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Summary

The complexes [Co(CsMe,Et)LMe,] (I, L=C,H,; II, L = CsHg; ITI, L =
Ph;P) are reported, which undergo reactions with olefins. Following olefin
exchange, I and II react with C; H3R giving [Co(CsMe,; Et) (C.H3R),], CH, and
CH, CMeR (R = H or Me). The strong stereochemical specificity, together with
deuteration experiments and 'H NMR spectrum of the reaction mixture all
point to a simple olefin insertion reaction mechanism. Variable temperature 'H
NMR shows olefin rotation in L

Olefin insertion into metal—alkyl bonds has long been postulated as the
crucial stage in Ziegler-—Natta catalysis [1]. However, most isolated transition
metal alkyl olefin complexes are perfectly stable [2] and there is to date only
one example where such complexes perform this reaction [3]. Consequently,
alternative mechanisms for Ziegler—Natta catalysis were proposed involving
a-elimination and the formation of metallocyclobutane intermediates [4].

This preliminary communication reports the complexes [Co(CsMe, Et)LMe,],
(I, L = C,H,; II, L = C3Hg; III, L = Ph;P), and their reactions with olefins and
phosphines.

The complexes, I and II were prepared by reaction of [Co,(CsMe,;Et), Cl,]
[5] with 2 mol methyllithium and excess olefin in ether at —78°C. They were
purified by elution from a column of Kieselgel 60 at —70°C with ether (see
Scheme 2). Complex III was prepared analogously from [Co (C; Me, Et) (Ph,P)-
Cl,-toluene] [5] and purified by column chromatography at 10°C. The com-
plexes I—III are all air sensitive and I and II are unstable above —25°C, although
excess olefin appears to stabilise them at higher temperatures.

The formulation of I and II is supported by quantitative studies of their
reactions in solution. Thus, reaction with Ph;P gives 1 mol III (by Co analysis

0022-328X/81/0000—0000/$02.50, © 1981, Elsevier Sequoia S.A.



C30

and '3 NMR), together with 1 mecl of the appropriate olefin (by gas chromato-
graphy). Ether or toluene were used as solvents. In addition, 'H NMR and
analytical data shown in Tables 1 and 2 were obtained on crystalline samples of
I and II, which could be made by slowly evaporating the ether solutions to dry-
ness at ~78°C. Complex III was characterised by ! H NMR and mass spectro-
scopy and elemental analysis. These data are given in Table 1.

Variable temperature ' H NMR at 400 MHz of I with excess C, H, shows that
the complexed C,H, resonance is an AA'BB' pattern at —60°C. On warming to
—40°C and then —20°C, however, broadening and then coalescence occur, until
at 20°C a single band between the original resonances appears. On recooling to
—60°C one obtains the original spectrum. This may be interpreted as evidence for
rotation of the olefin (£, 12.5 kJ mol™! ) since the position of the final single banc
rules out olefin exchange.

Nevertheless, the complexes I and II, may be interconverted by exposure to
an excess of the appropriate olefin at 0°C for 5 min, liberating the previously
coordinated olefin stoichiometrically (as determined by gas chromatography).
Subsequently, over 3 h further reaction occurs giving [Co(Cs Me, Et)(C,H3R),]
(IV,R =H [5] or V, R = Me, CH,, and CH,CMeR', R’ =-H or Me, respectively).
The products were estimated and identified using gas chrocmatography, 'H NMR
and Co analysis by atomic absorption, and shown to be in stoichiometric pro-
portions. "H NMR data on IV and V are given in Tables 1 and 2. III gives a similar
reaction at ca. 60°C which was similarly established.

TABLE 1

ANALYTICAL DATA FOR COMPOUNDS I AND II

Compound _‘é;it;; o Analysis m/e
(found (calcd.) (52))

{Co (C;Me_ Et)(C.H )Me.] I vellow-brown Co: 22.0 (22.1)° —

[Co(C;Me_ Et)(Ph,P)Me.] i108 orange C: 74.8(74.4)

H: 7.6 (7.6) 500°

2Error 2% (on figures), the analysis was performed on solid isolated by evaporation of a solution to dry-
ness at low temperature in a preweighed ampoule. bVery weak, fragmentation observed giving much more
intense peaks.

The reaction of I with ethylene was also studied by 'H NMR at 60 and 400
MHz. Resonances due to I vanish over 1 h at 20°C, while new peaks due to CH,,
CsHg and IV appear. No intermediate species were observed.

The mechanism of the reaction of I with ethylene was studied by deuteration
of the alkyl groups and ethylene. Reaction of [Co(CsMe,Et)(C,H,;)(CDs).1
with C, D, gave (by GC/MS) CD, and C;D,, together with some C,D4 by de-
composition. Similarly, the same complex with C,H,; gave CD;H and C;H;D;
as hydrocarbon products. The C;H;D; was conclusively identified as >95%
CH,CHCD; by 400 MHz 'H NMR (see Table 2).

Complex 1 is closely similar to that proposed by Evitt and Bergmann [6] as
an unobserved intermediate in the reaction of [Co(CsH;)(Ph;P)Me,] with
ethylene and the present work is entirely consistent with their reaction mecha-
nism as shown in Scheme 1.

Furthermore, the stereoselective reaction of Il with propene giving >90%
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CH, CMe, demonstrates that a reaction is occurring under crowded conditions,
implying that the metal atom is acting as a mediator. The orientation is the
same as that found in Ziegler—Natta catalysis [7] and is the opposite of that
normally produced by metals on the right hand side of the transition series [8].

The reactivity of I and II to olefin insertion contrasts with the inertness of
[Co(PMes)s(C;Hs )R] (R = Me or Ph) [2b]. It would seem that the oxidation
state of cobalt has some role in determining reactivity. Possibly a high oxidation
state of cobalt prevents back donation from the metal to the olefin and this is a
prerequisite for insertion.

Table 2 shows the *H NMR shifts and coupling constants of free olefins and
those coordinated in the complexes described in this note. It can be seen that
the comparability of the coupling constants suggests little deformation of the
-olefin on coordination. This would indeed be consistent with pocr back dona-
tion by the metal. The large chemical shift changes are thus not felt to be due to
a change in the hybridisation of the olefinic carbon, but rather to the proximity
of the cobalt atom. ’

Olefin complexes of the early transition metals, however, show strong deforma-
tion of the coordinated olefin and low inter-proton coupling constants [9]. The
considerable differences between the chemistries of cobalt and titanium make it
dangerous to draw too many comparisons. The system discussed here seems to
bear a closer resemblance to systems such as Nill olefin oligomerisation catalysts
[10]. ‘
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SCHEME 2. (i) 2 mo}l MeLi, excess C,H,R in Et,0, —78° C,18 h; (u) excess C,H R 0°C, 5 min, R = Me
or H, respectively; (iii) excess C, H R. o° C 3 h: (w) excess Ph,P, 0°C. 1 h: (v) 2 mol MelLi in Et, O, o°c,
2 h; (vi) excess C,H, (R = H), 60°C, 10 h.
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