Journal of Organometallic Chemistry, 229 (1982) 275-279 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

KOMPLEXKATALYSE

XI *. EINE EINFACHE SYNTHESE FÜR CHLORO-NITROSYL-CARBONYL-MOLYBDÄN(0)-KOMPLEXE ALS NEUE HOCHAKTIVE PRÄKATALYSATOREN FÜR DIE OLEFINMETATHESE

KARL SEYFERTH und RUDOLF TAUBE *

Technische Hochschule "Carl Schorlemmer" Leuna-Merseburg, Sektion Chemie, DDR-4200 Merseburg (D.D.R.)

(Eingegangen den 23. November 1981)

Summary

A simple preparation of the chloronitrosylcarbonylmolybdenum(0) complexes $Mo(NO)(CO)_4(AlCl_4)$ and $MoCl(NO)(CO)_2(PPh_3)_2$ is described. The homogeneous system $MoCl(NO)(CO)_2(PPh_3)_2/RAlCl_2$ (R = Et, Me) represents a new highly active long-living catalyst for the metathesis of 2-pentene.

Zusammenfassung

Es wird eine einfache Darstellung der Chloro-nitrosyl-carbonyl-molybdän(0)-´Komplexe $Mo(NO)(CO)_4(AlCl_4)$ und $MoCl(NO)(CO)_2(PPh_3)_2$ beschrieben. Das homogene System $MoCl(NO)(CO)_2(PPh_3)_2/RAlCl_2$ (R = Et, Me) stellt einen neuen hochaktiven, langlebigen Katalysator für die Metathese von 2-Penten dar.

Die Eignung von Dichloro-dinitrosyl-molybdän(0)- und Trichloro-mononitrosyl-molybdän(II)-Komplexen in Kombination mit EtAlCl₂ als effektive, homogene Katalysatorsysteme für die Olefinmetathese ist seit längerem bekannt [1—4]. Wir haben kürzlich gefunden, dass auch bestimmte Chloro-nitrosyl-carbonyl-molybdän(0)-Komplexe nach Zusatz von EtAlCl₂ oder MeAlCl₂ mit hoher Aktivität die Metathese von 2-Penten katalysieren [5]. Darstellung und Eigenschaften dieser Verbindungsklasse sind bisher nur wenig untersucht worden. Nach Barraclough et al. reagieren Halogeno-pentacarbonyl-molybdate(0) mit

^{*} X. Mitteilung vgl. Ref. 14.

Nitrosylsalzen zu MoX(NO)(CO)₄-Komplexen, die allerdings instabil und nur in Lösung IR-spektroskopisch nachgewiesen sind [6]. Nach Isaacs und Graham werden beständige Verbindungen dieses Typs mit den komplexen MR₃-Anionen (M = Ge, Sn, Pb und R = Ph; M = Sn und R = Me) erhalten [7]. Robinson und Swanson berichteten über die Synthese von M⁰Cl(NO)(CO)₂L₂-Komplexen (M = Mo, W; L = 1/2 Diphos, 1/2 Dipy, 1/2 Phen) aus $M(CO)_3(CH_3CN)_3$, NOCl und den entsprechenden Donorliganden L [8]. Auf ähnliche Weise sind auch noch weitere $M^0X(NO)(CO)_2(Diphos)$ -Komplexe mit X = Cl, Br, I sowie verschiedene Nitrosyl-monocarbonyl-Komplexe $Mo^{0}Cl(NO)(CO)L^{1}L_{2}^{2}$ (L¹ und L² = verschiedene N- und P-Donorliganden) synthetisiert worden [8,9]. Ein prinzipiell anderes Darstellungsverfahren für die Verbindungen Mo^oCl(NO)(CO)₂L₂ (L = PPh₃, AsPh₃) stellt die von uns gefundene Carbonylierung von Mo^{II}Cl₃(NO)und Mo⁰Cl₂(NO)₂-Komplexen in Gegenwart von EtAlCl₂ dar [10]. Einfacher als alle bisher bekannten Methoden zur Gewinnung dieser Nitrosyl-carbonylmolybdän-Komplexe ist die im Folgenden beschriebene Direktsynthese aus Mo(CO)6.

Setzt man Mo(CO)₆ mit NOCl in CH_2Cl_2 um, so bildet sich auch bei NOCl-Unterschuss als einziges Produkt MoCl₂(NO)₂ [11], das zunächst in gelöster Form (ν (NO) 1750, 1840 cm⁻¹) vorliegt und dann schnell in ein schwerlösliches Koordinationspolymeres (ν (NO) 1720, 1825 cm⁻¹) übergeht, vgl. Gl. 1.

$$Mo(CO)_6 \xrightarrow{NOCl} \{MoCl(NO)(CO)_4\} \xrightarrow{NOCl} MoCl_2(NO)_2 \rightarrow [MoCl_2(NO)_2]_n$$
 (1)

Die zu erwartende MoCl(NO)(CO)₄-Zwischenstufe reagiert offenbar sehr schnell weiter zu MoCl₂(NO)₂ und war deshalb IR-spektroskopisch in der Lösung nicht nachzuweisen.

Bei Verwendung von NOAlCl₄ als Nitrosylierungsmittel verläuft die Reaktion dagegen entsprechend Gl. 2. Nach Beendigung der CO-Entwicklung lässt sich

$$Mo(CO)_6 + NOAlCl_4 \rightarrow Mo(NO)(CO)_4(AlCl_4) + 2 CO$$
 (2)

aus der resultierenden braunen Lösung ein kristalliner Komplex der Zusammensetzung $Mo^0(NO)(CO)_4(AlCl_4)$ isolieren. Die ocker, luft- und hydrolyseempfindliche Verbindung ist analysenrein und zeigt im IR-Spektrum (in CH_2Cl_2) je eine intensive NO- und CO-Bande bei 1713 bzw. 2065 cm⁻¹. Der Komplex besitzt demnach annähernd C_{4v} -Symmetrie mit vier quadratisch planar angeordneten CO-Liganden.

Weiteres NOAlCl₄ führt zur Bildung von zwei verschiedenen löslichen Dinitrosyl-molybdän-Verbindungen (ν (NO) 1750, 1780, 1840, 1860 cm⁻¹), die jedoch nicht näher charakterisiert wurden.

Mit Triphenylphosphin reagiert Mo(NO)(CO)₄(AlCl₄) in CH₂Cl₂ oder THF über eine nicht isolierte, aber IR-spektroskopisch nachgewiesene Zwischenstufe (ν (NO) 1660—80, ν (CO) 2040 cm⁻¹), höchstwahrscheinlich MoCl(NO)(CO)₄, gemäss Gl. 3 glatt zum erwarteten MoCl(NO)(CO)₂(PPh₃)₂. Die gelbe, kristal-

$$Mo(NO)(CO)_4(AlCl_4) + 3 PPh_3 \rightarrow$$

$$MoCl(NO)(CO)_2(PPh_3)_2 + 2 CO + Ph_3P \cdot AlCl_3$$
 (3)

TABELLE 1

KATALYTISCHE AKTIVITÄT DES SYSTEMS MoCl(NO)(CO)₂(PPh₃)₂/EtAlCl₂ GEGENÜBER 2-PENTEN IN CHLORBENZEN UNTER VARIATION DER REAKTIONSZEIT t_V UND DES MOLVERHÄLTNISSES Mo/AI; MOLVERHÄLTNIS Mo/2-PENTEN 1/1000. UMSATZ ZU GLEICHEN TEILEN 3-HEXEN UND 2-BUTEN

t _V (min)	t _R (min)	Molverhältnis Mo/Al	Umsatz 2-Penten Mol (%)	
90	1	1/6	47	
90	3	1/6	51	
90	5	1/6	54	
0	1	1/6	24	
2	1	1/6	40	
Б	1	1/6	44	
10	1	1/6	48	
1 Tag	1	1/6	41	
7 Tage	1	1/6	40	
90	1	1/1	3	
90	1	1/2	15	
90	1	1/3	27	
90	1	1/4	43	
90	1	1/5	48	
90	1	1/6	48	
90	1	1/10	54	

line Verbindung ist im trockenen Zustand kurze Zeit an der Luft handhabbar und durch Elementaranalyse sowie ihr IR-Spektrum eindeutig charakterisiert. Die beiden CO-Liganden sind *trans*-ständig angeordnet, da neben der NO-Bande bei 1650 cm⁻¹ nur eine CO-Bande bei 1970 cm⁻¹ auftritt.

Die Reaktion von Mo(NO)(CO)4(AlCl4) mit anderen O-, N- und P-Donorliganden wie Ether, THF, Aceton, Pyridin, 2,2'-Dipyridyl und P(OPh), verläuft ebenfalls unter Bildung von cis- oder trans-Nitrosyl-dicarbonyl-Komplexen, deren Reindarstellung jedoch in einigen Fällen Schwierigkeiten bereitet, da sich das AlCla nicht gut abtrennen lässt und Kristallisationshemmungen auftreten. MoCl(NO)(CO)₂(PPh₃)₂ bildet mit EtAlCl₂ in Chlorbenzol innerhalb weniger Sekunden eine hellbraune, homogene Lösung, die die Metathese von 2-Penten zu 2-Buten und 3-Hexen mit sehr hoher Aktivität katalysiert. So stellt sich der thermodynamisch maximal mögliche 2-Penten-Umsatz von 54% [12], d.h. das Metathesegleichgewicht, bei einem Molverhältnis Mo/Al/2-Penten von 1/6/1000 und einer Katalysatorvorbildungszeit t_{v} von 10 Minuten schon nach ca. 1 bis 3 Minuten Reaktionszeit t_R mit dem Olefin ein (vgl. Tabelle 1). Eine noch höhere Aktivität erreicht man unter den gleichen Reaktionsbedingungen bei Einsatz von MeAlCl₂ als Kokatalysator (Mo/Al/2-Penten 1/6/1000, t_V 1.5 h, t_R 1 min, Umsatz 54%) oder durch Zugabe eines entsprechenden EtAlCl₂-Überschusses (Mo/Al 1/10). Bemerkenswert ist die hohe Lebensdauer des Katalysatorsystems MoCl(NO)(CO)₂(PPh₃)₂/6 EtAlCl₂. Auch nach 7 Tagen beträgt der 2-Penten-Umsatz bei einer Minute Reaktionszeit noch 40%.

Dieses neue Katalysatorsystem gehört damit, ebenso wie die Kombination MoCl₃(NO)(OPPh₃)₂/EtAlCl₂ [3,4], zu den aktivsten der bisher bekannten Metathesekatalysatoren, und ist durch eine bei anderen Systemen noch nicht beschriebene Langlebigkeit charakterisiert.

Die Untersuchungen werden fortgesetzt.

Experimentelles

Mo(NO)(CO)₄(AlCl₄): 9.3 g (35.2 mMol) Mo(CO)₆ werden unter Argon in 250 ml CH₂Cl₂ gelöst und bei kräftigem Rühren im Verlaufe von drei Stunden mit 6.7 g (31.9 mMol) NOAlCl₄ [13] versetzt. Nach Beendigung der CO-Entwicklung wird die resultierende dunkelbraune Lösung filtriert und das Lösungsmittel, wie auch überschüssiges Mo(CO)₆ bei Raumtemperatur im Vakuum abgezogen. Es verbleibt eine ockerfarbene, feinkristalline, luft- und hydrolyseempfindliche Substanz, die gut in CH₂Cl₂, nicht in Hexan und nur unter Zersetzung in Benzol sowie O- und N-Donorlösungsmitteln löslich ist. Ausbeute: 12.5 g (96.2%).

Für weitere Umsetzungen reicht die Reinheit dieses Rohproduktes im allgemeinen aus, jedoch ist eine Reinigung durch Lösen in CH_2Cl_2 und Kristallisation bei $-78^{\circ}C$ oder Fällen mit Hexan möglich. Ausbeute: 8 g (61.6%). Analyse. Gef.: C, 11.90; Cl, 34.87; Mo, 23.48; N, 3.55. $C_4AlCl_4MoNO_5$ ber.: C, 11.80; Cl, 34.83; Mo, 23.56; N, 3.44%. IR-Spektrum in CH_2Cl_2 : $\nu(NO)$ 1713, $\nu(CO)$ 2065 cm⁻¹.

trans-MoCl(NO)(CO)₂(PPh₃)₂: Zu einer Lösung von 17.9 g (68.1 mMol) PPh₃ in 140 ml THF werden unter Argon 8.8 g (21.6 mMol) Mo(NO)(CO)₄(AlCl₄) zugesetzt und bis zur Beendigung der CO-Entwicklung gerührt. Aus der gelben, viskosen Lösung kristallisiert eine hellgelbe Substanz aus, die nach längerem Kühlen auf —10°C abfiltriert, zweimal mit 20 ml THF/Hexan (1/1) und anschliessend mit reinem Hexan gewaschen sowie im Vakuum bei 50°C getrocknet wird. Der hellgelbe, kristalline Komplex ist im trockenen Zustand kurze Zeit an der Luft handhabbar, gut in CH_2Cl_2 , wenig in Benzol, Aceton, THF und nicht in Ether sowie Hexan löslich. In N-Donorlösungsmitteln tritt Zersetzung ein. Die Umkristallisation erfolgt durch Lösen in CH_2Cl_2 und Fällen mit Hexan. Ausbeute: 14.0 g (87.5%). Analyse. Gef.: C, 61.35; H, 4.31; Cl, 5.13; N, 2.03. $C_{38}H_{30}ClMo-NO_3P_2$ ber.: C, 61.51; H, 4.04; Cl, 4.78; N, 1.89%. IR-Spektrum in KBr: $\nu(NO)$ 1650, $\nu(CO)$ 1970 cm⁻¹.

Metatheseversuche: In einem Schlenkgefäss werden unter sorgfältigem Sauerstoff- und Feuchtigkeitsausschluss 0.03 mMol des Mo-Komplexes in 1.5 ml Chlorbenzol suspendiert und mit der entsprechenden Menge des Kokatalysators, gelöst in 1.5 ml des gleichen Lösungsmittels, unter Rühren versetzt. Nach der Katalysatorvorbildungszeit $t_{\rm V}$ (vgl. Tabelle 1) werden 3 ml 2-Penten injiziert. Durch Zugabe von 0.2 ml Isoamylalkohol wird die Katalyse abgebrochen. Die Bestimmung des Umsatzes erfolgte gaschromatographisch über das gebildete 3-Hexen.

Literatur

- 1 E.A. Zuech, J. Chem. Soc., Chem. Commun., (1968) 1182.
- 2 R. Taube und K. Seyferth, Z. Chem., 13 (1973) 300.
- 3 R. Taube und K. Seyferth, Z. Chem., 14 (1974) 284.
- 4 R. Taube und K. Seyferth, Z. Anorg. Allg. Chem., 437 (1977) 213.
- 5 R. Taube und K. Seyferth, Proc. XIX. ICCC, Prague, 1978, S. 103.
- 6 C.G. Barraclough, J.A. Bowden, R. Colton und C.J. Commons, Austr. J. Chem., 26 (1973) 241.

- 7 E.E. Isaacs und W.A.G. Graham, J. Organometal. Chem., 99 (1975) 119.
- 8 W.R. Robinson und M.E. Swanson, J. Organometal. Chem., 35 (1972) 315.
- 9 N.G. Conelly, J. Chem. Soc., Dalton Trans., (1973) 2183.
- 10 K. Seyferth, R. Taube, L. Bencze und L. Markó, J. Organometal. Chem., 137 (1977) 275.
- 11 F.A. Cotton und B.F.G. Johnson, Inorg. Chem., 3 (1964) 1609.
- 12 W.B. Hughes, J. Amer. Chem. Soc., 92 (1970) 532.
- 13 J.R. Partington und A.L. Whynes, J. Chem. Soc. (London), (1948) 1953.
- 14 R. Taube, U. Schmidt und H. Schwind, Z. Anorg. Allg. Chem., 458 (1979) 273.