Journal of Organometallic Chemistry. 218 (1981) C45—C46 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

CHEMIE POLYFUNKTIONELLER LIGANDEN

LXX. ÜBER DIE REAKTION VON CS₂ MIT VERSCHIEDENEN TRIARSA-TRIAZA-ADAMANTANEN

JOCHEN ELLERMANN und MARTIN LIETZ

Institut für Anorganische Chemie der Universität Erlangen-Nürnberg, Egerlandstrasse 1, D-8520 Erlangen (B.R.D.)

(Eingegangen den 5. August 1981)

Kürzlich berichteten wir über die Darstellung von Heteroadamantanverbindungen des Typs $CH_3C(CH_2AsNR)_3$ (R = CH_3 (I), i- C_3H_7 (II), n- C_4H_9 (III), C_6H_5 (IV) und p- $CH_3C_6H_4$ (V)) [2,3]. Die aliphatisch substituierten Triarsatriaza-adamantane I—III reagieren mit CS_2 [4] zu der bereits früher [2] auf anderem Wege dargestellten, durch Röntgenstrukturanalyse abgesicherten, Adamantanverbindung $CH_3C(CH_2AsS)_3$ (VI) und den entsprechenden Alkylisothiocyanaten (Gl. 1).

Die Alkylisothiocyanate wurden IR-spektroskopisch nachgewiesen. Das bei der Reaktion 1 entstandene VI ist nach Umkristallisation aus heissem THF mit dem früher dargestellten VI, wie Massen-, IR- und Raman-Spektrum, aber auch die Elementaranalysen zeigen, identisch.

Eine Reaktion der aromatisch substituierten Triarsa-triaza-adamantane IV und V mit CS_2 konnte auch nach einstündigem Erhitzen in CS_2 unter Rückfluss nicht festgestellt werden.

$$CH_{3}C(CH_{2}ASNR)_{3} + 3CS_{2} \qquad H_{2}C \qquad CH_{2} + 3R - NCS \quad (1)$$

$$CH_{3}C(CH_{2}ASNR)_{3} + 3CS_{2} \qquad CH_{2} + 3R - NCS \quad (1)$$

$$CH_{2}CH_{2} + 3R - NCS \quad (1)$$

$$CH_{2}CH_{2} + 3R - NCS \quad (1)$$

$$CH_{3}C(CH_{2}ASNR)_{3} + 3CS_{2} \qquad (VI)$$

$$CH_{2}CH_{2} + 3R - NCS \quad (1)$$

$$CH_{3}C(CH_{2}ASNR)_{3} + 3CS_{2} \qquad (VI)$$

$$CH_{2}C$$

LXIX. Mitteilung siehe Ref. 1.

Experimentelles

Alle Arbeiten wurden in wasser- und sauerstoff-freien Lösungsmitteln in N₂-Atmosphäre ausgeführt.

920 mg (2.40 mmol) CH₃C(CH₂AsNCH₃)₃ (I), bzw. 780 mg (1.68 mmol) CH₃C(CH₂AsNC₃H₇)₃ (II), bzw. 420 mg (0.83 mmol) CH₃C(CH₂AsNC₄H₉)₃ (III) werden jeweils in ca. 5 ml CS₂ gelöst und kurzzeitig zum Sieden erhitzt. Bei I werden dieser Lösung vor dem Erhitzen noch 5 ml THF zugesetzt. Nach etwa drei Tagen ist jeweils die Hauptmenge CH₃C(CH₂AsS)₃ (VI) auskristallisiert. Man filtriert ab und kristallisiert VI aus siedendem THF um. Bei II und III wird das Lösungsmittel des Filtrats vorsichtig abdestilliert. Durch weitere Destillation an der Schirmdestille [3] können geringe Mengen (CH₃)₂CHNCS, bzw. n-C₄H₉NCS isoliert werden.

Analyse von VI: Gef.: (a) dargestellt aus I: C, 15.71; H, 2.46; (b) dargestellt aus II: C, 15.63; H, 2.47; (c) dargestellt aus III: C, 15.92; H, 2.48. $C_5H_9As_3S_3$ (390.1) ber.: C, 15.44; H, 2.33%.

IR: $v_{ac}(NCS)$ in cm⁻¹

Verbindung:	CH ₃ NCS	(CH ₃) ₂ CHNCS	n-C ₄ H ₉ NCS
Phase:	in THF	Film	Film
	2200 m ^a 2120 m-st ^a	2155 st 2110 sst 3 br b	2180 st 2138 st 2010 sst

^a Aufgespalten durch Fermiresonanz mit $\nu_{\rm S}({\rm NCS})$ bei 1065 m cm⁻¹. ^b Die breiten aufgespaltenen Banden sind charakteristisch für die Isothiocyanate. Die isomeren S-Thiocyanate zeigen dagegen jeweils nur eine scharfe Bande [5].

Dank. Der Deutschen Forschungsgemeinschaft und dem Verband der Chemischen Industrie, Fonds der Chemischen Industrie, sowie der Hoechst AG Frankfurt/Main danken wir für die Unterstützung dieser Untersuchungen.

Literatur

- 1 J. Ellermann und M. Lietz, Z. Naturforsch. B, 36 (1981) im Druck.
- 2 J. Ellermann, M. Lietz, P. Merbach, G. Thiele und G. Zoubek, Z. Naturforsch. B, 34 (1979) 975.
- 3 J. Ellermann und M. Lietz, J. Organometal. Chem., 215 (1981) 165.
- 4 H.J. Vetter, H. Nöth und W. Jahn, Z. Anorg. Allg. Chem., 328 (1964) 144.
- 5 Ch.J. Pouchert, The Aldrich Library of Infrared Spectra, Second Edit. 1975, Aldrich Chemical Company, Milwaukee, Wisconsin, USA.