Journal of Organometallic Chemistry, 213 (1981) 461-485 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

ETUDE VIBRATIONNELLE DES COMPOSES $(C_4H_4P)Mn(CO)_3$ ET $[C_4H_2(CH_3)_2P]Mn(CO)_3$ ET CALCUL DU CHAMP DE FORCE DU CYCLE C_4H_4P COMPLEXE

O. POIZAT et C. SOURISSEAU

Laboratoire de Spectrochimie Infrarouge et Raman, C.N.R.S., 2, rue Henri Dunant, 94320 - Thiais (France)

(Reçu le 27 novembre 1980)

Summary

The Raman and infrared spectra $(4000-200 \text{ cm}^{-1})$ of $(C_4H_4P)Mn(CO)_3$ and $(C_4D_4P)Mn(CO)_3$, and of $[C_4H_2(CH_3)_2P]Mn(CO)_3$ and $[C_4D_2(CH_3)_2P]Mn(CO)_3$ in the liquid and solid states (10-400 K) have been investigated. A complete vibrational assignment is proposed and valence force fields of the (C_5H_5) and (C_4H_4P) cycles are compared. From these results, it is clearly shown that the (C_4H_4P) rings are more electrophilic and weaker π -electron donors than (C_5H_5) rings, this is in agreement with their chemical behavior.

Résumé

Les spectres Raman et infrarouge des complexes $(C_4H_4P)Mn(CO)_3$, h_4 et d_4 , et $[C_4H_2(CH_3)_2P]Mn(CO)_3$, h_2 et d_2 , à l'état liquide et solide (10—400 K) ont été étudiés entre 4000 et 200 cm⁻¹. Une attribution complète des vibrations est proposée et les champs de force de valence des cycles (C_5H_5) et (C_4H_4P) sont comparés. Tous ces résultats montrent clairement, en accord avec les propriétés chimiques, que les cycles (C_4H_4P) sont plus électrophiles et moins bons donneurs d'électrons π que les cycles (C_5H_5) .

I. Introduction

Les premiers composés organométalliques comportant des hétérocycles phosphorés qui possèdent une véritable chimie "aromatique" ont été récemment synthétisés par Mathey et coll. [1, 2, 3]. Parmi eux, le phosphacymantrène, (C₄H₄P)Mn(CO)₃, présente une structure moléculaire et cristalline très semblable [3,4] à celle du cymantrène, (C₅H₅)Mn(CO)₃, qui a été déjà étudié et bien caractérisé par spectrométrie de vibration [5,6]. Cependant, certaines de

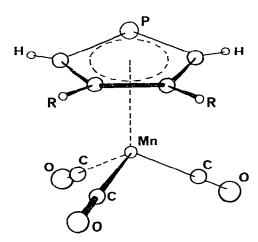


Fig. 1. Structure moléculaire du phosphacymantrène (R = H) et du diméthyl 3,4-phosphacymantrène ($R = CH_3$).

ses propriétés chimiques, en particulier sa réactivité vis-à-vis des agents acido-basiques, différent totalement de celles du cymantrène [3]. Le but principal de ce travail a donc été d'évaluer les effets électroniques dus à la présence d'un atome de phosphore dans le cycle, d'une part sur les forces des liaisons internes, d'autre part sur celles des liaisons π métal—ligands. En particulier, nous avons cherché à identifier, en termes de vibrations de groupes, les modes de vibration caractéristiques des liaisons P—C et essayé d'interpréter les différences de comportements chimiques.

Dans cette perspective, nous avons effectué en premier lieu les études vibrationnelles, par diffusion Raman et absorption infrarouge (200–4000 cm⁻¹), du phosphacymantrène et du diméthyl-3,4 phosphacymantrène (Fig. 1), notés PCy et DMPCy par la suite, ainsi que de leurs dérivés deutériés, respectivement d_4 et d_2 . Une attribution complète des vibrations internes a été proposée et comparée à celles reportées dans la littérature pour le cymantrène [5,6]. En second lieu, nous avons calculé et comparé les chapas de force de valence des cycles C_4H_4P et C_5H_5 complexés par Mn(CO)₃ afin de préciser d'une manière quantitative les effets électroniques.

II. Partie expérimentale

Les complexes PCy et DMPCy ont été préparés par Mathey et coll. [1—3] et purifiés par sublimation lente sous vide primaire. Les dérivés deutériés d_4 et d_2 , $(C_4D_4P)Mn(CO)_3$ et $[C_4D_2(CH_3)_2P]Mn(CO)_3$ ont été obtenus par échange des protons par action de DCl gazeux en présence de AlCl₃ [7]: l'acide DCl formé par addition goutte à goutte de 0.1 mol de D_2O à 0.1 mol de C_6H_5COCl à $130^{\circ}C$ [8] est entrainé par un courant d'azote gazeux au travers de deux pièges refroidis à -20 et $-60^{\circ}C$, et vient barbotter dans une solution de 2×10^{-3} mol de complexe dans 20 cm³ de CH_2Cl_2 , maintenue sous agitation à $40^{\circ}C$ en présence de 50 mg de AlCl₃. Après 5 h d'addition, le milieu réactionnel est neutralisé par une solution aqueuse de NaHCO₃ à 10%. La phase organique,

séparée par décantation, est séchée sur Na_2SO_4 , puis le solvant est évaporé et le résidu solide sublimé (Rdt. $\approx 75\%$). Les taux de deutération de PCy- d_4 et DMPCy- d_2 ont été déterminés par spectrométrie de masse; ils s'élèvent respectivement à 82 et 95%, en pourcentages de deutérium total.

Les spectres Raman ont été enregistrés entre 150 et 4000 cm⁻¹ en utilisant un triple monochromateur Coderg T 800, équipé d'un laser Spectra-Physics 164 à krypton ionisé (raie 6471 Å). La puissance de l'excitatrice a été maintenue inférieure à 50 mW afin de ne pas détériorer les échantillons. Les largeurs spectrales étaient comprises entre 0.5 et 1 cm⁻¹. Un cryostat à hélium liquide ainsi qu'un corps chauffant ont été utilisés pour les divers enregistrements sur la gamme de température 10—400 K. Les températures des échantillons ont été estimées par lectures thermocouple ou par mesures des rapports d'intensité des raies stokes et antisokes.

Les spectres infrarouges ont été réalisés entre 180 et 4000 cm⁻¹ sur les spectromètres Perkin—Elmer 225 et/ou 180. Les enregistrements des spectres à basses températures (≈100 K) ont été effectués à l'aide d'une cellule classique refroidie à l'azote liquide.

Les spectres de masse ont été réalisés au laboratoire de Spectrochimie Moléculaire de l'Université Pierre et Marie Curie (Paris VII) sur un spectrographe Hitachi RMU 6E à 70 et 10 eV.

Les calculs des champs de force ont été effectués à l'aide des programmes de calcul mis au point par Schatschneider [9].

III. Structures et dénombrements des vibrations

III. 1. Molécules isolées

En première approximation, les molécules PCy et DMPCy appartiennent au groupe de symétrie C_s (Fig. 1). Considérés isolément, le trépied $Mn(CO)_3$ et le cycle présentent les symétries locales C_{3v} et C_{2v} . De nombreux auteurs [5,6,10—15] ont effectués les analyses vibrationnelles de complexes analogues dans l'approximation de telles symétries locales en négligeant les couplages entre le cycle et le trépied. Par analogie avec ces travaux, nous avons repris les mêmes notations des vibrations [13]. Néanmoins, l'interprétation rigoureuse des spectres (règles de sélection, polarisations Raman, intensités) ne doit être effectuée pour les complexes PCy et DMPCy que dans leur symétrie globale C_s : on attend, pour PCy, 42 vibrations internes dont 21 appartiennent au cycle (11A' + 10A''), 15 au trépied (9A' + 6A'') et 6 correspondent aux interactions cycle—trépied (3A' + 3A''). Dans le cas du DMPCy, s'ajoutent 18 modes internes propres aux groupes méthyles: en effet, pour chaque CH_3 , on dénombre 3 $\nu(CH)$, 3 $\delta(CH)$ et $3\rho(CH)$, chacune de ces vibrations devant donner lieu à deux composantes (A' + A'') par couplage entre les deux groupes méthyles.

III, 2. Molécules dans le cristal

Nous avons récemment montré [4] que PCy cristallise à 300 K dans le système monoclinique de groupe d'espace $P2_1/a(C_{2h}^5)$ avec quatre molécules par maille (site C(1)); DMPCy possède très probablement une structure isomorphe [4]. La corrélation entre groupe moléculaire C_s , groupe de site C(1) et groupe facteur C_{2h} permet d'attendre pour chaque mode interne quatre composantes $A_g + B_g + C_{2h}$

 $A_u + B_u$, les deux premières étant actives en Raman, les deux dernières en infrarouge.

IV. Analyse vibrationnelle

Quelques spectres infrarouge et Raman ($3200-200 \text{ cm}^{-1}$) des dérivés hydrogénés sont reproduits sur les Fig. 2 à 5. Toutes les fréquences, les intensités relatives et les attributions des bandes observées pour les complexes PCy (h_4 et d_4) et DMPCy (h_2 et d_2) à l'état liquide (310 ou 350 K) et solide (10, 120 et 300 K) sont reportées dans les Tableaux 1 à 4. Les attributions ont été établies à l'aide des comparaisons des spectres des différents dérivés deutériés sous divers états, physiques, en utilisant les valeurs des rapports de dépolarisation Raman, et également à l'aide des résultats connus pour le cymantrène, (C_5H_5)Mn(CO)₃ [5,6]. Pour les modes internes des groupes méthyles, nous nous sommes référes aux travaux publiés pour le méthylcymantrène [13,15], le diméthylferrocène [14] et l'orthoxylène [16,17].

Nous étudierons successivement les complexes PCy puis DMPCy. Les bandes les plus intenses des spectres des composés deutériés ont été attribuées aux dérivés prépondérants respectifs, d_4 et d_2 , et nous avons fait correspondre les bandes faibles (non assignées) aux dérivés partiellement deutériés (Tableaux 2

(Suite sur la page 469)

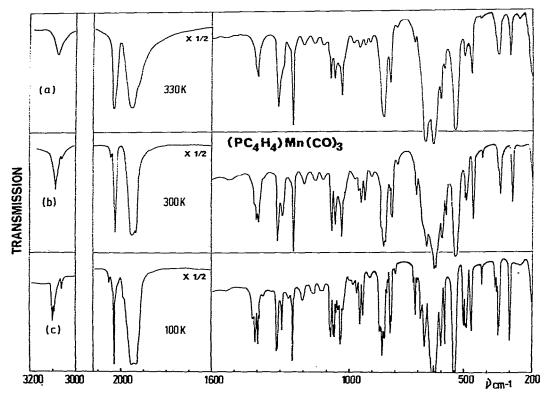


Fig. 2. Spectres infrarouge du phosphacymantrêne: (a) liquide pur à 330 K; (b) solide à 300 K; (c) solide à 100 K.

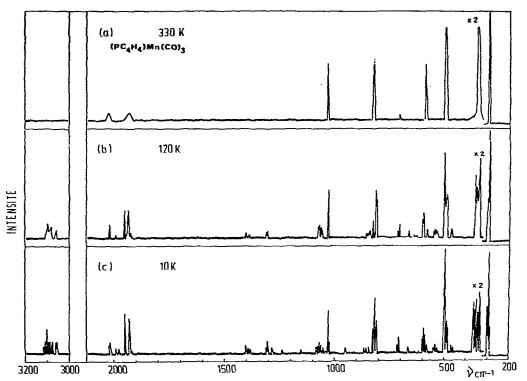


Fig. 3. Spectres Raman du phosphacymantrène: (a) liquide pur à 330 K; (b) solide à 120 K; (c) solide à 10 K.

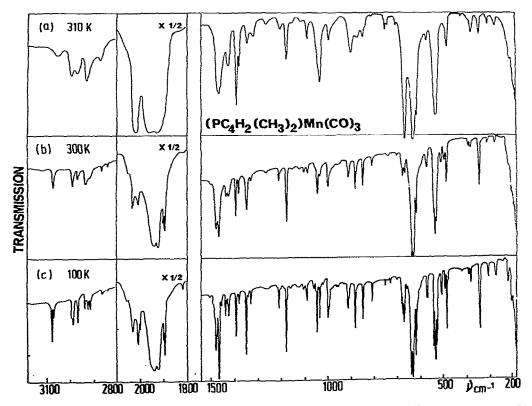


Fig. 4. Spectres infrarouge du diméthylphosphacymantrène: (a) liquide pur à $310~{\rm K}$; (b) solide à $300~{\rm K}$; (c) solide à $100~{\rm K}$.

FREQUENCES (cm⁻¹) BT ATTRIBUTIONS DES SPECTRES INFRAROUGE ET RAMAN DU COMPLEXE (PC4H4)Mn(CO)₃ Tableau 1

Raman Infrarouge Attributions 10 K 300 K 360 K ρ 100 K 300 K 350 K 3111 (4) 3104 (6) 3104 (7) 3097 (9) 3082 (8) 3									1	
120 K 300 K 360 K (fondu) (fon	Raman					Infrarouge			Attributions	l
3099 m 3082 (4) 3082 (cp) 3089 ép 3080 m 3082 (4) 3082 (cp) 3060 f 3060	10 K	120 K	300 K	350 K (fondu)	σ	100 K	300 K	350 K (fondu)		
3082 (4) 3082 (ep) 3082 (4) 3082 (ep) 3068 (3) 3067 (3) 3060 f 3060 f 3060 6p 2016 (6) 2018 (4) 2020 0.06 2022 FF 2025 FF 2031 FF 1956 FF 1926 (12) 1950 (7) 1920 (6p) 1926 (12) 1930 (7) 1930 0.75 1931 FF 1924 6p 1934 m 1394 m 1394 m 1308 (6p) 1266 FF 1286 m 128	3111 (4)					derrore de deste de service de deste d				1
3082 (4) 3082 (ep) $3068 (3) 3067 (3)$ $3068 (3) 3067 (3)$ $2016 (6)$ $1989 (1)$ $1990 (12)$ $1990 (12)$ $1920 (10)$ $1920 (10)$ $1920 (1)$ $1308 (6p)$ $1308 (2)$ $1938 (4)$ $2020 0.06$ $2022 FF$ $1992 FF$ $1992 FF$ $1992 FF$ $1992 FF$ $1994 FF$ $1996 FF$	3098 (8)	3098 (7)	3097 (6)			3099 m				
$3062 (4) 3082 (ep)$ $3068 (3) 3057 (3)$ $2015 (6) \}$ $2015 (6) \}$ $1989 (12) \}$ $1960 (12) \}$ $1950 (12) \}$ $1950 (12) \}$ $1950 (12) \}$ $1970 (12) $ $1970 (12) $ $1970 (12) $ $1970 (12) $ 197	3094 (5) <i>)</i> 3087 (5))		-			3089 ép	3090 m	3080 f	ν1, ν5α, (ν(CH))	
	3083 (4)	3082 (4)	3082 (ep)						62 vg	
	3059 (4) 3058 (5)	3058 (3)	3057 (3)			3060 f	3060 ép			
	2046 (4)					2045 ép)	2046 60			
	$2014\ (11) \\ 1988\ (3)$	2015(6) $1989(1)$	2018 (4)	2020	0,05	2022 FF 1990 ép	2025 FF	2031 FF	ν ₁₅ (ν(CO))	
1928 (10) 1930 (7) 1930 (7) 1931 FF 1924 6p 1924 6p 1920 (5p) 1410 6p) 1440 6p 1440 m 1300 (1) 1386 6p) 1391 m 1391 m 1394 m 1308 (5p) 1306 6p 1306 6p 1306 F 1304 F 1285 m 1286 m 1286 m	1976 (2) $1948 (25)$	1950 (12)	1950 (7)			1962 FF	1954 FF	1955 FF	į	
1410 cp $1400 m$ $1300 (L)$ $1391 m$ $1391 m$ $1308 (p)$ $1308 (p)$ $1306 F$ $1305 (2)$ $1305 F$ $1304 F$ $1286 m$ $1286 m$ $1258 f$ $1286 m$	1928 (21) 1924 (2)	1929 (10) 1920 (ép)	1930 (7)	1930	0.75	$1931 \; \text{FF} \\ 1922 \; \text{ép} \; \right)$	1931 FF 1924 6p	1924 ép	v21 (v(GO))	
1390 (1) 1391 m 1394 m 1308 (ép) 1305 (2) 1305 (2) 1305 m 1286 m 1285 m 1286 m	1400 (4)	1401 (2)				1410 ép}	1400 m		ν _{8a} (ν(cycle))	
1308 (ép) 1305 F 1304 F 1305 (2) 1305 (2) 1285 m 1286 m 1258 f	1390 (4)} 1385 (3)	1390 (1)				1391 m }	1391 m	1394 m	ν _{8b} (ν(cycle))	
1285 m 1258 f	1310 (4) } 1305 (8)	1308 (ép)} 1305 (2)				1309 F 1306 ép	1306 F	1304 F	v12a (v(cycle))	
	1203 (2)					1285 m 1258 f	1286 m		ν _{12b} (ν(cycle))	

ν4 (δ(CH))			ν ₆₁ , ν ₁₀ (δ (CH))	i i	ν _{6b} (δ(CH))	ν ₃ (ν(cycle))		νη, ν _{11a} (γ(CH))			ν11b (γ(CH))	ν _{13b} (Δ(cycle)) ?		ν ₂ (γ(CH))	(Colored A)	VI3a (A(CyCie))	(()-()-(M) 3)	110 C 11111 C 111	ν ₂₂ (δ (Mn-C-0))	
1241 F	1193 f 1146 f	1108 f	1076 m	1067 m	1040 ép	1028 F	9731	945 f	922 f	902 f	841 F			812 m 781 ff		1021	<u> </u>		627 FF	
1241 F	1195 f 1147 f	1108 f	1075 m	1057 m } 1054 ép }	1040 ép	1026 F	9751	956 ép } 945 m	930 m	902 f	845 F	838 ép	820 f	812 ép } 809 m	785	1007	1000	627 FF	620 FF	
1240 F }	1200 f 1150 f	$\frac{1118 \ \mathrm{f}}{1110 \ \mathrm{f}}$	1079 ép 1075 ép 1070 m	1060 m 1056 m	1038 f	1022 ép	976 f	958 f }	933 m	902 f	860 m 865 ép	839 m }	830 f 7	$\frac{813 \mathbb{F}}{809 \mathrm{m}} \big\}$	790 f 714 f	706 m 2	678 m	630 FF.	620 FF	
						0.12								0.14	0.20					
						1028								811	206					
						1028 (16)					855(1) 845(1)		820 (ép)	809 (18)	713 (ép) }	705 (4)				
			1075 (4) } 1071 (4) }	1060 (4) }		1029 (23)					856(1) 848(ép)	840 (1)	822 (8)	812(25) $809(20)$	713 (2) }	705 (6)		661 (2)		
1239 (1)	1156 (1)		1079 (5) } 1073 (6) } 1068 (9)	1060 (7) 1056 (3)	1038(1)	1026 (10)		947 (1)			860 (1) }	840 (3)	822 (12)	812 (47) $808 (29)$	712 (6) }	705 (12)	- !	663 (4)		

TABLEAU 1 (suite)

Of Principles of the Principle		of the surface of the state of	to be a final property of the last of the section o	VIEW DAY AND THE COMPANY OF THE PROPERTY OF TH				
Raman					Infrarouge			Attributions
10 K	120 K	300 K	350 K (fondu)	р	100 K	300 K	350 K (fondu)	
597 (11) 591 (21) 586 (10)	596 (ep.) } 591 (15) }	692 (11)	593	0.17	597 ép }	592 m	592 m	v14b (l'(eycle))
577 (5) 643 (3)	542 (9)				578 F	578 m	579 f	ν _{13h} (Δ(eycle))?
536 (6) 533 (6)	529 (57)	636 (2)			536 FF 3	. 535 FF	530 FF	P23 (6(Mn-C-O))
495 (88)	496 (48)	495 (30)	490	0,16	498 (p)	495 m		ν ₁₇ (ν(Mn–CO))
485 (32) } 482 (20) }	486 (25)	485 (ép)			487 ép 3 481 fr	485 m	485 f	ν24 (ν(Mn~CO))
460 (3) 460 (3) 459 (3)	463 (3)	460 (2)			460 F	460 F	458 m	vita (l'evele))
360 (44)					417 €	417 £	417 [[
357 (33)	357 (37)	353 (20)			356 f			
350 (15) 344 (39)	349 (30)	145 (30)	345	0,29	349 (p	340 m	340 m	ν ₂₅ (ν(Μη–αγοίο))
342 (39)] 337 (49)] 297 (87))	336 (45)	339 (30)			340 F			
293 (100)	292 (100)	290 (100)	290	0.20	293 F	290 m	289 m	v18 (v(Mn—cycle))
The state of the s								

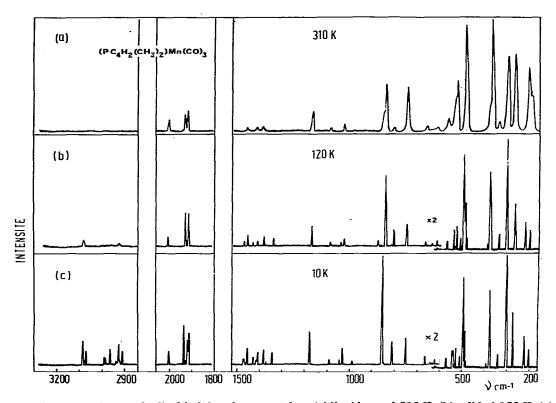


Fig. 5. Spectres Raman du diméthylphosphacymantrène: (a) liquide pur à $310~\mathrm{K}$; (b) solide à $120~\mathrm{K}$; (c) solide à $10~\mathrm{K}$.

et 4). Les modes $\delta(CO-Mn-CO)$ et $\delta(cycle-Mn-CO)$, attendus en dessous de 200 cm⁻¹, ont fait l'objet d'une étude séparée [4].

IV, 1. Phosphacymantrènes h_4 et d_4

Vibrations du trépied $Mn(CO)_3$ et interactions cycle—trépied. Les modes $\nu(CO)$ sont attendus vers 2000 cm⁻¹. Le spectre infrarouge de PCy à l'état liquide présente trois bandes intenses à 2031, 1955 et 1924 cm⁻¹; à la première correspond une raie Raman polarisée ($\rho \sim 0.05$) à 2020 cm⁻¹ que nous attribuons au mode totalement symétrique $\nu_{15}(A')$; aux deux autres correspondent les modes $\nu_{21}(A')$ et $\nu_{21}(A'')$.

Les fréquences des six modes $\delta(\text{Mn-C-O})$ et des trois modes $\nu(\text{Mn-CO})$, attendues respectivement vers 600 et 500 cm⁻¹, sont généralement peu sensibles au cycle complexé [5,10–13]: ces vibrations sont localisées sans ambiguïté (Tableau 1).

Enfin, nous assignons aux trois vibrations $\nu(\text{Mn-cycle})$, $\nu_{18}(\text{A}')$, $\nu_{25}(\text{A}')$ et $\nu_{25}(\text{A}'')$ les fortes raies Raman à 290 cm⁻¹ ($\rho=0.10$) et 345 cm⁻¹ ($\rho=0.29$) et la bande dépolarisée à 350 cm⁻¹ respectivement. Le mode ν_{18} est particulièrement caractéristique de la force de la liaison cycle—trépied. Dans l'approximation d'un oscillateur harmonique, la constante de force correspondante peut être reliée à la fréquence ν_{18} par la formule: $\nu=\frac{1}{2\pi c}\sqrt{\frac{F}{\mu}}$, où μ représente la masse

TABLEAU 2 $FREQUENCES~(cm^{-1})~ET~ATTRIBUTIONS~DES~SPECTRES~INFRAROUGE~ET~RAMAN~DU~COMPLEXE~(PC4D4)Mn(CO)_3$

Raman		Infrarouge			Attributions
10 K	120 K	100 K	300 K	350 K (fondu)	
		3095 f 3060 ff	3090 ff		ν (CH) résiduel
2320 (5)	2318 (4) լ	0000 11			
2311 (3) }	2310 (2) [∫]	2311 ép			$(\nu_1, \nu_{3a},$
2307 (ép) j		2308 m	2308 m	2307 m	· (
		2293 ép			ν _{5b} , ν ₉ (ν(CD))
016 (7)		2030 FF 2018 FF	2024 FF	2028 FF	ν ₁₅ (ν(CO))
947 (16)	1948 (15) չ	1950 FF _l	1950 FF]	1951 FF _l	ν ₂₁ (ν(CO))
930 (14) 922 (1)	1030 (14) ^J	1928 FF [∫]	1930 ép ^J	193 2 ép ^J	
		1397 m	1395 f	1399 ép _\	
	-	1382 m	1381 m	1379 m	••
		1373 m	1376 ép	}	ν(cycle)
		1346 m	1345 f	1346 f	$(PC_4D_2H_2, PC_4D_3H)$
		1327 ff	1326 ff	7005]	
		1316 ff 1288 ff	1308 ff	1305 ff / 1287 ff	
		1256 f	1288 ff 1255 f	1257 fi 1258 f	ν _{8a} (ν(cycle))
		1242 m	1242 m	1241 m	ν _{8b} (ν(cycle))
		1227 f	1230 ép	1011 11	Pag (P(Cycle))
210 (5)	1209 (3)	1210 F	1207 F	1209 F	v_{12a} (v(cycle))
		1202 m	1203 ép		$\nu_{12b} (PC_4D_3H)$
		1185 éթ լ	1100	1700	
		1180 m [∫]	1183 m	1182 m	ν_{12b} (ν (cycle))
		1133 éթ լ	1129 F	1129 F	(BC-D-H)
		1129 F		1132 F	v_4 (PC ₄ D ₃ H)
		1108 f	1105 f	1116 f	
051 (4)	1051 (0)	1059 ff }	1050 f		
JJI (4)	1051 (2)	1050 f ^J 1035 ép			
		1030 ép)			
		1025 F	1025 F 7		
		1015 ép	1015 ép	1027 F	ν ₄ (δ(CD))
		970 f	974 f	970 f	
949 (6)	949 (4)	948 m	947 m	949 f	v_3 (PC ₄ D ₃ H)
395 (16) }	895 (7)	896 f]	900 éթլ	900	
390 (30)	890 (26) ⁾	891 m ^J	890 F ^J	892 m	ν ₃ (ν(cycle))
377 (9)	877 (7)	879 ու լ	877 m	878 m)	
PCE /E:	004 :01	877 ép ⁾		}	
865 (5)	864 (6)	865 m	863 m	863 f	v_{6a} , $v_{10}(\delta$ (CD))
838 (2)]	020 /01	850 f	940	940	(E(CD))
334 (ép) ^ʃ	838 (2)	839 m } 832 f	840 m	840 m	ν _{6b} (δ(CD))
310 (3)	811 (2)	$\begin{array}{c} 815 \tilde{e}p \\ 812 m \end{array}\}$	814 ép }	813,5 f	ν_{11b} (PC ₄ D ₃ H)
771 (4)	771 (4)	771 m	811 m ³ 772 F	774 m	· · · · · · · · · · · · · · · · · · ·
\-/	••• (=/	760 f 7	758ff l	1 1.2 111	ν_{13b} (Δ (cycle))?
		748 f	745 f	744 £	
		730 m)	,	}	$v_7, v_{11a}(\gamma(CD))$
730 (5) }	726 (4) ₇ :	726 ép	725 m } 718 m	724 f.)- 11 <u>0</u> 1122
720 (6) '	719 (6) [∫]	-720 f	110 III		
		711 f '			

TABLEAU 2 (suite)

Raman		Infrarouge	e		Attributions
10 K	120 K	100 K	300 K	350 K (fondu)	
710 (6)	710 (6)	705 m 690 ép)	707 f		$\nu_{11\mathrm{b}}$ (PC ₄ D ₃ H)
690 (4) 680 (4) }	683 (3)	687 F 680 F	685 F } 678 ép }	682 FF	v_2 ou v_{11b} (γ (CD))
667 (4)	665 (3)	673 f 663 f 653 m 649 ép	670 ép 662 ép 651 ép	659 ép	ν ₁₆ (δ (Mn—C—O))
640 (1) 630 (2)	637 (3)	045 Cp			
620 (3) } 615 (3) [}] 600 (4)	616 (3)	614 FF	612 FF	612 FF	ν ₂₂ (δ (Mn—C—O))
583 (10) 580 (11) 576 (20)	580 (10) 576 (12)	581 F 574 ép}	579 F	578 m	ν ₂ ου ν _{11b} (γ(CD))
572 (12) 565 (1)					v_{14b} (Γ (cycle))
(48 (4) (43 (5) (38 (6) (32 (6) (28 (5) (23 (3)	542 (2) 534 (3)	533 FF	534 FF	529 FF	ν ₂₃ (δ (Mn—C—O))
616 (2) .94 (60)	515 (1) 492 (40)	516 m 494 m	513 ép 491 m		ν _{13b} (δ(cycle))? ν ₁₇ (ν(Mn—CO)
85 (20) 82,5 (10)	485 (24)	482 F	482 F	484 m	ν ₂₄ (ν(Mn—CO))
		437 ép } 432 m 429 ép } 417 f	430 m 417 f	427 m	ν ₁₄₂ (Γ(cycle))
51 (8) 49 (8) 43 (14)	346 (ép) 343 (26)	348 ép			
41 (14) 38 (12) 29 (10) 24 (ép) 19 (10)	339 (ép) 329 (14) 320 (26)	340 m 336 ép 328 ép 323 F	335 ép }	323 F	ν ₂₅ (ν(Mn-cycle))
96 (60) 92 (100) 88 (30)	297 (ép) 292 (100)	297 (ép) 292 F	290 F	288 F	ν ₁₈ (ν(Mn-cycle))

réduite de la molécule. La valeur de la constante de force ainsi calculée pour PCy, égale à 2.6 mdyne Å⁻¹, est nettement inférieure à celle dans le complexe $(C_5H_5)Mn(CO)_3$, 3.2 mdyne Å⁻¹, pour lequel le mode ν_{18} a été localisé à 348 cm⁻¹ [5]: il apparait donc que le cycle C_4H_4P est moins donneur envers le trépied, c'est-à-dire plus électrophile, que le cycle C_5H_5 . En effet, on note en passant du cymantrène au phosphacymantrène une augmentation des fréquences des modes $\nu(CO)$ et une diminution de celles des modes $\nu(Mn-CO)$: ces

FREQUENCES (cm⁻¹) ET ATTRIBUTIONS DES SPECTRES INFRAROUGE ET RAMAN DU COMPLEXE (PC4H2(CH3)2)Mn(CO)3 TABLEAU 3

							, 10 to 1	C' \ -	
Raman					Infrarouge				Attributions
10 K	120 K	300 K	310 K (fondu)	ď	100 K	300 K	310 K (fondu)	ZvZ	
3082 (16) 3069 (7)	3080 (2)				3078 m } 3088 f	3072 m	3058 f		v ₁ (v(CH))
2989 (4) 2984 (3)					2988 ép 2964 m	2986 m 2965 f	2985 m 2964 m		//www.64
2962 (8)					2933 m	2929 m	2926 m		
2936 (ep) 2925 (10)					2923 f 2912 f	2911 ép	`		ν(C H ₃)
2911 (7)						•			
					2865 f 2040 ff	2865 f 3 2843 ff	2868 f		28 (CH ₃)
					2057 f	2049 m	2048 én	2041 én)	((0))
£, 0000	1	(4) 4000	0		2033 F	2032 F	2	40 110	//00/20 GT/
2000 (1)	2003 (6)	2003 (8)	2003 (8)	80'0	2009 6p} 2006 F	2006 F	2015 FF	2037 FF	
					1999 m } 1997 ép }	1998 ép			•
1933 (25)	1931 (19)	1931 (27)	1932 (12)	0.70	1937 FF	1933 FF	1935 FF	1965 FF)	
1925 (2)	1924 (2)	1924 (ép)			1924 ép	1924 ép			V21 (V(CO))
1919 (16) 1017 (20)	1917 (17)	1917 (25)	1919 (16)	0.70	1918 FF	1918 FF	1920 FF	1959 ép }	
					1895 ép 1892 F	1896 ép 1891 F	1898 ép		

1808 ff

1913 f

6. 6. (CH2)	(C.1) U. 10	ν8a (ν(cycle))	ν _{8b} (ν(cycle))	δ _S (CH ₃)	$\nu_{12a}~(\nu({\rm cycle}))$	ν_{12b} (ν (cycle))	2 \nu_{21}	ν _{5a} (ν(C–CH ₃))	P10 (6(CH))			ν ₄ (δ(CH))		$\rho \uparrow$ (CH ₃)	p// (CH ₃)	ν _{5b} (ν(C–CH ₃))	
1461 F	1453 (ép)	1424 m		$1386 \mathrm{F}$ $1376 \mathrm{m}$	1338 f	1314 f	1258 ff	1198 m	1171 m	1149 ff	1110 ff	1082 f		1038 ép	1031 F	989 f	896 m
1469 F	1459 F	1426 f	1417 f	1387 F } 1375 f	1342 m	1322 f	1260 ff	1203 f	1171 F	1151 ff	1120 ff 1099 f	1084 f		1040 m	1031 ép	996 m	908 m
1476 ép 1471 F 1468 ép	1469 F)	1430 F} 1425 f	1418 m	1387 m} 1374 f	1344 F }	1324 f	$\frac{1264}{1254} \text{ ff} \Big\}$	1204 m	$\frac{1172 \text{ F}}{1169 \text{ ép}} \}$	1155 ff	1116 ff 1099 ff	1086 f	1054 ff 1046 ép	1042 F }	1031 m	995 m $991 ép$	911 m } 905 ép
			1418 m	1386 m					0.08						0.10		
	1458 (2)		1418 (2)	1384 (2)					1168 (13)			1083 (1)			1028 (6)		
	1457 (3)		1415 (3)	1384 (4)	1342 (2)				1170 (11)			1083 (2)		1039 (1)	1030 (4)		
1467 (3)	1465 (ép)	1431 (2)	1413 (2)	1383 (6)	1341 (4)				1170 (10)			1086 (1)		1040 (1)	1028 (4)		
1466 (3)	1454 (8)	1431 (4)	1412 (6)	$\frac{1382}{1372}$	1340 (6)				1171 (15)			1087 (3)		1042 (3)	1027 (10)	985 (2)	

TABLEAU 3 (suite)

Raman		ramin alesarbiciques grandes de la constante d		and the same of th	Infrarouge		ar variation de la companya de la c		Attributions
10 K	120 K	300 K	310 K (fondu)	d	100 K	300 K	310 K (fondu)	gaz	-
879 (2)	879 (2)	876 (5)	852 (ép)		880 m 874 év	877 m	869 f		ν ₇ (γ(OH))
846 (50)	845 (39)	843 (45)	844 (36)	0,32	847 m	845 m	844 f		v3 (v(cycle))
808 (10)	806 (8)	804 (12)	805 (1)		807 f	805 f	806 ff		ν ₂ (γ(CH))
749 (15)	740 (11)	746 (14)	747 (34)	60'0	760 ff. 730 ff.	749 f 738 ff	747 f} 739 f}		ν _{13a} (Δ(cycle))
667 (6)	(8)	665 (5)	666 (3)	0,16	681 f 676 m 670 m	673 m} 666 f	669 ép } 664 FF	669 f 664 F	ν16 (δ (Mn-C-0))
636 (1)}	635 (1)				636 FF 3	633 FF 3	628 FF	628 FF	ν21 (δ(Mn-C-O))
619 (5)	616 (9)	615 (6)	616 (2)		9 LT 6	616 tp	614 ép		ν13b (Δ(cycle))
569 (10)	568 (9)	667 (7)	568 (10)	0,65	571 m } 569 m }	570 ép	₽69 £		
540 (21) $538 (21)$	638 (19)	537 (25)	636 (27)	0,14	539 F	537 ép }	534 FF	534 FF	v23 (6(Mn—C—O))
528 (25)	527 (24)	627 (28)	527 (39)	0,10	529 F	526 FF	528 ép	•	
509 (10)	508 (11)	606 (12)			507 m	505 m		-	ν ₂₄ (ν(Mn-CO))
493 (80) 491 (28)	462 (63)} 466 (29)	492 (86)	491 (90)	0.12	488 (p)	492 f	490 ép		ν1η (ν(Mn-CO))
. 486 (9)	484 (12)	484 (ép)		•	484 F	482 m	480 m		V14b (6 (cycle))
381 (80)	380 (78)	376 (11)	373 (400)	0.00	388 ft 380 ff	388 I 378 f	386 cp		V6b (d (C-C-CH3))
340 (12)	340 (15)	339 (16)	340 (9)	96.0	340 F 337 6p }	339 F	339 €		ν2 5 (ν(Mn-cycle))
305 (100) 3 298 (ép)	305 (100)	303 (100)	302 (64)	0.23	305 £	304 f	302 f	•	v18 (v(Mn-cycle))
284 (cp)} 277 (60)} 221 (30) 202 (20)	276 (48) 220 (28) 202 (19)	274 (46) 214 (31) 201 (27)	271 (67) 209 (51) 196 (30)	0.16 0.23 0.65	273 f 218 f 200 f	273 f 211 ép	270 f 208 ép	i	ν _{6a} (δ(C–C–CH ₃)) ν _{11a} (γ(C–C–CH ₃)) ν _{11b}

;

TABLEAU 4 $FREQUENCES~(cm^{-1})~ET~ATTRIBUTIONS~DES~SPECTRES~INFRAROUGE~ET~RAMAN~DU~COMPLEXE~[PC4D_2(CH_3)_2]Mn(CO)_3$

(les fréquences marquées d'un astérisque se rapportent au dérivé non deutérié).

Raman			Infrarouge		Attributions
120 K	310 F fondu	ρ	100 K	310 K fondu	
					
			3078 f]		ν(CH) résiduels
			3068 ff ³		V(CII) residueis
			2986 ép _]	2984 m	,
			2982 m ³		1
			2962 m	2962 m	ν(CH ₃)
			2931 ép	2928 m	,
			2926 m ^J 2907 f		,
			2886 ff		`
			2879 ff	2866 f	25(CH-)
			2863 ff	. 2866 f	2δ(CH ₃)
			2835 ff		,
			2296 f		· ν ₁ ν(CD)
296 (3)			2284 f		ν ₉
			2055 f)		-9
			2033 m		
002 (6)	2002 (8)		2008 F	2030 FF	ν ₁₅ (ν(CO))
			1996 F		
930 (20)	1931 (14) լ		1935 FF 1		
923 (3)	1918 (15)		1915 FF	1920 FF	v_{21} ($v(CO)$)
916 (19)	, ,		1890 F		
, ,			1488 ff		
465 (4) ₁			1467 F 3		
456 (4)			1459 F }	1460 F	δ _a , δ _a (CH ₃)
(-)			1452 F	1451 F ∫	- a, - a (5)
			1435 ff	,	
			1424 ép 7	- 4-0	
			1420 m	1418 m	ν_{8a} (ν (cycle))
400.44			1410 ք լ	1 400	
402 (4)			1403 m	1402 m	$\nu 8_{\mathbf{b}} \; (\nu(\text{cycle}))$
			1391 f		
			1384 F	1383 F շ	S (OTT-)
			1373 f	1374 m ^f	δ _a (CH ₃)
			1344 f		*
335 (3)			1337 F	1331 f	$\frac{v_{12a}}{v_{12b}}$ ν (cycle)
			1322 m	1312 f	ν _{12b}) ν(cycle)
			1261 ք դ	1255 f	2 v ₂₁
			1254 ép ⁵	1200 1	2 2 21
			1200 ép		*
			1192 f	1188 f	ν_{5a} (ν (CCH ₃))
			1173 ff	1170 ff	*
			1142 m	1140 f	v_{10} (dérivé h_1d_1)
			1118 f	1115 f	
			1054 f		
038 (3)	1035 (ép)		1043 m 1038 ép	1039 m	ρ⊥ (CH ₃)
					- -
024 (9)	1025 (3)	0.23	1031 ép	1028 F	ρ// (CH ₃)
			1026 m ^J 1015 f	1005 ff	- -
			990 f h	1003 11	
			983 ff }	986 ff	$v_{5h}(v(C-CH_3))$

TABLEAU 4 (suite)

Raman			Infrarouge		Attributions
120 K	310 F	ρ	100 K	310 K	
	fondu			fondu	
952 (14)	950 (7)	0.21	954 m	949 m	ν ₁₀ (δ(CD))
			936 ff		
			918 ff		
			910 ff		
			905 f	907 f	
			880 ff		*
PRO (2)			846 ff		*
829 (3) } 822 (2) }			831 f } 825 f }	830 f	ν ₄ (δ(CD))
022 (2)			808 ff	806 ff	*
767 (31)	776 (23)	0.11	768 m		u. (u/avala))
757 (4)	756 (4)	0.11	758 ff	767 f	ν ₃ (ν(cycle)) *
720 (9)	717 (2)	0.20	721 ff	717 f	$\nu_{13a} \left(\Delta(\text{cycle}) \right)$
707 (3)	707 (1)		707 m		ν _{13a} (Δ(cycle))
, ,			699 f		
688 (6) լ	204 401		689 F _l		
685 (6) ^ʃ	681 (3)	0.22	687 ép [}]	689 ép	ν ₇ (δ(CD))
			667 ép z	653 FF	ν ₁₆ (δ(Mn—C—O))
			660 m	000 11	216 (0 (Min - C - O))
625 (2)			633 FF }	625 FF	ν ₂₁ (δ (Mn-C-O))
			626 FF ⁾ 610 f		
603 (3)			603 F	597 m	ν_2 (δ (CD))
(-,			568 m. լ	337 111	ν_{13b} (Δ (cycle))
565 (6)	565 (3)	0.72	566 ép	566 f	ν_{14a} (Γ (cycle))
29 (10)	E94 (29)	0.70	539 FF)		
538 (19) } 526 (19) }	534 (13)	${0.12 \atop 0.11}$ }	531 FF }	533 F 526 ép }	ν ₂₃ (δ (Mn—C—O))
20 (13)	526 (17)	0.11	526 FF	526 ep '	
			499 F		ν ₂₄ (ν(Mn—CO))
192 (100)	490 (52)	0.13	492 F }	488 f	ν ₁₇ (ν(Mn—CO))
			488 ép ^J		17(5(1111 00))
170 (13)	465 (10)	0.24	479 f	466 f	ν _{14b} (Γ(cycle))
			470 m		- 146 (- (-)
884 (3)			419 ff 384 ff	420 ff	
76 (ép) _l			379 ff ₁		
71 (48)	367 (34)	0.10	371 f	366 f	ν ₂₅ (ν(Mn—cycle))
			340 f		*
30 (4)			331 m		
23 (16)	323 (6)	0.80	324 F	323 f	V25]
03 (100)	300 (24)	0.23	304 m	300 f	$\begin{bmatrix} v_{25} \\ v_{18} \end{bmatrix}$ (v(Mn—cycle))
75 (40)	270 (28)	0.18	273 m	271 f	v_{6a} (δ (C—C—CH ₃))
19 (30)	208 (19)	0.21	217 F		$^{\nu_{11b}}_{"11}$ γ (C-C-CH ₃))
01 (20)	196 (ép)	0.52	200 m		ν_{11a} $\gamma(C-C-CH_3)$

résultats traduisent bien un appauvrissement en densité électronique de l'atome de manganèse dans PCy et confirment également l'affaiblissement du caractère donneur du cycle C_4H_4P envers l'entité $Mn(CO)_3$.

Vibrations de cycle. Aux vibrations de valence des liaisons CH, $\nu_1(A')$, $\nu_{5a}(A')$, $\nu_{5b}(A'')$ et $\nu_{9}(A'')$ correspondent les raies Raman situées à 3097, 3082 et 3057 cm⁻¹ sur le spectre de PCy à l'état solide. Deux raies observées à 2317 et 2310 cm⁻¹ ($\rho \sim 1.34$) sur le spectre du dérivé d_4 sont attribuées aux modes

 v_1 et v_{5a} . La localisation des vibrations v(CH) au dessus de 3000 cm⁻¹ est en accord avec le caractère aromatique du cycle phosphoré [3].

Les cinq modes de valence de cycle sont attendus entre 1450 et 1000 cm⁻¹. Nous assignons à la vibration de "respiration de cycle", $\nu_3(A')$, les raies Raman polarisées ($\rho \sim 0.12$) situées à 1028 et 891 cm⁻¹ sur les spectres des dérivés h_4 et d_4 ($\rho(h_4/d_4) = 1.15$). Aux modes $\nu_{8a}(A')$, $\nu_{8b}(A'')$, $\nu_{12a}(A')$ et $\nu_{12b}(A'')$ sont attribuées les bandes infrarouge de fortes intensités relevées à 1400, 1391, 1305 et 1286 cm⁻¹ sur le spectre du complexe h_4 et à 1258, 1243, 1240 et 1180 cm⁻¹ sur celui du dérivé d_4 ($\rho \sim 1.08-1.12$).

Parmi les vibrations de déformation dans le plan des liaisons CH, attendues entre 1300 et 900 cm⁻¹, le mode $v_4(A'')$ donne toujours lieu à une bande infrarouge intense vers 1250 cm⁻¹ dans les cycles π -complexés de ce type [5,10—13]. Nous lui assignons les fortes bandes d'absorption situées à 1241 et 1027 cm⁻¹ sur les spectres des espèces h_4 et d_4 . Les modes $v_{6a}(A')$, $v_{10}(A')$ et $v_{6b}(A'')$ sont localisés à 1075, 1057 et 1040 cm⁻¹ pour le complexe h_4 et à 878, 863 et 840 cm⁻¹ pour le dérivé d_4 . Les valeurs assez faibles des rapports isotopiques correspondants ($\rho = 1.21-1.24$) indiquent la présence de couplages importants avec les vibrations de valence ou de déformation du squelette.

On attend ensuite quatre modes de déformation hors du plan des liaisons CH, v_2 et $v_{11b}(A')$ et v_7 et $v_{11a}(A'')$. Nous leur assignons respectivement deux bandes infrarouge intenses relevées à 812 et 841 cm⁻¹ sur le spectre de PCy à l'état liquide, et deux bandes faibles à 922 et 945 cm⁻¹. Ces dernières sont fortement exaltées sur le spectre du solide; un tel effet de cristal a déjà été mentionné pour les modes v_7 et v_{11a} du méthylcymantrène [13]. Notons enfin qu'au mode v_2 correspond une raie Raman polarisée à 811 cm⁻¹ (ρ = 0.14). Ces résultats confirment la nécessité d'une analyse dans la symétrie globale C_s de la molécule. En effet, on attendrait, dans l'approximation de symétrie locale C_{2v} du cycle, que les modes v_7 et $v_{11a}(A_2)$ soient inactifs en infrarouge et que les modes v_2 et $v_{11b}(B_2)$ soient dépolarisés en Raman. Avec le dérivé deutérié, ces vibrations sont situées respectivement à 578, 682, 724 et 744 cm⁻¹ (ρ = 1.24 à 1.39).

Enfin, on attend deux modes $\Delta_{\rm cycle}$, $\nu_{13a}({\rm A}')$ et $\nu_{13b}({\rm A}'')$ entre 950 et 600 cm⁻¹, et deux modes $\Gamma_{\rm cycle}$, $\nu_{14a}({\rm A}'')$ et $\nu_{14b}({\rm A}')$ entre 600 et 400 cm⁻¹. Nous attribuons au premier mode, ν_{13a} , une raie Raman polarisée à 706 cm⁻¹; deux bandes infrarouge, à 578 et 838 cm⁻¹, peuvent correspondre à la vibration ν_{13b} ; le calcul du champ de force permettra de lever cette indétermination. Aux modes de déformation hors du plan, ν_{14b} et ν_{14a} , nous assignons deux bandes infrarouge de fortes intensités, situées à 592 et 458 cm⁻¹ et aux quelles correspondent en Raman une raie polarisée à 593 cm⁻¹ et une raie de très faible intensité à 460 cm⁻¹. De nouveau, nous constatons qu'une analyse dans l'approximation de symétrie locale n'est pas rigoureuse. Sur le spectre du dérivé d_4 , les modes ν_{14b} et ν_{14a} sont localisés à 576 cm⁻¹ (ρ = 1.03) et 427 cm⁻¹ (ρ = 1.07).

Conclusions. Nous avons rassemblé dans le Tableau 5 les fréquences moyennes de toutes les vibrations de groupe des cycles C_4H_4P et C_5H_5 [5] complexés par Mn(CO)₃. On constate d'une manière générale que les valeurs des fréquences dans PCy sont nettement inférieures à celles dans le cymantrène.

Les contraintes aux déformations dans le cycle C_4H_4P sont donc plus faibles que celles dans le cycle C_5H_5 . Ce résultat peut s'expliquer en particulier au niveau du cycle C_4H_4P par une diminution de la densité électronique, elle-même

TABLEAU 5 FREQUENCES MOYENNES DES VIBRATIONS DE GROUPE DES CYCLES C_5H_5 [5] ET C_4H_4P COMPLEXES

	ν(CH)	v(cycle)	δ(CH)	γ(CH)	 Δ(cycle)	Γ(cycle)	
C ₅ H ₅	3118	1337	1144	932	830	610	
C4H4P	3081	1282	1100	880	641	526	

responsable de l'affaiblissement du caractère donneur en électrons. Ces conclusions ont été vérifiées dans la dernière partie de cette étude par le calcul des constantes de force du cymantrène et du phosphacymantrène (chap. V).

Par ailleurs, nous avons observé sur les spectres enregistrés à des températures inférieures à 110 K, un éclatement de nombreuses bandes en trois composantes infrarouge et/ou trois composantes Raman. Ceci traduit certainement l'existence d'une transition de phase solide—solide vers 110 K; en effet, nous avons caractérisé cette transition lors d'une autre étude détaillée [4].

IV, 2. Diméthylphosphacymantrènes h_2 et d_2

L'analyse des spectres du complexe DMPCy a été conduite de manière semblable à celle utilisée pour PCy et en conservant les mêmes notations des vibrations. Toutefois, les modes ν_{5a} et ν_{5b} , ν_{6a} et ν_{6b} , enfin ν_{11a} et ν_{11b} représentent désormais les vibrations de valence, de déformation dans le plan et de déformation hors du plan des liaisons C—CH₃.

Vibrations du trépied $Mn(CO)_3$ et interactions cycle—trépied. Les fréquences des vibrations $\nu(CO)$, $\delta(Mn-C-O)$ et $\nu(Mn-CO)$ sont extrêmement voisines de celles du complexe PCy et leurs attributions sont reportées dans le Tableau 3. Aux modes d'élongation du cycle par rapport au trépied ν_{18} , $\nu_{25}(A')$ et $\nu_{25}(A'')$ sont assignées les raies Raman polarisées à 302 et 373 cm⁻¹ ainsi que la raie dépolarisée à 340 cm⁻¹. La valeur de la constante de force métal—cycle, égale à 3.3 mdyne Å⁻¹, est nettement supérieure à celle de PCy (2.6 mdyne Å⁻¹, cf. chap. IV-1): il semble donc que les groupes méthyles augmentent le caractère donneur du cycle vers le trépied et renforcent cette interaction métal—ligand. Ce résultat est en accord avec le fait que les fréquences $\nu(CO)$ de DMPCy sont inférieures à celles de PCy (Tableaux 1 et 3).

Vibrations internes des groupes méthyles. Les attributions des modes $\nu(CH_3)$, $\delta(CH_3)$ et $\rho(CH_3)$ sont reportées dans le Tableau 3. Ces vibrations donnent lieu à de fortes bandes infrarouge de fréquences très voisines de celles relevées avec le méthylcymantrène [13], le diméthylferrocène [14] ou l'orthoxylène [16,17]. Notons que les modes de torsion des groupes méthyles, attendus en dessous de 200 cm⁻¹, n'ont pas été localisés [4].

Vibrations de cycle. Nous attribuons aux vibrations d'élongation des liaisons CH, $\nu_1(A')$ et $\nu_9(A'')$ les bandes infrarouge situées à 3078 et 3068 cm⁻¹ sur le spectre de DMPCy (à 100 K) et à 2296 et 2284 cm⁻¹ sur celui du dérivé d_2 .

Aux vibrations de valence de cycle, ν_{8a} , ν_{8b} , ν_{12a} et ν_{12b} , nous assignons respectivement les bandes infrarouge d'intensités moyennes relevées à 1426, 1417, 1342 et 1314 cm⁻¹ sur le spectre de DMPCy (h_2) et à 1418, 1402, 1335

et 1312 cm^{-1} sur celui de dérivé d_2 . Enfin nous faisons correspondre au mode totalement symétrique, de "respiration de cycle" ν_3 , les raies Raman observées à 844 et 767 cm⁻¹ sur les spectres des complexes h_2 et d_2 ($\rho = 1.10$). Les faibles valeurs des rapports isotopiques montrent que ces vibrations sont peu couplées avec les modes de déformation des liaisons C—H.

Les fréquences des modes de déformation des liaisons C—CH₃ peuvent varier entre 1300 et 900 cm⁻¹ selon les couplages existant avec les vibrations $\nu_{\rm cycle}$ et/ou $\delta_{\rm CH}$ [13—17]. Dans cette région, une raie Raman polarisée à 1170 cm⁻¹ et trois bandes infrarouge à 1258, 1198 et 989 cm⁻¹, décalées respectivement à 949, 1255, 1188 et 986 cm⁻¹ sur les spectres du dérivé d_2 , ne sont pas encore attribuées. La raie Raman, présentant un fort effet isotopique, doit être assignée à un mode $\delta(\rm CH)$. La bande infrarouge de plus haute fréquence correspond probablement à une combinaison ou une harmonique de la fondamentale intense obversée à 628 cm⁻¹ (ou à 625 cm⁻¹ pour le dérivé deutérié). Nous attribuons donc les bandes relevées à 1198 et 989 cm⁻¹ aux modes ν_{5a} et ν_{5b} .

Aux vibrations de déformation dans le plan des liaisons C-H, $\nu_{10}(A')$ et $\nu_4(A'')$ sont assignées les bandes infrarouge localisées à 1171, 1083 cm⁻¹ et à 949, 830 cm⁻¹ respectivement sur les spectres des espèces h_2 et d_2 ($\rho = 1.23$ et 1.30). Par ailleurs, le spectre d'absorption de DMPCy présente deux bandes à 870 et 816 cm⁻¹ qui sont déplacées à 680 et 610 cm⁻¹ par effet isotopique ($\rho \approx 1.31$); la seconde a pour équivalent une raie Raman de faible intensité sur le spectre du liquide. Nous faisons correspondre ces deux bandes aux modes de déformation hors du plan des liaisons CH, $\nu_7(A'')$ et $\nu_2(A')$.

A la vibration de déformation du cycle $\nu_{13a}(A')$ sont associées les raies Raman polarisées observées à 747 et 717 cm⁻¹ sur les spectres des composés h_2 et d_2 ($\rho=1.04$). Nous attribuons d'autre part au mode $\nu_{13b}(A'')$ les bandes infrarouge relevées à 614 cm⁻¹ et à 597 cm⁻¹ ($\rho=1.03$).

Plusieurs bandes, non encore attribuées, sont observées entre 600 et 400 cm⁻¹ sur les spectres infrarouge et Raman de DMPCy. En particulier, un épaulement situé à 484 cm⁻¹ sur le spectre Raman du dérivé h_2 , auquel nous faisons correspondre pour l'espèce d_2 une raie polarisée à 465 cm⁻¹, est attribuable au mode de déformation hors du plan $\nu_{14b}(A')$. Au mode $\nu_{14a}(A'')$ doit être assignée l'une des raies à 568 ou 508 cm⁻¹.

Enfin, les vibrations $\delta(C-C-CH_3)$, $\nu_{6a}(A')$ et $\nu_{6b}(A'')$ et $\gamma(C-C-CH_3)$, $\nu_{11b}(A')$ et $\nu_{11a}(A'')$, attendues respectivement dans les régions 250—400 et 150—250 cm⁻¹, donnent généralement lieu à de fortes raies Raman [13—18]. Nous attribuons donc les raies intenses et polarisées relevées à 271 et 209 cm⁻¹ aux modes ν_{6a} et ν_{11b} , et la raie dépolarisée à 196 cm⁻¹ au mode ν_{11a} . Ces raies ne sont pas sensiblement déplacées par deutériation. Le mode ν_{6b} pourrait correspondre à la faible bande Raman observée à 388 cm⁻¹. Ces dernières attributions sont en accord avec celles déjà publiées pour le méthylcymantrène [13], le toluène [10] et l'orthoxylène [16,17].

V. Champs de force des cycles C₅H₅ et C₄H₄P complexés par Mn(CO)₃

Ces calculs ont été entrepris afin de confirmer et préciser les attributions proposées pour ces composés, d'évaluer les principaux couplages vibrationnels à partir des distributions d'énergie potentielle et de comparer les valeurs des

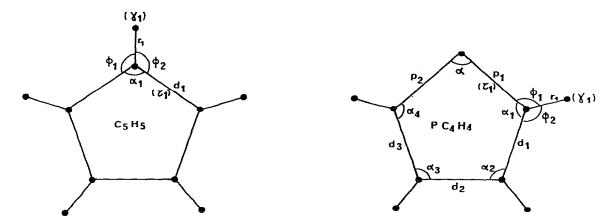


Fig. 6. Nomenclature des coordonnées internes des cycles C_5H_5 et C_4H_4P ; r, d, p: coordonnées d'élongation; α , $\hat{\phi}$: coordonnées de déformation dans le plan du cycle; γ , τ : coordonnées de déformation hors du plan.

constantes de force dans les cycles C_5H_5 et C_4H_4P afin d'en déduire les perturbations électroniques dues à la présence du phosphore dans PCy. Ces calculs ont donc été effectués sur la base des coordonnées internes (celles-ci sont définies sur la Fig. 6) et dans l'approximation de cycles "isolés".

V, 1. Mèthode de calcul

Les calculs ont été établis à l'aide des paramètres géométriques suivants: C_5H_5 [18]: d(CC) 1.420 Å; d(CH) 1.080 Å; angle CCC 72°. C_4H_4P [3]: d(PC(1)) 1.765 Å; d(C(1)C(2)) 1.402 Å; d(C(2)C(3)) 1.420 Å; d(CH) 1.080 Å; angle C(4)PC(1) 88.4°; angle PC(1)C(2) 113.9°; angle PC(1)C(2) 111.9°.

Les déterminations des constantes de force internes dans le plan et hors du plan des cycles ont fait l'objet de deux calculs distincts. Un premier champ de force, transféré de celui du ferrocène [19] et, en partie, du benzène-chrome-tricarbonyle [20,21] a été ajusté à partir des valeurs expérimentales des fréquences de vibration des cycles C_5H_5 et C_5D_5 [5,6]. Nous avons ainsi introduit, en plus des constantes principales, des interactions entre coordonnées internes possédant un atome, une liaison ou un angle commun, lorsque les éléments G correspondants ne sont pas négligeables. Après avoir obtenu un bon accord entre les fréquences observées et calculées, nous avons effectué un grand nombre de calculs de perturbations en laissant varier toutes les constantes non nulles, puis en débloquant progressivement les autres constantes, supposées nulles initialement. Nous avons ensuite transposé le champ de force ainsi obtenu pour C_5H_5 au cas du cycle C_4H_4P et ajusté celui-ci selon une même méthode de perturbations aux moindres carrés.

V, 2. Résultats

Les valeurs des fréquences observées et calculées ainsi que les principales contributions de distribution d'énergie potentielle (>5%) pour les cycles C_5H_5 et C_4H_4P sont reportées dans les Tableaux 6 et 7. Nous constatons, en premier lieu, un très bon accord entre les fréquences calculées et expérimentales bien

TABLEAU 6

prequences observees [6] et calculees et repartitions d'energie potentielle des vierations planes et hors du plan des CYCLES C5H5 BT C5D5 COMPLEXES PAR Mn(CO)3

CSHS	and the first of the first bear and the second and the first of the second and the second and the second and t	Programme de la companya de la comp	C ₅ D ₅	re felad is mengelapak terdika di kendala	
ν _{obs}	^y calc	DEP (%)	₽obs	^p eale	DEP (%)
31.33	3140	97 v(CH)	2349	2348	93 v(CD)
3124 3124	3126 }	99 n(CH)	2340 2340	2331) 2331)	96 ν(כD)
3104	3105) 3106)	100 v(CH)	ł I	2316 }	99 P(CD)
1425 1425	1432]	65 v(CC) + 35 5 (CH)	1311	1308 }	61 v(CC) + 39 &(CD)
1360 1360	1356 }	58 ν(CC) + 31 δ(CH) + 11 Δ(cycle)	1260 1260	1265 }	67 v(CC) + 17 δ(CD) + 16 A(cycle)
1265	1260	100 &(CH)	980	983	100 5(CD)
1216 1215	$\frac{1208}{1208}$	64 b(CH) + 36 v(CC)	1091 1091	$\frac{1093}{1093}$	79 &(CD) + 21 v(CC)
1116	1116	100 p(CC)	1069	1057	96 µ(CC)
1012	1018)	58 δ (CH) + 42 ν(CC)	776 776	780 780 }	63 5(CD) + 37 v(CC)
940 a	813 813	52 A(cycle) + 24 v(CC) + 24 S(CH)	728	737 }	49 A(cycle) + 33 v(CC) + 18 b (CD)
1065	$\frac{1069}{1069}$	86 7(CH) + 13 l7(cycle)	850 850	846 }	92 7(CD) + 8 l'(cycle)
842 831 610 610	844 844 834 615 615	84 Y(CH) + 16 F(cycle) 100 Y(CH) 63 F(cycle) + 36 Y(CH)	686 688 608 560 560	682 682 554 554	75 γ(CD) + 25 Γ'(cycle) 100 γ(CD) 72 Γ'(cycle) + 28 γ(CD)
	i i))	5	

 a Vibrations différenment attribuées dans le text ϵ .

Frequences observees et calculees et repartitions d'energie potentielle des vibrations planes et hors du plan des oycles po $_4$ Impres et $_6$ Impres par m $_6$ Impres par m $_6$ Impres po $_7$ Impres po $_8$ Impres par m $_8$ Impres por presentations provinces por provinces por provinces por presentations provinces por provinces provinces por provinces prov TABLEAU 7

			-		
PC4H4			PC4D4		
, pobs	^p calc	DEP (%)	Pobs	Pealc	DEP (%)
3097	3101	97 v(CH)	2317	2320	95 v(CD)
3090	3089	98 v(CH)	2310	2307	97 v(CD)
3082	3084	100 p(CH)	l	2296	98 v(CD)
3057	3059	100 p(CH)	i	2278	98 v(CD)
1400	1423	78 v(CC) + 6 v(PC) + 7 b(CH) + 6 Δ (CCC)	1258	1268	88 v(CC) + 9 S(CD)
1390	1388	57 v(CC) + 18 v(PC) + 12 δ(CH)	1243	1247	55 v(CC) + 19 v(PC) + 16 5(CD) + 9 A(CCC)
1306	1311	45 v(PC) + 36 v(CC) + 8 b(CH) + 8 A(PCC)	1210	1204	55 v(PC) + 30 v(CC) + 9 5(CD) + 5 A(PCC)
1286	1276	56 v(PC) + 26 v(CC) + 16 8(CH)	1180	1164	50 v(PC) + 17 v(CC) + 26 5(CD)
1241	1244	75 8 (CH) + 22 v(CC)	1027	1020	72 S(CD) + 26 V(CC)
1075	1063	85 5 (CH) + 13 v(CC)	878	896	79 5(CD) + 14 v(CC) + 5 A(CCC)
1057	1047	86 5 (CH) + 11 v(CC)	863	858	16 5(CD) +13 v(CC) + 6 A(CCC)
1040	1035	83 5 (CH) + 12 v(CC)	840	839	70 8 (CD) + 13 v(CC) + 9 v(PC)
1028	1025	46 v(CC) + 38 v(PC) + 13 δ(CH)	891	893	43 v(CC) + 39 v(PC) + 11 8(CD)
705	703	65 $\Delta(CCC) + 12 \Delta(PCC) + 19 \nu(PC)$	l	650	69 $\Delta(CCC)$ + 5 $\Delta(PCC)$ + 16 $\delta(CD)$ + 8 $\nu(PC)$
578	586	38 $\Delta(CCC) + 27 \Delta(PCC) + 8 \nu(CC) + 12 \delta(CH)$	512	520	35 $\Delta(CCC) + 32 \Delta(PCC) + 8 \nu(CC) + 13 \delta(CD)$
945	950	83 7(CH) + 14 l'(CCCC)	744	745	93 γ (CD) + 5 Γ (CCCC)
922	916	92 $\gamma(CH) + 6 \Gamma(PCCC)$	724	726	95 y(CD) + 4 l'(PCCC)
841	834	79 γ (CH) + 13 Γ (CCCC) + 8 Γ (PCCC)	682	671	86 y(CD) + 9 \(\text{CCCC}\) + 3 \(\text{PCCC}\)
812	809	83 γ (CH) + 15 Γ (PCCC)	580	586	84 7(CD) + 14 l'(PCCC)
592	009	41 $\Gamma(CCCC) + 15 \Gamma(PCCC) + 39 \gamma(CH)$	576	568	57 $\Gamma(CCCC) + 21 \Gamma(PCCC) + 14 \gamma(CD)$
460	467	56 $\Gamma(PCCC)$ + 22 $\Gamma(CCCC)$ + 15 $\gamma(CH)$	427	423	74 $\Gamma(PCCC) + 15 \Gamma(CCCC) + 9 \gamma(CD)$

que, selon l'approximation du calcul, les interactions cycle—trépied aient été négligées. Ce résultat est conforme aux conclusions de Adams et coll. [20] qui ont montré, dans le cas du benzène chrome-tricarbonyle, que ces interactions affectent très peu le champ de force du cycle C_6H_6 . Toutefois, avec C_5H_5 , nous n'avons observé aucune convergence convenable lors de l'ajustement du mode $\Delta_{\rm cycle}$ vers 940 cm⁻¹ [5]. Aussi, en laissant indéterminée la fréquence de cette vibration, un ajustement précis des constantes de force a pu être réalisé d'après les valeurs des autres fréquences expérimentales. Les modes $\Delta(C_5H_5)$ et $\Delta(C_5D_5)$ sont alors calculés à 813 et 737 cm⁻¹. Dans ces conditions, on peut supposer que le mode $\Delta(C_5H_5)$ se situe à la même fréquence que la vibration $\gamma(CH)(\nu_2)$ localisée à 830 cm⁻¹. Avec le dérivé d_5 , l'attribution proposée par Parker [5] est en accord avec la fréquence calculée. Enfin, le calcul situe le mode $\nu_{13b}(\Delta_{\rm cycle})$ à 586 et 520 cm⁻¹ pour les cycles h_4 et d_4 ; ce résultat permet de lever l'ambiguïté soulignée précédemment, concernant l'attribution de ce mode.

Par ailleurs, nous remarquons dans les Tableaux 6 et 7 que les couplages entre modes ν (cycle) et δ (CH) sont plus importants dans C_5H_5 que dans C_4H_4P ,

TABLEAU 8

CONSTANTES DE FORCE DE VALENCE DES CYCLES C_5H_5 ET PC_4H_4 COMPLEXES f = constantes de force principales (élongation, mdyne Å $^{-1}$; déformation, mdyne Å rad^{-2}). f' = constantes d'interactions (élongation—élongation, mdyne Å $^{-1}$; élongation—déformation, mdyne Å rad^{-2}). Les indices des coordonnées internes sont définis sur la Fig. 6.

C ₅ H ₅		PC4H4		
f_d	5.42	$\begin{cases} f_{p_1} = f_{p_2} \\ f_{d_1} = f_{d_2} = f_{d_3} \end{cases}$	5.21	
_	* 00	$\int f_{d_1} = f_{d_2} = f_{d_3}$	5.37	
f_r	5.29	I_{r}	5.13	
$f_{\mathcal{O}}$	0.98	$f_{oldsymbol{\phi}}$	9.95	
f_{α}	0.93	$\begin{cases} f_{\alpha} \\ f_{\alpha_1} = f_{\alpha_2} = f_{\alpha_3} = f_{\alpha_4} \end{cases}$	0.87 0.92	
$f'_{d_1d_2} = f'_{d_2d_3} \dots$	0.80	$f'_{p_1p_2} = f'_{p_1d_1} = f'_{d_1d_2} \dots$	0.75	
$f'_{d_1d_3} = f'_{d_2d_4}$	0.14	$f'_{p_1d_2} = f'_{d_1d_3} \dots$	0.08	
$f'_{\phi_1\phi_2} = f'_{\phi_3\phi_4} \dots$	0.49	$f'_{\phi_1\phi_2} = f'_{\phi_3\phi_4} \dots$	0.51	
$f'_{\phi_2\phi_3} = f'_{\phi_4}\phi_5 \dots$	-0.22	$f'_{\phi_2}\phi_3 = f'_{\phi_4\phi_5} = f'_{\phi_6\phi_7}$	-0.18	
$f'_{\phi_1\phi_3} = f'_{\phi_2\phi_4} \dots$	-0.15	$f'_{\phi_1\phi_3} = f'_{\phi_2\phi_4} \dots$	0.06	
$f'_{\alpha_1\alpha_2} = f'_{\alpha_2\alpha_3} \dots$	-0.10	$\begin{cases} f'_{\alpha\alpha_1} = f'_{\alpha\alpha_4} \\ f'_{\alpha_1\alpha_2} = f'_{\alpha_2\alpha_3} = f'_{\alpha_3\alpha_4} \dots \end{cases}$	-0.11 -0.06	
$f'_{d_1\phi_2} = f'_{d_1\phi_3} \dots$	0.25	$f'_{p_1\phi_1} = f'_{d_1\phi_2} = f'_{d_1}\phi_3 \dots$	0.52	
$f'_{d_1\phi_1} = f'_{d_1\phi_4} \dots$	-0.07	$f'_{P_1\phi_2} = f'_{d_1\phi_1} = f'_{d_1\phi_4} \dots$	0.09	
$f'_{\alpha_1 d_1} = f'_{\alpha_2 d_1} \dots$	0.12	٠٠ ت	0.03	
	0.12	$\begin{cases} f_{\alpha p_1} = f_{\alpha_1 p_1} \\ f_{\alpha_1 d_1} = f_{\alpha_2 d_1} = f_{\alpha_2 d_2} \dots \end{cases}$	0.12	
$f'_{\alpha_1\phi_1} = f'_{\alpha_1\phi_2} \dots$	0.11	$f'_{\alpha_1\phi_1} = f'_{\alpha_2\phi_2} \dots$	0.18	
f_{γ}	0.45	$f_{m{\gamma}}$	0.36	
f	0.42	$(f_{\tau_1} = f_{\tau_5})$	0.33	
f _T	0.42	$\begin{cases} f_{T2} = f_{T3} = f_{T4} \end{cases}$	0.44	
$f'_{\tau_1\tau_2} = f'_{\tau_2\tau_3} \dots$	-0.14	$\begin{cases} f_{\tau_1} = f_{\tau_5} \\ f_{\tau_2} = f_{\tau_3} = f_{\tau_4} \\ f'_{\tau_1\tau_2} = f'_{\tau_2\tau_3} \end{cases}$	-0.12	
$f'\gamma_1\tau_1=f'\gamma_2\tau_1$	0.14	$f'_{\gamma_1\tau_1} = f'_{\gamma_1\tau_2} \dots$	0.11	

bien que des arguments géométriques auraient laissé présager l'inverse. Cependant, les modes non couplés dans C_5H_5 ($\delta(CH)$ à 1265 cm⁻¹, $\nu(cycle)$ à 1116 cm⁻¹) sont davantage mélangés dans C_4H_4P . Nous notons que les fréquences des vibrations de valence du cycle phosphoré qui mettent principalement en jeu les liaisons C—C (1400 et 1390 cm⁻¹) sont voisines de celles des modes d'élongation de C_5H_5 (1425 et 1360 cm⁻¹); par contre, celles des modes impliquant davantage les liaisons C—P sont nettement inférieures (1306, 1286 et 1028 cm⁻¹). On peut prévoir que, lors d'une réaction chimique, toute perturbation au niveau de la paire libre du phosphore devra se traduire sur les spectres de vibration par des variations sensibles des fréquences de ces modes. De même, nous remarquons que les modes de déformation du cycle C_4H_4P qui mettent particulièrement en jeu les liaisons C—P sont situés à des fréquences sensiblement plus basses que celles relevées avec C_5H_5 .

Enfin, les champs de force des cycles C_5H_5 et C_4H_4P sont reproduits dans le Tableau 8 et on peut souligner une forte analogie entre les valeurs des constantes de ces cycles. Toutefois, nous constatons que la constante de force des liaisons C—P (f_p 5.21 mdyne Å⁻¹) est plus faible que celle relative aux liaisons C—C (f_d 5.37 mdyne Å⁻¹) du cycle C_4H_4P , celle-ci étant également inférieure à la constante calculée pour le cycle C_5H_5 (f_d 5.42 mdyne Å⁻¹). De même les constantes de force angulaires impliquant l'atome de phosphore (f_α 0.87 mdyne Å⁻¹; f_τ 0.33 mdyne Å⁻¹) sont inférieures à celles de C_4H_4P qui ne mettent en jeu que des atomes de carbone (f_α 0.92 dmyne Å⁻¹; f_τ 0.44 mdyne Å⁻¹) et de C_5H_5 (f_α 0.93 mdyne Å⁻¹, f_τ 0.42 dmyne Å⁻¹). Enfin, les constantes de force de déformation angulaire f_ϕ et f_γ du cycle C_5H_5 sont supérieuers à celles du cycle C_4H_4P (cf. Tableau 8). L'ensemble de ces résultats dénote une diminution de la densité de charge au niveau de toutes les liaisons du cycle et un affaiblissement des contraintes de déformations de ce cycle.

VI. Conclusion

En conclusion, les comparaisons des fréquences de vibration du cymantrène et du phosphacymantrène et des champs de force des cycles C_5H_5 et C_4H_4P montrent que la présence du phosphore se traduit principalement par un appauvrissement électronique du cycle C_4H_4P et donc une diminution de son caractère électrophile, par rapport au cycle C_5H_5 . Cet effet est responsable de l'affaiblissement de la force de la liaison π Mn—cycle que nous avons noté avec le phosphacymantrène ainsi que des réductions des contraintes aux déformations pour le cycle C_4H_4P : cet effet est très nettement caractérisé en spectrométrie de vibration par un abaissement des fréquences de toutes les vibrations internes du cycle phosphoré par rapport à celles du cycle C_5H_5 . Ces résultats sont en parfait accord avec les variations des réactivités chimiques de ces complexes [3] et avec les conclusions d'une étude des spectres photoélectroniques couplée avec des calculs EHT [22].

Remerciements

Les auteurs remercient très vivement Monsieur F. Mathey et Mademoiselle A. Breque (Laboratoire S.N.P.E.-CNRS Thiais, France) qui nous ont fourni les complexes hydrogénés, Madame J. Belloc (LASIR, Thiais, France) pour son aide efficace dans la préparation des dérivés deutériés, ainsi que Monsieur J.P. Brun (Laboratoire de Spectrochimie, Université Paris VI) qui a réalisé les spectres de masse.

References

- 1 F. Mathey, J. Organometal. Chem., 93 (1975) 377.
- 2 F. Mathey, Tetrahedron Lett., 46 (1976) 4155.
- 3 F. Mathey, A. Mitschler et R. Weiss, J. Amer. Chem. Soc., 100 (1978) 5748.
- 4 O. Poizat, C. Sourisseau, G. Calvarin, K. Chhor et C. Pommier, Mol. Cryst. and Liq. Cryst., sous presse.
- 5 D.J. Parker, J. Chem. Soc., Dalton, (1974) 155.
- 6 D.J. Parker et M.H.B. Siddard, J. Chem. Soc. A, (1970) 480.
- 7 A. Klit et Langseth, Z. Phys. Chem., 176 (1936) 65.
- 8 R.H. Herber, (Réd.), Inorganic Isotopic Synthesis, W.A. Benjamin Inc., New York, 1962 p. 49
- 9 J.H. Schachtschneider, Tech. Rep., No. 231-64, Shell Development Company, Emeryville, California, 1966.
- 10 B.V. Lokshin, E.B. Rusach, Y.N. Sektina et M.I. Pyshnograeva, J. Organometal. Chem., 77 (1974) 69.
- 11 G. Davidson, Organometal. Chem. Rev. A, 8 (1972) 303.
- 12 E.W. Abel, Apar Singh et G. Wilkinson, J. Chem. Soc., (1960) 1321.
- 13 D.J. Parker et M.H.F. Stiddard, J. Chem. Soc. A, (1970) 1040.
- 14 R.T. Bailey et E.R. Lippincott, Spectrochim. Acta, 21 (1965) 389.
- 15 D.M. Adams et A. Squire, J. Organometal. Chem., 63 (1973) 381.
- 16 M.T. Forel, Thèse de doctorat d'Etat, Bordeaux, France, 1962.
- 17 J. Favrot et J.M. Lebas, J. Chim. Phys., 75 (1978) 74.
- 18 A.F. Berndt et R.E. Marsh, Acta Cryst., 16 (1963) 118.
- 19 L. Schäfer, Y. Brunvoll et S.J. Cyvin, J. Mol. Struct., 11 (1972) 459.
- 20 D.M. Adams, R.E. Cristopher et P.C. Stevens, Inorg. Chem., 14 (1975) 1562.
- 21 H. Jobic, J. Tomkinson et R. Renouprez, Mol. Phys., 39 (1980) 989.
- 22 C. Guimon, G. Pfister-Guillouzo et F. Mathey, Nouveau J. de Chim., 3 (1979) 725.