Journal of Organometallic Chemistry, 206 (1981) 279-286 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

NOUVELLES SYNTHESES DE Me₂SiCl₂ ET Me₃SiCl *

GERARD SIMON, MARCEL LEFORT,

Rhône-Poulenc Industries, Centre de Recherches des Carrières, 69190 Sain-Fons (France)

MARC BIROT, JACQUES DUNOGUES *, NORBERT DUFFAUT et RAYMOND CALAS Laboratoire de Chimie Organique et des Composés Organiques du Silicium et de l'Etain associé au C.N.R.S. No. 351, Cours de la Libération, 33405 Talence Cedex (France) (Reçu le 25 juillet 1980)

Summary

Partial reduction of MeSiCl₃ and Me₂SiCl₂ using CaH₂ or (TiH₂)_n at high temperature (300°C) leads to MeSiHCl₂ and Me₂SiHCl, respectively, in good yields but in low proportion. In the presence of AlCl₃ as catalyst the reaction affords Me₂SiCl₂ and Me₃SiCl, in yields higher than those previously observed in the absence of a reducing agent. These redistribution reactions involve MeSiHCl₂ and Me₂SiHCl as intermediates. Consequently Me₂SiHCl with or without Me₂SiCl₂ and AlCl₃ deposited on carbon black as catalyst can undergo disproportionation to give Me₃SiCl.

Résumé

La réduction partielle de MeSiCl₃ et Me₂SiCl₂ par CaH₂ ou (TiH₂)_n à température élevée (300°C) conduit respectivement à MeSiHCl₂ et Me₂SiHCl avec de bons rendements, quoique en faible proportion. Si l'on opère en présence de AlCl₃ comme catalyseur, MeSiCl₃ et Me₂SiCl₂ donnent respectivement Me₂SiCl₂ et Me₃SiCl avec des rendements très supérieurs à ceux obtenus précédemment en l'absence d'agent réducteur. Nous avons pu mettre en évidence que l'obtention de Me₂SiCl₂ (à partir de MeSiCl₃) était due à la redistribution de MeSiHCl₂ formé dans un stade intermédiaire. De même, l'obtention de Me₃SiCl (à partir de Me₂SiCl₂) est due à la redistribution de Me₂SiHCl. Ce dernier, en présence ou en l'absence de Me₂SiCl₂, peut être utilisé à la préparation de Me₃SiCl en utilisant comme catalyseur, AlCl₃ déposé sur du noir de carbone.

^{*} Travaux réalisés dans le cadre de l'Action Thématique Programmée No. 2928 financée par le C.N.R.S.

1. Introduction

Parmi les sous-produits formés lors de la synthèse industrielle de Me₂SiCl₂, MeSiCl₃ représente le tonnage le plus important. Ce composé ne trouvant sa pleine valorisation que dans l'élaboration de résines silicones dont les besoins ne suffisent pas à écouler sa production, de nouvelles utilisations de ce dérivé sont actuellement recherchées.

Par ailleurs, les méthylchlorohydrogénosilanes, produits nobles, se forment en quantités limitées *. Nous avons donc envisagé de réduire le méthyltrichlorosilane et, par la suite, le diméthyldichlorosilane à température élevée, au moyen d'agents réducteurs aisément accessibles tels que CaH_2 et $(TiH_2)_n$. Au cours de ces recherches, nous avons mis en évidence des réactions de redistribution en opérant en présence de chlorure d'aluminium. Ce travail s'incrit dans le contexte de nombreux travaux effectués dans ce domaine en ce qui concerne la réduction [2–8] et la redistribution [9–18] des chlorosilanes. Notre étude reste d'actualité dans la mesure où l'ensemble des recherches antérieures n'a pas trouvé d'application pratique réelle.

En outre, les fluctuations importantes du marché concernant la demande en chlorosilanes nobles autres que Me₂SiCl₂, nécessitent d'avoir à sa disposition une gamme importante de procédés permettant de répondre à ces besoins.

Nous avons, dans ce cadre, mis au point une voie nouvelle d'accès au triméthylchlorosilane à partir de Me₂SiHCl en présence ou en l'absence de Me₂SiCl₂.

2. Résultats

2.1. Réduction et redistribution de MeSiCl₃

Calas et Bourgeois [19] avaient montré que Me₃SiCl est réduit en Me₃SiH, sous pression normale, par CaH₂ ou NaH en présence de AlCl₃, en chauffant énergiquement les parois du réacteur. En opérant en autoclave à 300°C, nous avons mis en évidence, à partir de MeSiCl₃, la formation de MeSiHCl₂ et surtout de Me₂SiCl₂. Nos résultats sont rassemblés dans le Tableau 1.

La redistribution est également observée en présence de MeSiHCl₂. En outre, nous avons confirmé que la redistribution de MeSiHCl₂ en présence de chlorure d'aluminium conduisait bien à Me₂SiCl₂ comme cela avait déjà été rapporté dans des conditions comparables [11]. Les résultats sont rapportés dans le Tableau 2.

On peut schématiser le processus de la façon suivante:

2 MeSiHCl₂
$$\xrightarrow{\text{A1Cl}_3}$$
 Me₂SiCl₂ + H₂SiCl₂

Le redistribution de H₂SiCl₂ donnant notamment SiH₄ [9] explique les

^{*} Une nouvelle voie a été ouverte pour augmenter le taux d'hydrogénosilanes dans la synthèse directe: elle consiste à effectuer la synthèse directe en présence d'hydrogène [1]. Toutefois cette méthode n'est pas encore appliquée industriellement.

TABLEAU 1 REDUCTION ET REDISTRIBUTION DE MeSiCl3 (Charge initiale 0.1 mol de MeSiCl3, 15 g)

(t)	AICI3	Reducteur	Polds	Liquido recuellii ^d	ını a			Rdt, en	Gaz c	No.
	(mon)	(ToE)	9	Me2SIHCI (mol)	MeSIHCl ₂ (mol)	Me ₂ SiCl ₂ (mol)	MeSIC13 (mol)	(%)	3	
06	0.000	TIE, 0.076	10.5	0.002	0.001	0,02	0,05	20		1^{b}
3 6	0000	CaH, 0.075	14.0	1	0.005	0,01	0,086	10	**	64
§ 5	0000	CaH2 0.075	3.75		0.0013	0.003	0.021	23		m
2 6	0000	CaH2, 0.075	12.0	0	0.004	0.013	0.064	13	0.5	*
8	0,005	MeSiHCl2,	16,0	0	0.01	0	0,1	0		ນ
23	0.005	0.014 MeSiHCf2, 0.1	23.8	0	0.05	0.1	0.026	60	0.1	9

^a Le liquide est analysé en CPV (colonnes QF_I) et RMN du proton. ^b La quantité de Me₂SiCl₂ augmente légérement après 20 h de chauffage supplémentairo. ^c Présence de SiH en infrarouge à 2100 cm⁻¹,

TABLEAU 2
REDISTRIBUTION DE MeSiHCl₂
(Charge initiale 0.1 mol de MeSiHCl₂, 11.5 g)

t (h)	AlCl ₃	Poids (g)	Liquide			Rdt. en Me ₂ SiCl ₂ (%)	Gaz ^a (1)	No. d'essai
		(8)	MeSiHCl ₂ (mol)	Me ₂ SiCl ₂ (mol)	MeSiCl ₃ (mol)		(1)	u essai
17	0.001	8.05	0.02	0.009	0.03	9		7
13	0.0075	19	0.003	0.0025	0.0023	2.4	ь	8

^a Présence de SiH en infrarouge à 2100 cm⁻¹. ^b Régulation thermique défectueuse: $\theta > 400^{\circ}$ C, explosion des gaz au contact de l'air.

problèmes pratiques rencontrés lors de la redistribution de MeSiHCl₂ (voir Tableau 2).

L'intérêt de notre étude réside dans le fait qu'il est possible, en utilisant un agent réducteur, d'obtenir des quantités importantes de Me₂SiCl₂ à partir de MeSiCl₃. En effet, en présence de AlCl₃ seul, MeSiCl₃ se redistribue partiellement, mais à 350°C au bout de 7 h, la proportion molaire de Me₂SiCl₂ formé n'est que de 3.5% [9]: l'utilisation d'un agent réducteur améliore donc très nettement le résultat.

En outre, la proportion de Me₂SiCl₂ formé à partir de MeSiHCl₂ [9] donne à penser qu'une étude approfondie doit permettre d'améliorer encore les résultats que nous avons observés.

2.2. Réduction et redistribution de Me₂SiCl₂

La possibilité d'obtenir Me₂SiCl₂ à partir de MeSiCl₃ nous a conduits à envisager la préparation de Me₃SiCl à partir de Me₂SiCl₂ puisque la redistribution est facilitée lorsque le nombre de groupes méthyles liés au silicium augmente.

Comme précédemment, nous avons observé qu'il était possible d'effectuer une réduction partielle de Me₂SiCl₂:

$$Me_2SiCl_2 \xrightarrow{agent \ r\'educteur} Me_2SiHCl_2 \xrightarrow{(CaH_2, \ (TiH_2)_n, \ MeSiHCl_2)} Me_2SiHCl$$

Me₂SiHCl se forme avec un rendement maximal de 22% par rapport au silicium mis en jeu. Les résultats sont rassemblés dans le Tableau 3. Ce tableau appelle les remarques suivantes: (a) nous avons établi en IR la présence d'une vibration SiH (~2100 cm⁻¹) due vraisemblablement à la présence de Me₂SiH₂; (b) lorsque la réaction est effectuée en présence de AlCl₃ et de quantités catalytiques d'agent réducteur, Me₃SiCl se forme en quantité importante (rendement maximal: 23% par rapport au silicium engagé (cf. Tableau 3)).

Nous avons montré que l'utilisation de MeSiHCl₂ comme agent réducteur permettait aussi d'effectuer la réaction.

Enfin, nous avons établi que Me₂SiHCl était un intermédiaire réactionnel, ce qui nous a conduits à étudier la redistribution de Me₂SiHCl en l'absence ou en présence de Me₂SiCl₂.

Tableau 3 reduction et redistribution de Me₂sicl₂

(Charge initiale 0.2 mol de Me2SiCl2, 26 g)

T ($^{\circ}$ C)	t (h)	AlCl ₃	Réducteur	Poids	Liquide recueill	ıeilli				Rdt.	Gaz	No.
		(minor)	(Tour)		Me ₂ SiHCl (mol)	l MeSiHCl ₂ (mol)	Me ₃ SiCl (mol)	Me ₂ SiCl ₂ (mol)	MeSiCl ₃ (mol)	(%)	3	10000
250	18	0.008		26				0.2		0		0
300	15	0,006		56			0.012	0,17	0.017	9		10
300	35	0.02		56			0.021	0,15	0.029	10,6		11
300	17	0,01	MeSiHCl2, 0,01	25.8			0,019	0,15	0,029	9,5	-	12
300	17	0.04	CaH ₂ , 0.04	3 6								13
300	38	0.002	CaH2, 0.02	26			0.01	0,18	0,007	ណ		14
300	30	0,007	CaH2, 0.02	14.3			0.018	0,085	0,007	0		15
300	24	0.015	TiH2, 0.05	22,1	0.004		0.046	0,13	0.0015	23		16
300	18	0,03	CaH2, 0.2	21	0.039	0.002	0.04	0,2	690'0	20	17	17
300	56	0.005	MeSiHCl2, 0.2	45		0.042	0,012	0.22	0.072	9		18
200	24		CaH ₂ , 0,2	19,5	0.02			0.135		10	-1	19
250	06		CaH ₂ , 0.2	14.3	0.023			0.093		11	0.5	20
320	40		CaH2, 0.2	13	0.045			0.066		22	0.7	21

tableau 4 synthese de me₃sici a partir de me₂sihci avec (ou sans) me₂sici₂ ^q

Me2SIHCI incroduit (mol)	Me ₂ SiCl ₂ introduit (mol)	AlCi ₃	T (°C) de réaction	Durée (h)	Composition moiaire du mélange récupéré	Rdt. (%) Me3SiCl par xapport au siliclum engagé ^b
0.5	0	. 6	100		Me2SiHCl: 0.07; Me5SiCl ₂ : 0.098;	40
 4	0	ھ	100	හ	MeSH3: 0.085; Me2SH2: 0.107; Me3SH3: 0.038; MeSH4: 0.085; Me2SH2: 0.107; Me3SH: 0.038; MeSH4;CI: 0.025; Me2SHCI: 0.214; MeSHCI2: 0.013;	37
0.5	6.0	ស	100	9	Me ₃ SiCi: 0.291; Me ₂ SiCi ₂ : 0.285 Me ₂ SiH ₂ : 0.10; Me ₂ SiHCi: 0.30; MeSiHCi ₂ : 0.07;	58
0.33	0,66	ъ	140	16	Megsici: 0.22; Megsicig; 0.73 Produits très légers (calc, sur MegsiH2): 0.042; MesiHaci: 0.056; MeaHsici: 0.064: MesiHcla:	62
					0.092; Me3SiCl: 0.285; MeSiCl3: 0.01; Me2SiCl2: 0.453	

d Nous décrivons sculement ici quelques essais types, ^b Les rendements sont calculés par rapport au silicium mis en jeu. En l'absence de Me₂SICl₂ is correspondent à SI (Me₃SICl formé/Me₂SIHCl ayant disparu. En présence de Me₂SICl₂ ils correspondent à SI (Me₃SICl formé/Me₂SIHCl + Me₂SICl₂ ayant disparu).

2.3. Synthèse de Me₃SiCl à partir de Me₂SiHCl

En présence de quantités catalytiques de chlorure d'aluminium et à une température de l'ordre de 100°C en phase liquide, en autoclave, Me₂SiHCl se redistribue pour conduire notamment à Me₃SiCl. Les produits formés au cours de la dismutation nous ont amenés à envisager les équilibres suivants:

- $2 \text{ Me}_2 \text{SiHCl} \Rightarrow \text{Me}_3 \text{SiCl} + \text{MeSiH}_2 \text{Cl}$
- $2 \text{ Me}_2 \text{SiHCl} \Rightarrow \text{Me}_2 \text{SiCl}_2 + \text{Me}_2 \text{SiH}_2$

 $Me_2SiHCl + Me_2SiCl_2 \Rightarrow Me_3SiCl + MeHSiCl_2$

On voit donc que la présence de Me₂SiCl₂ intervient sur le taux de formation de Me₃SiCl; c'est la raison pour laquelle divers essais ont été réalisés en l'absence ou en présence de Me₂SiCl₂ au départ de la redistribution. Les résultats sont résumés dans le Tableau 4.

D'autres essais ont mis en lumière l'activité catalytique de ZnCl₂ ou de BBr₃, mais celle-ci est beaucoup plus faible que celle de AlCl₃, aussi les résultats ne seront pas rapportés ici.

Par contre, divers essais effectués en phase vapeur ont donné des résultats satisfaisants. Ainsi, au cours d'un essai type où l'on a fait passer un mélange gazeux Me₂SiHCl/Me₂SiCl₂/He en proportion 8/2/100 (v/v/v) sur un catalyseur constitué de AlCl₃ déposé sur du noir de carbone à 170°C avec un temps de contact égal à 3 g cat. h × l⁻¹ on observe un taux de conversion de Me₂SiHCl de 66% avec un rendement de 39% pour Me₃SiCl (et 37% pour Me₂SiCl₂) par rapport au silicium mis en jeu.

Ici encore, divers essais ont été réalisés et, avec Me₂SiHCl seul, nous avons pu obtenir Me₃SiCl avec 32.5% de rendement si l'on dépose AlCl₃ sur du noir de carbone alors qu'avec AlCl₃ broyé, le taux de transformation de Me₂SiHCl est

TABLEAU 5 REDISTRIBUTION DE ${
m Me}_2$ SiHCl EN PHASE VAPEUR EN L'ABSENCE OU EN PRESENCE DE ${
m Me}_2$ SiCl $_2$

Catalyseur	Me ₂ SiHCl/Me ₂ SiCl ₂ / He (v/v/v)	Temps de contact g cat. X h X l ⁻¹	Tempé- rature (°C)	Taux de conversion de Me ₂ SiHCl	Me ₃ SiCl (%) ^a	Me ₂ SiCl ₂ (%) ^a
AlCl ₃	8/2/100	3	170	66	38.6	17
broyé	20/0/100	7	170	75	32.5	23.6
AlCl ₃ /c	18/0/100	0.85	25	27.6	0	12.9
5.	18/0/100	0.85	105	44.8	9.6	43
	18/0/100	0.85	130	72.4	29.8	26
Al ₂ O ₃ , avec 0.357% Pt,	Me ₂ SiHCl/N ₂ 6.3/100	1.6 1.6	300	48.9	5.3	20.3
212 m/g	Me ₂ SiHCl/MeCl/N ₂ 6.3/165/100	1.6	300	79.7	11.6	73
Al ₂ O ₃ , 197 m/g	Me ₂ SiHCl/N ₂ 5.3/100	1.6	300	11.5	5.5	. 66.5
	Me ₂ SiHCl/MeCl/N ₂ 19/166/100	1.6	300	18.3	3	75.9

^a En poids par rapport au silicium engagé.

beaucoup plus faible; on récupère alors Me₂SiCl₂ (rdt.: 46.8%) mais pratiquement pas de Me₃SiCl (cf. Partie Expérimentale).

3. Conclusion

Ce travail met en évidence la possibilité d'obtenir Me₂SiCl₂ et Me₃SiCl à partir de MeSiCl₃ et Me₂SiCl₂, à condition d'opérer en présence d'un agent réducteur. En outre, il propose une voie d'accès à Me₃SiCl à partir de Me₂SiHCl: dans la mesure où ce dernier deviendrait aisément accessible par synthèse directe en présence d'hydrogène [1], cette méthode serait susceptible d'applications pratiques. Ce travail contribue donc à accroître l'éventail des procédés de synthèse des méthylchlorosilanes, destiné à mieux répondre aux fluctuations de la demande.

4. Partie expérimentale

Les essais en autoclave ont été réalisés comme suit: le mélange des réactifs (quantités indiquées dans les différents tableaux), est réalisé à température ambiante. Le milieu réactionnel est porté puis maintenu à la température indiquée, avec agitation. Après refroidissement les gaz sont recueillis et analysés en CPV et les liquides en CPV et RMN (Colonnes pour CPV QF₁ à 10% sur Chromosorb P) après étalonnage en utilisant des échantillons de référence). Les données expérimentales sont indiquées dans la Partie Résultats. Les essais en phase vapeur ont été réalisés comme suit: on fait passer un mélange gazeux de Me₂SiHCl/Me₂SiCl₂ éventuellement/He sur du chlorure d'aluminium broyé ou déposé sur du noir de carbone à température et avec un temps de contact donnés dans le Tableau 5. Le mélange refroidi est ensuite analysé en CPV et RMN.

Bibliographie

- 1 M.G.R.T. de Cooker, J.H.N. de Bruyn et P.J. van den Berg, J. Organometal. Chem., 99 (1975) 371.
- 2 D.R. Weyenberg, A.E. Bey et P.J. Ellison, J. Organometal. Chem., 3 (1964) 489.
- 3 A.J. Chalk, J. Organometal. Chem., 21 (1970) 95.
- 4 L.M. Antipin, L.M. Balk et V.F. Mironov, Zhur. Obshch. Khim., 40 (1970) 812.
- 5 M.G. Voronkov et L. Abramas, Izvest, Akad, Nauk S.S.S.R., Sér. Khim., (1974) 698.
- 6 M. Takamisawa, Brevet Japonais, (77) 31854, 1976.
- 7 General Electric Co (M.J. Wynn), Brevet U.S. 3704260, 1972.
- 8 H. Hiro, H. Sakurai et F. Kondo, Brevet Japonais (78) 95922, 1977.
- 9 R.O. Sauer et E.M. Hasdell, J. Amer. Chem. Soc., 70 (1948) 3590.
- 10 Société Rhône-Poulenc (A. Bazouin et M. Lefort) Brevet Français 1 444 735, 1966.
- 11 Société Air Products and Chemicals Inc., Brevet Anglais 1 027 522, 1966.
- 12 K. Moedritzer, Advan. Organometal. Chem., 6 (1968) 171 et réf. citées.
- 13 K. Moedritzer, Organometal. React. 2 (1971) et réf. cités.
- 14 R.M. Golosora, M.Kh. Karapet'yants, A.M. Mosin at A.M. Mikhailov, Zhur. Fiz. Khim., 45 (1971) 827.
- 15 V.V. Ponomarev, V.N. Penskii, S.A. Golubtsov, K.A. Andrianov et E.N. Chekrii, Izvest. Akad. Nauk. SSSR, Ser. Khim., (1972) 1379.
- 16 General Electric Co., Brevet U.S. 3 769 310, 1973.
- 17 Union Carbide Corp. (C.J. Bakay), Brevet U.S. 3928542, 1974.
- 18 M. Matsumoto, Brevet Japonnais (77) 151 130, 1976.
- 19 R. Calas et P. Bourgeois, Bull. Soc. Chim. France, (1971) 3263.