Journal of Organometallic Chemistry, 201 (1980) C1—C4 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

THIOCYANATOMERCURATION DES ACETYLENIQUES. PREPARATION ET PROPRIETES DE DERIVES β -(ISO)THIOCYANATOALCENYL MERCURIQUES

M. GIFFARD et J. COUSSEAU

Laboratoire de Chimie Organique, Institut de Recherches Scientifiques et Techniques, Université d'Angers, Boulevard Lavoisier, 49045 Angers-Cedex (France) (Reçu le 24 juillet 1980)

Summary

Mercuric salts HgX_2 (X = Cl, SCN) add to alkynes $R^1C \equiv CR^2$ in the presence of SCN affording β -(iso)thiocyanatoalkenyl-mercuric derivatives $R^1C(HgX) = C(SCN)R^2$. The SCN group is bonded to carbon through nitrogen if $R^1 = R^2 = C_2H_5$, and through sulphur in other cases. The reaction obeys Markovnikov's rule with anti stereochemistry. The HgX group can be substituted by hydrogen or halogen.

Nous avons récemment réussi à additionner l'acide thiocyanique HSCN à certains alcynes non activés en utilisant des sels mercuriques HgX₂ comme catalyseurs [1]. La recherche d'intermédiaires pouvant intervenir dans le cours de cette réaction nous a conduit à préparer les dérivés provenant de l'addition des sels mercuriques eux-mêmes aux acétyléniques R¹C≡CR² (I) en présence d'ions SCN⁻. Les composés formés (IIa—IId) peuvent être obtenus en milieu aqueux dans des conditions comparables à celles de la chloromercuration de l'acétylène [2]. La réaction obéit au schéma géneral suivant:

$$R^{1}C \equiv CR^{2} + HgX_{2} + A^{+},SCN^{-} \rightarrow \frac{R^{1}}{SCN}C = C + A^{+},X^{-}$$
(Ia-Id)
(ou -NCS)
(a: $R^{1} = R^{2} = H$;
b: $R^{1} = n \cdot C_{4}H_{9}$; $R^{2} = H$;
c: $R^{1} = H$; $R^{2} = CO_{2}CH_{3}$;
d: $R^{1} = R^{2} = C_{2}H_{5}$)

TABLEAU 1

HgX	<i>'</i> دِ	/R3
R.	 }	(SCN)
	Donnees relatives aux derives organo-mercuriques	

	Composé	7H	R.2	×	Rdt. (%) ^d	Temps de réaction (h)	F (°C)	RMN ^b des H vinyllques	IR ^c (CN) (cm ⁻¹)	-1)
	IIa	H	2	១	C) 84 24	24	162 d	6.39 (d); 6.36 (d)	2160 }	
Groupe SCN I	IIa'	H	H	SCN	82	40	113^{d}	J(HH): 16.25 6.66 (d);	2160, \	bandes très
S-116								6.34 (d) J(HH); 15.75	2170	
	2	n-C,H,	Ħ	ರ	55	тС	61 6	6.28 (s)	2150	
ラ	IIc	=	CO,CH,	ច	75	17	240^{f}	7,41 (s)	2160	
N-116 I	īd	C_2H_5	C_2H_5	ರ	27	120	95	l	env. 2050	

^o Calculé à partir de HgX2. ^b DMSO-de; é en ppm, J en Hz. ^c Suspensions dans le Nujol, ^d Recristallisé dans le benzène, ^e Ether + cyclohexane, ^f Acétone.

Nous avons utilisé comme sel mercurique le chlorure et le thiocyanate (X = Cl, SCN); la source de SCN $^-$ peut être le thiocyanate d'ammonium ou de potassium (A = NH $_4$, K) mais la réaction est plus facile avec une solution d'acide thiocyanique (A = H). Le mode opératoire général est le suivant: on dissout dans 50 ml de solution aqueuse de HSCN 3M* 0.1 mol de HgX $_2$ puis on ajoute 0.1 mol de l'acétylénique (sauf dans le cas de C_2H_2 (Ia) que l'on fait simplement barboter dans la solution), le mélange est ensuite agité à température ambiante; il apparaît progressivement un précipité blanc qui est récupéré lorsque sa formation semble terminée (quelques heures à quelques jours). Le Tableau 1 rassemble les données relative aux produits IIa—IId obtenus.

Malgré l'existence de trois possibilités différentes d'isomérie, nous n'isolons jamais qu'un seul produit correspondant à l'addition des entités SCN et HgX **:

Les alcynes monosubstitués (Ia—Ic) conduisent uniquement aux thiocyanates vrais S-liés NCSCR¹=CR²HgX (IIa—IIc), alors que l'hexyne-3 (Id) fournit exclusivement l'isothiocyanate N-lié (IId); ces composés sont bien différenciés par la forme et la position des bandes $\nu(CN)$ en infrarouge [3] (voir Tableau 1).

La formation des dérivés (II) à partir des alcynes monosubstitués est régiospécifique et suit la règle de Markovnikov; on obtient ainsi le chloromercuri-1 thiocyanato-2 hexène-1 (IIb) à partir de l'hexyne-1 (Ib) et le chloromercuri-2 thiocyanato-3 propènoate de méthyle (IIc) à partir du propiolate de méthyle (Ic).

Enfin la réaction est stéréospécifique, le seul isomère géométrique obtenu étant celui qui résulte de l'anti-addition des fragments SCN et HgX⁺.

Nous avons testé sur les composés II certaines réactions de la liaison C—Hg. L'action des acides forts (H₂SO₄, HBF₄ en solution éthérée) permet la substitution du groupement HgX par un atome d'hydrogène. Cette réaction de démercuration peut également être réalisée par action de NaBH₄. On aboutit ainsi à des (iso)thiocyanates vinyliques dont certains ont été précédemment décrits [1]. C'est cette réaction de substitution qui a permis d'établir la structure de certains des dérivés mercuriques II initiaux.

Le groupement HgX peut aussi être remplacé par un halogène: cette substitution a été obtenue à partir des dérivés IIa ou IIa' par action de l'iode ou du brome dans la pyridine [4], tandis que la substitution par la chlore a été réalisée par action sur IIa du chlorure cuivrique CuCl₂ dans l'acétonitrile [5]. On observe dans tous les cas une rétention de configuration du motif éthylénique. Les données relatives aux trans-halo-1-thiocyanato-2 éthylènes ainsi obtenus sont réunies dans le Tableau 2.

Signalons enfin que les α -chloromercuri- β -thiocyanato alcènes sont sensibles à la présence d'ions SCN $^-$, comme il a été signalé à propos de dérivés issus de l'addition d'un sel mercurique à une oléfine [6]; ainsi l'addition de thiocyanate de tétrabutyl-ammonium Bu₄N $^+$ SCN $^-$ à une solution du dérivé IIb dans CH₂Cl₂ entraine sa décomposition quasi immédiate avec régénération de

^{*}Préparée par extraction à l'éther d'une solution aqueuse de NH₄SCN + H₂SO₄ suivie d'une évaporation de l'éther après réaddition d'eau.

^{**}Il apparait par contre certains produits secondaires, notamment ceux issus de l'addition de HSCN (R¹C(SCN)=CHR²) ou d'eau (R¹COCH₂R²); dans le cas du propiolate de méthyle (Ic) nous avons également mis en évidence la formation dans certaines conditions d'une petite quantité de CHCl=C(HgX)CO₂CH₃.

TABLEAU 2

DONNEES RELATIVES AUX trans-HALO-1 THIOCYANATO-2 ETHYLENES XCH=CHSCN (III)

Composé	x	Eb.	RMN ¹ H (CCl ₄)	
		(°C/Torr)	δ (ppm)	J(HH) (Hz)
IIIa	Cl	70/20	6.42(d)-6.72(d)	13.2
IIIa'	Br	78/22	6.58(d)-6.82(d)	13.8
IIIa"	I	103/20	6.77(d)-6.93(d)	14.4

l'hexyne-1 (Ib) de départ; on peut donc penser que c'est vraisemblablement grâce à l'insolubilité en milieu aqueux des dérivés organo-mercuriques (II) que leur formation est possible dans ces conditions.

Bibliographie

- 1 M. Giffard et J. Cousseau, J. Chem. Soc., Chem. Commun., (1979) 1026.
- 2 R.Kh. Freidlina et A.N. Nesmeyanov, Dokl. Akad. Nauk SSSR, 26 (1940) 60; Chem. Abstr., 34 (1940) 6567⁴.
- 3 L.S. Luskin, G.E. Gantert et W.E. Craig, J. Amer. Chem. Soc., 78 (1956) 4965.
- 4 C.P. Casey, G.M. Whitesides et J. Kurth, J. Org. Chem., 38 (1973) 3406.
- 5 V.A. Nefedov, Zh. Obshch. Khim., 39 (1969) 630 et ref. citées.
- 6 J. Chatt, Chem. Rev., 48 (1951) 7.