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Summary

. The photochemistry of 5,8-benzo-2,2,3,3-tetramethyl(2,3-disilabicyclo-

[2.2.2] octa-5,7-diene) (I) has been investigated. Unlike thermolysis of I,

which produces tetramethyldisilene as intermediate, irradiation at 10 K in an
argon matrix or 77 K in a 8-methylpentane glass led to a di-m-methane photo-
rearrangement to give 3,4-benzo-6,7-disila-6,6,7,7-tetramethylbicyclo[3.3.0.0%2]-
octane. Photolysis of I at room temperature in cyclohexane did, however, give
tetramethyldisilene.

It has been previously shown that thermolysis of I [1] and thermolysis or
photolysis of II [2] lead to tetramethyldisilene (III) and dimethylsilene (IV) as
reactive intermeciates. We report herein our preliminary results concerning the
photochemistry of I. Photolysis of I at low temperatures did not lead to the
expected intermediate III. Instead, irradiation of I (254 nm) at 10 K in an
argon matrix or 77 K in a 3-methylpentane (3-MP) glass gave a 9:1 mixture
of 3,4-benzo-6,7-disila-6,6,7,7-tetramethyltricyclo[3.3.0.0%:8] octane (V) and
starting material I. The structure of V was confirmed by 270 MHz NMR and
mass spectra [3]. This isomerization of I to V can be described as a di-n-
methane photorearrangement [4].

However, photolysis of I in cyclohexane solution at room temperature does
appear to give low yields of II. 1,3-Dienes are known trapping reagents for
tetramethyldisilene [1,5], and in the presence of 2,3-dimethyl-1,3-butadiene,
photolysis of I for 4.5 hours at 254 nm yields 13% of the Diels-Alcer adduct
VI along with 16% of V. Photolysis of V in soiution at room temperature
with 2,3-dimethyl-1,3-butadiene produces I in 5% yield and VI. Prolonged
photolysis of either I or V in soluticn without a trapping agent leads ultimately
to naphthalene and polysilane polymer. '
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In a similar reaction photolysis of 6,7-benzo-2,2,4,4-tetramethyvl-2,4-cisila-3-
oxobicyclo[3.2.2]nona-6,8-diene [1,6] (VII) (254 nm) in a cyclohexane solu-
tion at room temperature gave only the benzotricyclic isomer VIII {7]. No de-
composition of either: VII or VIII to vield naphthalene was observed under
either thermal or photochemical conditions. Thermolysis at 200°C of both V
and VIII in sealed tubes yielded quantitative isomerizations to starting -
materials I and VII, respectively.
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From these experiments it is apparent that I and V photo-interconvert at all
temperatures studied. Our tentative explanation of the results is that in solu-
tion, loss of III and isomerization to V are competing reaction pathways for
disappearance of I. In the argon matrix or 3-MP glass, loss of III from I is pre-
vented and only photoisomerization is observed.

These isomerizations provide unusual examples of reversible di-ir-methane re-
arrangements. Another example of this type of thermally reversible di-7-
methane reaction was recently reported by Schaffner and coworkers [8] who
suggested that a diradical intermediate may be involved in the reversion step.
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