Preliminary communication

RESTRICTED ROTATION ABOUT THE BORON-NITROGEN BOND IN AMINOBORANES

CHARLES BROWN, R. HARRY CRAGG, TIM J. MILLER and DAVID O'N. SMITH The Chemical Laboratory, University of Kent at Canterbury, Canterbury, Kent (Great Britain)

(Received August 28th, 1981)

Summary

The application of variable temperature ¹³C NMR to the study of a series of chlorodialkylaminophenylboranes has enabled ΔG^* values for the rotational barrier, about the boron—nitrogen bond, to be determined.

For many years there has been considerable interest in the factors influencing $p_{\pi} - p_{\pi}$ bonding in aminoboranes. One technique which has had considerable success is that of variable temperature ¹H NMR [1-7]. However this technique has a number of limitations, in particular the difficulty of assignments due to overlapping peaks. We have recently begun a reinvestigation of the problem using VT ¹³C NMR. This technique is attractive in so far as the spectra are more easily interpreted than the corresponding ¹H NMR spectra and as a result coalescence temperatures are more easily determined.

We have studied a series of chlorodialkylaminophenylboranes by VT ¹³C NMR and the value of the technique can be seen from the results in the table. A value of ΔG^{\star} was obtained from each pair of resonances arising from isomer shifts, Δv , and coalescence temperature, T_c , using the relationship $\Delta G^{\star} = 4.57 T_c [9.97 + \log_{10}(T_c/\Delta v)]$ derived by Pople [8]. The range of coalescence temperatures observed for any one compound was too small to warrant calculation of activation energies. However, in view of the expected near-zero value of ΔS^{\star} for such intramolecular processes, the similarity of the ΔG^{\star} values calculated for those compounds exhibiting more than one coalescence temperature is encouraging and indicates the reliability of the results obtained.

We are at present extending our studies to evaluate the potential application of ¹³C NMR to study the factors which influence restricted rotation about boron—nitrogen bonds in aminoboranes.

0022-328X/81/0000-0000/\$02.50 © 1981 Elsevier Sequoia S.A.

TABLE 1

Compound	Carbon	$\Delta \nu$	kT _c	Τc	$\Delta G^{\star b}$	
<u>г</u> – а	a	17.6	39.1	384	19.8	
	ъ	11.7	25.9	375	19.7	
	с	9.8	21.8	375	19.8	
	d	7.8	17.3	367	19.5	
	a	19.6	43.5	383	19.7	
	ь	9.8	21.8	371	19.6	-
	С	9.8	21.8	371	19.6	
	ъ	19.5	43.3	369	19.0	
B====N[∑]2	а	9.8	21.8	366	19.3	
		20.5	45.5	350	17.9	
	a b	15.6	34.6	339.5	17.5	
BN Ph	а	106.8	237.1	383	18.4	

VT ¹³C NMR RESULTS FOR CHLORO(DIALKYLAMINO)PHENYLBORANES

^G Note a ΔG^* value of 19.7 kcal/mol, obtained by ¹H NMR, has been reported for PhB(NBu¹₂)Cl [6]. b Accurate to within ± 0.25 kcal/mol.

References

- 1 P.A. Barfield, M.F. Lappert and J. Lee, Proc. Chem. Soc., (1961) 421.
- 2 G.E. Ryschkewitsch, W.S. Brey and A. Saii, J. Am. Chem. Soc., 83 (1961), 1010.
- 3 H. Baechle, H.J. Becher, H. Beyer, W.S. Brey, J.W. Dawson, M.E. Fuller and K. Niedenzu, Inorg. Chem., 2 (1963) 1065.
- 4 P.A. Barfield, M.F. Lappert and J. Lee, J. Chem. Soc., (1968) 554.
- 5 K.N. Scott and W.S. Brey, Inorg. Chem., 8 (1969) 1703.
- 6 D. Imbery, A. Jaeschke and H. Friebolin, Org. Mag. Res., 2 (1970) 271.
- 7 P.A. Barfield, M.F. Lappert and J. Lee, Trans. Farad. Sco., (1968) 2571.
 8 J.A. Pople, W.G. Schneider and H.J. Bernstein, High Resolution NMR, McGraw Hill, New York, 1959.