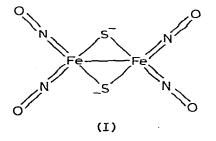
Preliminary communication

ROUSSIN'S RED SALT, $[(\mu-S)_2Fe_2(NO)_4]^{2-}$; SOME CHEMISTRY AND AN INTERESTING COMPARISON WITH $[(\mu-S)_2Fe_2(CO)_6]^{2-}$

DIETMAR SEYFERTH and MICHAEL K. GALLAGHER

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (U.S.A.)


(Received June 5th, 1981)

.

Summary

Reactions of Roussin's red salt in THF with monofunctional electrophiles have given products of type $(\mu$ -RS)₂Fe₂(NO)₄, with R = CH₃, C₂H₅, CH₂=CHCH₂, PhCH₂, Me₃Sn, Ph₃Sn, Ph₃Pb, PhHg and η^5 -C₅H₅Fe(CO)₂, all of which are more or less air-sensitive, especially in solution. Similar reactions attempted with difunctional electrophiles, L_nMX₂, were unsuccessful except in the case of (Ph₃P)₂PtCl₂ which gave a monomeric product, (Ph₃P)₂PtS₂Fe₂(NO)₄ of as yet unknown structure. A comparison is made between the reactivity of $[(\mu$ -S)₂Fe₂(NO)₄]²⁻ and $[(\mu$ -S)₂Fe₂(CO)₆]²⁻.

Roussin's "red salt" was first reported in 1858 [1], but it was only in 1882 that Pavel [2], by means of careful purification and analysis, correctly determined the composition of the potassium salt as "Fe(NO)₂SK+2H₂O" and suggested the dimeric constitution "Fe(NO)₂S,Fe(NO)₂,K₂S". The potassium salt was found to react with ethyl iodide to give a red, crystalline diethyl derivative, $(C_2H_5S)_2Fe_2(NO)_4$, whose dimeric constitution was confirmed by Hofmann and Wiede [3] and whose structure finally was elucidated by means of X-ray crystallography in 1958 (Fig. 1) [4]. Although the structure of the

0022-328X/81/0000-0000/\$02.50, © 1981, Elsevier Seguoia S.A.

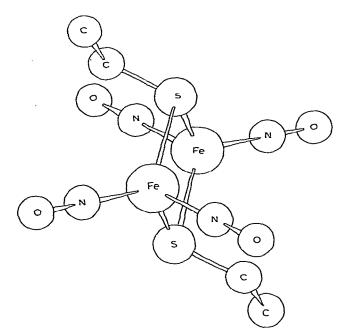


Fig. 1. The molecular structure of $(\mu-C_2H_5S)_2Fe_2(NO)_4$ [4].

anion of Roussin's red salt has not been established, it has been assumed, quite reasonably, that its structure is quite similar to that of its diethyl derivative, i.e., that it too has a planar S_2Fe_2 ring with tetrahedral geometry about the iron atoms, I. Curiously, the chemistry of this interesting dianion has received little attention, despite the fact that it has been known now for over 120 years and has been mentioned in many popular inorganic textbooks [5].

In recent research we have found that reductive cleavage of the S–S bond of μ -dithio-bis(tricarbonyliron) by metal hydrides gives a reactive, sulfurcentered dianion, II (eq. 1) [6–8]. Dianion II reacts readily with organic

$$(\mu - S_2)Fe_2(CO)_6 + 2MH \rightarrow [(\mu - S)_2Fe_2(CO)_6]^{2-} + 2M^+ + H_2$$
 (1)
(II)

$(MH = KH, LiBEt_3H, LiAl(OBu-t)_3H, KB(s-Bu)_3H)$

halides, α , ω -dihalides and various main group and transition metal dihalides (Scheme 1). Although the structure of a salt of dianion II has not yet been determined, an X-ray diffraction study of the diethyl derivative, $(\mu$ -C₂H₅S)₂-Fe₂(CO)₆, has been reported by Dahl and Wei (Fig. 2) [9].

A comparison of the structures of $(\mu-C_2H_5S)_2Fe_2(NO)_4$ and $(\mu-C_2H_5S)_2$ -Fe₂(CO)₆ is of interest. In the nitrosyl complex, as mentioned, the iron atoms are tetrahedrally coordinated (excluding a possible iron—iron bond) and a planar S₂Fe₂ ring results. The Fe···Fe distance is 2.72 Å. More important for the purposes of this discussion, the S····S non-bonded distance is 3.63 Å. In contrast, in the hexacarbonyl complex the iron atoms are octahedrally coordinated and the S₂Fe₂ ring is puckered. In this case the bent Fe—Fe bond

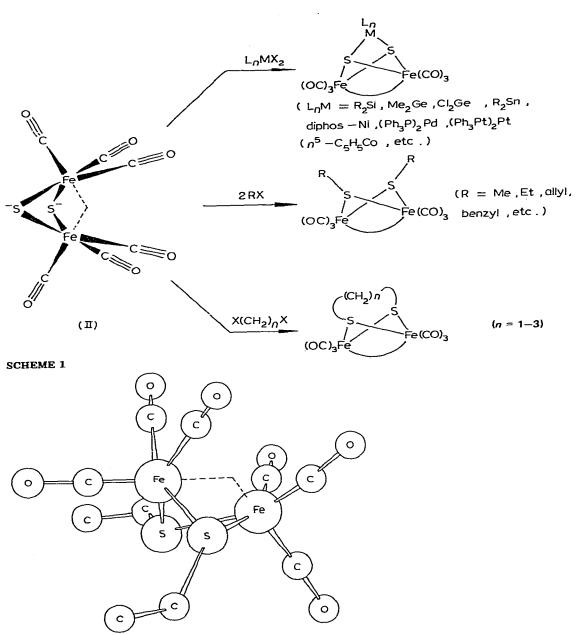
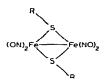


Fig. 2. The molecular structure of $(\mu - C_2 H_5 S)_2 Fe_2(CO)_6$ [9].

indicated by the dotted lines in Fig. 2 is included as a coordination position. The Fe···Fe distance in $(\mu$ -S₂)Fe₂(CO)₆ is 2.54 Å and the S····S non-bonded distance is 2.93 Å. If one assumes that the structures of the two dianions, I and II, contain S₂Fe₂L_n units not markedly different from those found in the respective diethyl esters, then one might expect their chemistries to be quite different. Both would be expected to react with sterically unencumbered electrophiles such as primary halides. On the other hand, dianion I should be able to react with more hindered electrophiles, while dianion II, with closer sulfur

C7

atoms and more substituents on the iron atoms, might be expected to be less reactive. The closer sulfur atoms in dianion II should facilitate reactions with difunctional reagents to form products in which an organic group, a metalloid or a metal atom has bridged the two sulfur atoms. In view of these considerations, we have undertaken a study of the chemistry of Roussin's red salt in parallel with our investigations of $(\mu$ -S₂)Fe₂(CO)₆, $(\mu$ -Se₂)Fe₂(CO)₆ and the diand monoanions which may be prepared from them [6–8,10,11]. As Scheme 1 shows, dianion II does indeed react readily with alkyl halides and with difunctional reagents. However, all attempts to isolate stable products


from the reaction of dianion II with Me₃SnCl and Ph₃SnCl were unsuccessful. Roussin's red salt was prepared by the method of Pavel [2] (see also ref. [12]) from Roussin's "black ammonium salt" [1,2,12] and isolated as a hydrate, Na₂[(μ -S)₂Fe₂(NO)₄] · 8H₂O. It dissolves in THF to give a deep red solution. Such solutions were allowed to react at room temperature (under nitrogen with stirring) with an excess of various organic halides*. In each case sodium halide precipitated and an orange-red solution resulted. Column chromatography (silicic acid) gave the expected product in high yield. Prepared in this manner were $(\mu$ -RS)₂Fe₂(NO)₄, R = CH₃ (91%), C₂H₅ (89%), $CH_2 = CHCH_2$ (91%) and PhCH₂ (93%). Reactions of Roussin's red salt with organometallic monohalides also proceeded well. The reaction of dianion I with a slight excess of trimethyltin bromide gave air-sensitive red-purple crystals of $(\mu-Me_3SnS)_2Fe_2(NO)_4$ in 60% yield. Prepared in similar fashion were red-purple (μ -Ph₃SnS)₂Fe₂(NO)₄ (78%), dark red-purple (μ -Ph₃PbS)₂- $Fe_2(NO)_4$ (99%) and red (μ -PhHgS)₂Fe₂(NO)₄ (33%). A reaction of Roussin's red salt with two molar equivalents of $[\eta^5 - C_5H_5Fe(CO)_2THF]^+BF_4^-$ [13] in THF (room temperature for 15 h) gave, after column chromatography (silicic acid. CH₂Cl₂), the tetranuclear iron complex $(\mu - \eta^5 - C_5 H_5 Fe(CO)_2 S)_2 Fe_2(NO)_4$, isolated as the purple-black 1:1 CH₂Cl₂ solvate in quantitative yield. Characteristic properties of the products are summarized in Table 1.

We assume that the Fe₂S₂ geometry in all of these products is much the same as it was found to be in $(\mu$ -C₂H₅S)₂Fe₂(NO)₄ [4]. However, we have been able to prepare a bis(triphenylphosphine)platinum(II) derivative of Roussin's red salt by the reaction of the latter with an equimolar quantity of cis-(Ph₃P)₂PtCl₂ in THF. Column chromatography (silicic acid/CH₂Cl₂) gave black, crystalline (Ph₃P)₂PtS₂Fe₂(NO)₄, m.p. 198-201°C, in 95% yield**. The molecular weight of the product, determined by field desorption mass spectroscopy (m/e = 1015 with respect to ¹⁹⁵Pt) and vapor pressure osmometry in dichloromethane (1010 observed vs. 1015.49 calcd.) corresponded to that of the monomer. In view of the long non-bonded S····S distance in (μ -C₂H₅S)₂-Fe₂(NO)₄, we suggest that formation of this apparently monomeric (Ph₃P)₂Pt^{II} derivative may occur with some puckering of the Fe₂S₂ ring which serves to bring the sulfur atoms closer to each other. We hope that an X-ray diffraction

^{*}These and all other reactions of Roussin's red salt and all subsequent operations were carried out under nitrogen using Schlenk techniques or in a Vacuum Atmospheres glove box. It should be noted that all $(\mu RS)_2 Fe_2(NO)_4$ complexes, and especially the $(\mu - R_n MS)_2 Fe_2(NO)_4$ complexes, are more or less sensitive to air in the solid state, much more so when in solution.

^{**}Anal. Found: C, 42.43; H, 2.76; N, 5.45%. Calcd. for C₃₆H₃₀O₄N₄S₂P₂Fe₂Pt: C, 42.58; H, 2.98; N, 5.52%; v(NO) 1735, 1690 cm⁻¹.

$(\mu$ -RS) ₂ Fe ₂ (NO) ₄ COMPLEXES PREPARED ^a	$(u-RS)_Fe_{-}(NO)_{-}$	COMPLEXES	PREPARED ^a
--	-------------------------	-----------	-----------------------

R =	Color	M.p. (°C)	$\nu(NO) \ (cm^{-1})$
CH ₃	red-black	92-93	1778, 1755
5			(in CH_2Cl_2)
C ₂ H ₅ (known compound)	red-black	78.5-80	1778, 1750
		(lit. [12] 78)	(in CHCl ₃)
CH,=CHCH,	red-black	57-58	1782, 1754
			(in CDCl ₃)
C ₆ H ₅ CH ₂	red-purple	148-150	1781, 1753
0 0 0			(in CDCl ₃)
Me ₃ Sn	red-purple	182-185	1765, 1735
-			(in CDCl ₃)
Ph ₃ Sn	red-purple	187-189	1760, 1732
2			$(in CD_2Cl_2)$
Ph ₃ Pb	red-purple	180 (dec)	1758, 1723
5			(in CHCl ₃)
PhHg	red	195—200 (dec)	1770, 1740
_			(in CHCl ₃)
η ⁵ -C ₅ H ₅ Fe(CO) ₂	black-purple	165-168 (dec)	1745, 1720
$(1:1 \text{ CH}_2\text{Cl}_2 \text{ solvate})$			(in CD ₂ Cl ₂)

^a All compounds gave satisfactory results ($\pm 0.4\%$) for C, H and N on combustion analysis. The proton NMR spectra and the IR spectra of all compounds were in agreement with the presence of the indicated organic groups. For all compounds the molecular ion was observed in the mass spectrum (either electron impact at 70 eV or field desorption at 20 eV).

study of the platinum derivative will answer this interesting structural question.

Attempts to prepare analogous monomeric derivatives by reactions of Roussin's red salt with main group and other transition metal dihalides have thus far been unsuccessful. We report our preliminary results because the expected differences in the chemistries of $[(\mu-S)_2Fe_2(CO)_6]^{2-}$ and $[(\mu-S)_2Fe_2NO)_4]$ have indeed been observed in the laboratory. Our work on the chemistry of Roussin's red salt and related metal-nitrosyl complexes is continuing. We note that W. Beck and his coworkers also have carried out some studies of reactions of Roussin's red salt [14]. Most notably, they have prepared the anhydrous tetraphenylarsonium salt and have converted this to the bridged mercapto complex, $(\mu-HS)_2Fe_2(NO)_4$.

Acknowledgements

The authors are grateful to the National Science Foundation for support of this work and to the M.I.T. Mass Spectrometry Facility (supported by N.I.H. Division of Research Resources, Grant No. RR00317; K. Biemann, principal investigator) for mass spectra.

References

- 1 L. Roussin, Compt. Rend. Acad. Sci. Paris, 46 (1858) 224; Liebigs Ann. Chem., 107 (1858) 120; Ann. Chim. Phys., [3] 52 (1858) 258.
- 2 O. Pavel, Ber., 15 (1882) 2600.
- 3 K.A. Hofmann and O.F. Wiede, Z. Anorg. Chem., 9 (1895) 295.
- 4 J.T. Thomas, J.H. Robertson and E.G. Cox, Acta Cryst., 11 (1958) 599.
- 5 (a) H.E. Roscoe and C. Schorlemmer, A Treatise on Chemistry, 5th edition, Vol. II, Macmillan and Co., London, 1913, pp. 1242-1243; (b) J.N. Friend (Ed.), A Text-Book of Inorganic Chemistry, Vol. IX, Part II, Charles Griffin & Co., London, 1925, pp. 178-182; (c) P.C.L. Thorne and E.R. Roberts, Fritz Ephraim Inorganic Chemistry, 4th edition, Oliver and Boyd, Edinburgh, 1943, pp. 679-680; (d) N.V. Sidgwick, The Chemical Elements and Their Compounds, Vol. II, Oxford University Press, 1950, pp. 1373-1374; (c) H.J. Emeléus and J.S. Anderson, Modern Aspects of Inorganic Chemistry, 2nd edition, Routledge & Kegan Paul Ltd., London, 1952, p. 416; (f) F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th edition, John Wiley & Sons, New York, 1980, p. 764.
- 6 D. Seyferth and R.H. Henderson, J. Amer. Chem. Soc., 101 (1979) 508.
- 7 D. Seyferth, R.S. Henderson and L.-C. Song, J. Organometal. Chem., 192 (1980) C1.
- 8 D. Seyferth, L.-C. Song and R.S. Henderson, J. Amer. Chem. Soc., 103 (1981), in press.
- 9 L.F. Dahl and C.F. Wei, Inorg. Chem., 2 (1963) 328.
- 10 D. Seyferth, R.S. Henderson and M.K. Gallagher, J. Organometal. Chem., 193 (1980) C75.
- 11 D. Seyferth and R.S. Henderson, J. Organometal. Chem., 204 (1981) 333.
- 12 F. Seel in G. Brauer (Ed.), Handbook of Preparative Inorganic Chemistry, 2nd ed., Vol. 2, Academic Press, New York, 1965, pp. 1763-1764.

•

- 13 D.L. Reger and C. Coleman, J. Organometal. Chem., 131 (1977) 153.
- 14 W. Beck, private communication, May 1981; W. Beck, R. Grenz, F. Götzfried and E. Vilsmajer, Chem. Ber., in press.