angegebenen Dezimalstelle.

jenigen der unkomplexierten Cluster, die am Beispiel von $Fe_3(CO)_9(\mu_3-S)(\mu_3-PC_6H_5)$ strukturanalytisch belegt ist [1], kaum verändert wird.

Wie dort besteht das Clustergerüst aus einem aus drei Fe(CO)₃-Einheiten aufgebauten, einseitig offenen Dreieck, das auf der einen Seite durch das μ_3 -PR-Fragment und auf der anderen durch den μ_3 -S-Liganden zusammengehalten wird. Diese Gerüstgeometrie wird auch im Quantitativen durch die Bindung eines (CO)₅Cr-Fragments (Ib) oder einer (CO)₅W-Gruppe (IIIb) an den μ_3 -Schwefel kaum beeinflusst (Tab. 5, [1]). Ein detaillierter Vergleich der für Fe₃(CO)₉(μ_3 -S)(μ_3 -PC₆H₅) erhaltenen Daten [1] mit den Abständen in Ib und IIIb ist wegen der unterschiedlichen Substituenten am Phosphor (C₆H₅ statt t-C₄H₉ in Ib, IIIb) nur mit Vorsicht möglich. Im ganzen erscheinen jedoch die Gerüstabstände geringfügig länger als in Fe₃(CO)₉(μ_3 -S)(μ_3 -PC₆H₅). Eine Deutung hierfür findet man in der Vorstellung, dass das für die Komplexbildung verwendete "freie Elektronenpaar am Schwefel"

Fig. 1. Ansichten der Verbindungen $Fe_3(CO)_9(\mu_3-SCr(CO)_5)(\mu_3-P-t-C_4H_9)$ (Ib) und $Fe_3(CO)_9(\mu_3-SW(CO)_5)(\mu_3-O-t-C_4H_9)$ (IIIb).

einem Orbital zuzuordnen ist, das bezüglich des Clustergerüstes bindenden Charakter hat, so dass ein Abzug von Elektronendichte durch die Komplexierung die Bindungen im Cluster schwächt. Im Vergleich zu $FeCo_2(CO)_9(\mu_3-SCr(CO)_5)$ [2], wo der Cluster $FeCo_2(CO)_9(\mu_3-S)$ über den μ_3 -Schwefel ein Pentacarbonylchromfragment koordiniert, scheint der Komplex $Fe_3(CO)_9(\mu_3-S)(\mu_3-P-t-C_4H_9)$ der schwächere Ligand zu sein, da die S-Cr-Bindung in Ib mit 242.8(5) pm [3] deutlich länger ist als der S-Cr-Abstand in $FeCo_2(CO)_9(\mu_3-SCr(CO)_5)$ mit 235.1 pm [2].

Auf sterische Faktoren lässt sich dieser Abstandsunterschied kaum zurückführen, da die Pentacarbonylchromgruppe in beiden Verbindungen ähnliche Umgebungen sieht; die sterisch anspruchsvolle (μ_3 -P-t-C₄H₉)-Gruppe in Ib liegt auf der dem Schwefel abgewandten Seite des Metalldreiecks.

Dies könnte heissen, dass das "freie Elektronenpaar" mehr als in $FeCo_2(CO)_9$ -(μ_3 -S) [2] über den Cluster delokalisiert ist. Feinere Effekte, wie sie die unterschiedlichen Akzeptorqualitäten von W(CO)₅ (IIIb) und Cr(CO)₅ (Ib) erwarten liessen, liegen bei den vorliegenden Strukturbestimmungen weitgehend im Bereich experimenteller Unsicherheit und lassen sich daher nicht konsistent diskutieren (Tab. 5).

Aus den bislang vorliegenden Daten lässt sich entnehmen, dass pyramidale μ_3 -Schwefelfunktionen (l.c. [2]) schwächere Ligandeigenschaften aufweisen als pyramidale μ_3 -As- [4] oder μ_3 -P-Gruppen [5]. Die vergleichsweise schwache Basizität des μ_3 -S-Liganden zeigt sich auch bei der Reaktivität von Cp₃Co₃(μ_3 -S)(μ_3 -CS), das mit (CO)₅ Cr · THF ebenso wie mit Methyliodid an der μ_3 -CS-Gruppe und nicht am μ_3 -Schwefelatom angegriffen wird [6].

Die hier untersuchten Cluster Fe₃(CO)₉(μ_3 -S)(μ_3 -ER) [1] reagieren zwar mit (CO)₅Cr · THF oder (CO)₅W · THF zu den entsprechenden in Lösung nur bei tiefen

Temperaturen stabilen Addukten I–IV, mit Fe(CO)₄ · THF, das aus Fe₂(CO)₉ und THF leicht zugänglich ist [7], ergeben diese Cluster jedoch auch nach Abziehen des Lösungsmittels keine Addukte. Auch mit den organischen Elektrophilen Et₃O⁺ oder MeI tritt keine Reaktion ein. Offenbar kann die elektrophile Alkylierung des μ_3 -Schwefels erst dann beobachtet werden, wenn seine Nukleophilie durch die negative Ladung in einem Clusteranion erhöht wird: So reagiert [Os₃(CO)₉(μ_2 -H)(μ_3 -S)]⁻ mit Triethyloxoniumsalzen unter Alkylierung am Schwefel und Bildung stabiler Neutralverbindungen [8].

Die Addukte I–IV dagegen zerfallen leicht in ihre Komponenten. Aus den $M(CO)_5$ -Fragmenten bilden sich dabei in nichtkoordinierenden Lösungsmitteln die Komplexe $M(CO)_6$ als Endprodukte. Diese Labilität der Addukte lässt an ihre Verwendung als $M(CO)_5$ -Überträger auf thermisch oder photochemisch empfindliche Substanzen denken.

Experimenteller Teil

Sämtliche Arbeiten wurden unter Stickstoff in wasserfreien Lösungsmitteln bei Temperaturen unter 0°C durchgeführt. Das zur Chromatographie verwendete Kieselgel (70–230 mesh) wurde am Hochvakuum (10^{-2} bar) von Sauerstoff befreit und unter Stickstoff aufbewahrt. Die Ausgangsverbindungen Fe₃(CO)₉(μ_3 -S)(μ_3 -ER), (E = P, As) wurden nach 1.c. [1] hergestellt. Die IR-Spektren wurden in CaF₂-Küvetten in n-Pentan als Lösungsmittelspektren an einem Zeiss IR-Gerät Typ IMR 40 aufgenommen. Die Aufnahme der Massenspektren erfolgte an einem Varian MAT 312 Massenspektrometer. Die ¹H-FT-NMR-Spektren wurden bei 0°C an einem Bruker Multikernspektrometer Typ WP 80 FT (80 MHz) aufgenommen (Standard: TMS bei Spektren in CCl_4 bzw. bei Spektren in Benzol- d_6 interner Standard durch das Lösungsmittel; Benzol = 7.27 ppm rel. TMS). Die ³¹P-FT-NMR-Spektren wurden in Toluol bei 0°C an einem Bruker Multikern-Spektrometer Typ WP 80 FT (32.38 MHz) gemessen (Standard: $P(OCH_3)_3$ mit $\delta(P(OCH_3)_3)$ 139 ppm rel. H₃PO₄). Bei ¹H-FT-NMR- und ³¹P-FT-NMR-Daten sind die angegebenen Werte der chemischen Verschiebung δ -Werte in ppm (positiv = tieferes Feld, negativ = höheres Feld). Die CH-Elementaranalysen wurden an einem CHN-Analysator der Fa. Carlo Erba durchgeführt. Die Phosphoranalysen erfolgten colorimetrisch.

Darstellung der Verbindungen Ia-Ic, II, IIIa-IIId und IVa-IVc

0.35 mmol Hexacarbonylchrom (77 mg) zur Darstellung der Verbindungen I und II bzw. Hexacarbonylwolfram (123 mg) zur Darstellung der Verbindungen III und IV werden bei 10°C nach W. Strohmeier et al. [9] 3 h in 25 ml Tetrahydrofuran bestrahlt. Die sich dabei bildende $M(CO)_5$ THF-Lösung (M = Cr, W) gibt man bei 0°C zu 0.3 mmol Fe₃(CO)₉(μ_3 -S)(μ_3 -ER) (E = P, As) [1] (genau Mengenangaben siehe Tab. 6) in 25 ml Toluol. Am Hochvakuum wird das Lösungsmittel entfernt, wobei eine Farbänderung von orange nach violettbraun auftritt. Der Rückstand wird mit wenig kaltem Toluol gelöst, mit 5 g silanisiertem Kieselgel versetzt und am Hochvakuum bis zur Rieselfähigkeit getrocknet. Bei -30° C wird über eine mit Kieselgel gefüllte Säule (50 × 3 cm) chromatographiert. Mit n-Pentan erhält man zunächst unumgesetzte Ausgangsverbindung als orangefarbene Zone, mit n-Pentan/Toluol 3/1 wird die violettfarbene Produktzone eluiert. Nach Abziehen des Lösungsmittels und Umkristallisation aus wenig Toluol bei -30° C erhält man die

TABELLE 6

_	
ই	
Ð	
As	
1	
Щ	
Ś	
1	
Σ	
ä	
E	
Ľ,	
ĥ	
щ	
3	
U	
Σ	
ï	
Ĕ	
Š	
I	
щ	
5	
H	
Σ	
ä	
$\tilde{\mathbf{a}}$	
ī	
ш	1
Ъ	
Ĩ	
ÿ	
$\tilde{\mathbf{z}}$	
Ξ.	İ
5	
Ž	Ì
ĩ	
2	
ž	
S.	
<u> </u>	
<u>ر</u>	ĺ
8	
<u>3</u>	ĺ
Щ	
Z	
5	
Z	
Ы	
Z	
9	
E	
2	
臣	
Δ	
9	ļ
5	
Ц	
E	
S	ļ
Ψ	
Δ	Ì

Produkt	Ausgangsverbindung	Ausbeute	Zers.P. ⁴	Summenformel	Analyse (G	ief.(ber.) (%))	
			5		c	Н	Р
Ia	170 mg Fe ₃ (CO) ₉ (S)(PC ₆ H ₅)	135(60)	101	C ₂₀ H ₅ CrFe ₃ O ₁₄ PS	32.05	0.50	3.93
				(751.83)	(31.95)	(0.67)	(4.12)
Ib	160 mg Fe ₃ (CO) ₉ (S)(P-t-C ₄ H ₉)	160(73)	94	C ₁₈ H ₉ CrFe ₃ O ₁₄ PS	29.53	0.99	3.68
				(731.84)	(29.54)	(1.24)	(4.23)
Ic	150 mg Fe ₃ (CO) ₉ (S)(PCH ₃)	140(68)	112	C ₁₅ H ₃ CrFe ₃ O ₁₄ PS	26.46	0.40	4.59
				(689.76)	(26.12)	(0.44)	(4.49)
II	180 mg Fe ₃ (CO) ₉ (S)(AsC ₆ H ₅)	130(54)	105	C ₂₀ H ₅ AsCrFe ₃ O ₁₄ S	30.56	0.65	I
				(795.77)	(30.19)	(0.63)	I
IIIa	170 mg Fe ₃ (CO) ₉ (S)(PC ₆ H ₅)	150(57)	8	C ₂₀ H ₅ Fe ₃ O ₁₄ PSW	25.99	0.51	3.50
				(883.68)	(27.18)	(0.57)	(3.50)
IIIb	160 mg Fe ₃ (CO) ₉ (S)(P-t-C ₄ H ₉)	210(81)	108	C ₁₈ H ₉ Fe ₃ O ₁₄ PSW	24.96	0.89	3.97
				(863.69)	(25.03)	(1.05)	(3.59)
IIIc	150 mg Fe ₃ (CO) ₉ (S)(PCH ₃)	185(75)	105	C ₁₅ H ₃ Fe ₃ O ₁₄ PSW	21.83	0.40	4.53
				(821.61)	(21.93)	(0.37)	(3.77)
PIII	170 mg Fe ₃ (CO) ₉ (S)(PC ₆ H ₁₁)	165(62)	95	C ₂₀ H ₁₁ Fe ₃ O ₁₄ PSW	27.45	1.14	3.04
				(889.72)	(27.00)	(1.25)	(3.48)
IVa	180 mg Fe ₃ (CO) ₉ (S)(AsC ₆ H ₅)	205(74)	112	C ₂₀ H ₅ AsFe ₃ O ₁₄ SW	26.28	0.75	I
				(927.62)	(25.90)	(0.54)	I
IVb	175 mg Fe ₃ (CO) ₉ (S)(As-t-C ₄ H ₉)	210(77)	76	C ₁₈ H ₉ AsFe ₃ O ₁₄ SW	23.73	0.84	I
				(907.63)	(23.82)	(1.00)	ł
IVc	185 mg Fe ₃ (CO) ₉ (S)(AsC ₆ H ₁₁)	230(82)	101	C ₂₀ H ₁₁ AsFe ₃ O ₁₄ SW	25.63	1.05	I
				(933.67)	(25.73)	(1.19)	1

^a Es erfolgt Zersetzung in die Ausgangsverbindung.

Produkte $Fe_3(CO)_9(\mu_3-SM(CO)_5)(\mu_3-ER)$, M = Cr, W; E = P, As (I-IV) in Form grosser violettschwarzer Kristalle. Während die Verbindungen in Lösung bei Raumtemperatur instabil sind und sich (besonders die $Cr(CO)_5$ -Addukte I und II) nach wenigen Minuten bereits unter Wiederabspaltung des schwefelständigen Pentacarbonylmetallrestes merklich zersetzen, erweisen sie sich in fester Form als stabil und als bei $-30^{\circ}C$ unbegrenzt haltbar. Ausbeuten, Analysendaten, Zersetzungspunkte und Molmassen sind in Tab. 6 zusammengestellt.

Dank

Wir danken der Deutschen Forschungsgemeinschaft, Bonn-Bad Godesberg und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, Frankfurt/M., für die Unterstützung dieser Arbeit. Herrn Dipl.-Chem. K. Knoll danken wir für die Aufnahme der Massenspektren und Frau R. Naserke für die Durchführung der Mikroanalysen.

Literatur

- 1 A. Winter, L. Zsolnai und G. Huttner, J. Organometal. Chem., 234 (1982) 337.
- 2 F. Richter und H. Vahrenkamp, Angew. Chem., 90 (1978) 474; Angew. Chem., Int. Ed. Engl., 17 (1978) 444.
- 3 Im Thioetherderivat BzEtSCr(CO)₅ wird mit 245.8(2) pm ein sehr ähnlicher Abstandswert gefunden: H.G. Raubenheimer, J.C.A. Boeyens und S. Lotz, J. Organometal. Chem., 112 (1976) 145. Wesentlich länger ist dagegen der Cr-S-Abstand (251.0(2) pm) im Thiophosphoranderivat Me₃PSCr(CO)₅: E.N. Baker und B.R. Reay, J. Chem. Soc. Dalton, (1973) 2205.
- 4 A. Vizi-Orosz, V. Galamb, I. Ötvös, G. Pályi und L. Markó, Transition Met. Chem., 4 (1979) 294; J. Organometal. Chem., 216 (1981) 105.
- 5 A. Vizi-Orosz, J. Organometal. Chem., 111 (1976) 61.
- 6 H. Werner und K. Leonhard, Angew. Chem., 91 (1979) 663; Angew. Chem., Int. Ed. Engl., 18 (1979) 627.
- 7 F.A. Cotton und J.M. Troup, J. Am. Chem. Soc., 96 (1974) 3438; G. Natile und G. Bor, J. Organometal. Chem., 35 (1972) 185.
- 8 B.F.G. Johnson, J. Lewis und D.A. Pippard, J. Organometal. Chem., 213 (1981) 249; B.F.G. Johnson, J. Lewis, D. Pippard und P.R. Raithby, J. Chem. Soc. Chem. Commun., (1978) 551.
- 9 W. Strohmeier und K. Gerlach, Chem. Ber., 94 (1961) 398; W. Strohmeier, J.F. Guttenberger und G. Popp, Chem. Ber., 98 (1965) 2248; W. Strohmeier, Angew. Chem., 76 (1964) 873; Angew. Chem., Int. Ed. Engl., 3 (1964) 730.