Journal of Organometallic Chemistry, 221 (1981) 143–146 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

A TRIMETHYLSILYL GROUP MIGRATION IN THE CHEMISTRY OF η^{5} -C₅H₅Fe(CO)₂SiMe₃

STUART R. BERRYHILL * and BRETT SHARENOW

Department of Chemistry, California State University, Long Beach, CA 90840 (U.S.A.) (Received may 13th, 1981)

Summary

Reaction of η^5 -C₅H₅Fe(CO)₂SiMe₃ with either n-BuLi or lithium diisopropylamide (LDA) results in a migration of the trimethylsilyl group from iron to the complexed Cp ligand. The resulting η^5 -C₅H₄SiMe₃Fe(CO)₂ anion is readily alkylated to give σ -bonded derivatives. The unique reactivity of the trimethylsilyl system is underscored by comparison with the behavior of η^5 -C₅H₅Fe-(CO)₂Me under identical conditions. Some chemical transformations of η^5 -C₅H₄SiMe₃Fe(CO)₂R derivatives involving migratory insertion and β -hydride abstraction are also reported.

Since the original report of an iron organosilyl compound in 1956 [1], a number of silyl derivatives of iron have been prepared [2-8]. Relatively little is known, however, about the chemical reactivity of the iron-silicon bond. Nucleophilic cleavage of dicarbonylcyclopentadienyliron silyl compounds by alkoxides to give the CpFe(CO)₂ anion (Cp = η^5 -C₅H₅) has been demonstrated [4,9], and electrophilic cleavage has been observed with reagents such as Cl₂ and HCl [10]. The potential for interesting new chemistry of the iron-silicon

Product	Alkylating agent R—X	Product yields as function of base (%)		
		LDA	n-BuLi	
IIa	MeI	73	95, 57 ^a	
IIb	EtBr	74	87	
fIe	n-BuBr	79	65 ^a	

YIELDS OF p⁵-(CcH4SiMe2)Fe(CO)2R PRODUCTS (eq. 1)

^a Entire reaction sequence run at 0° C; all others at -78° C.

bond is suggested by the recent report of the reaction of $(CO)_4$ Fe[Si(CH₃)₃]₂ with the carbonyl group of benzaldehyde [11].

This paper describes a new reaction of $CpFe(CO)_2SiMe_3$ (I) discovered while examining the possibility of ring metalation of dicarbonylcyclopentadienyliron derivatives. As shown in eq. 1, treatment of I at $-78^{\circ}C$ in THF with either n-BuLi or lithium diisopropylamide (LDA) followed by alkylation at $-78^{\circ}C$ gives products IIa—IIc which are the result of a trimethylsilyl migration from iron to the bonded cyclopentadienyl ligand. Compounds IIa—IIc are air-sensitive yellow liquids whose spectroscopic properties * are consistent with the presence of a η^5 -C₅H₄SiMe₃ ligand and an alkyl group σ -bonded to iron. Typical yields of alkylated products IIa—IIc are given in Table 1. A possible mechanism for the rearrangement is suggested in Scheme 1. The same type of mechanism has been advanced to explain a migration of the triphenylgermyl group from metal to cyclopentadienyl ligand observed when CpM(CO)₃GePh₃ (M = Mo, W) is treated with alkylithium reagents [12].

Reactions involving base-induced migrations of organosilyl groups are well known [13], but the one reported here is the first example in which the organosilyl group is bonded to a transition metal. Anion III has been identified by IR spectroscopy as an intermediate in the conversion of I to II. An infrared spectrum of the reaction mixture several minutes after n-BuLi is added dropwise to a THF solution of I at -78° C shows four intense carbonyl bands at 1875, 1861, 1806, and 1743 cm⁻¹. The bands at 1861 and 1743 cm⁻¹ may be

TABLE 1

^{*} IIa IR(CHCl₃): 1991, 1937 cm⁻¹, NMR(CS₂): δ 4.67–4.90 (m, 4, Cp), 0.31 (s, 9, SiMe₃), 0.18 ppm (s, 3, CH₃). IIb IR(CHCl₃): 1993, 1937 cm⁻¹, NMR(CS₂): δ 4.63–4.82 (m, 4, Cp), 1.03–1.84 (12 lines, 5, CH₂CH₃), 0.29 ppm (s, 9, SiMe₃), MS m/e 278 (M⁺), 250 (M⁺ – CO), 222 (M⁺ – 2 CO), 194 (M⁺ – 2 CO – C₂H₄). IIc IR(CHCl₃): 1987, 1929 cm⁻¹, NMR(CS₂): δ 4.64–4.88 (m, 4, Cp), 1.46 (m, CH₂) 0.91 (m, CH₃), 0.27 ppm (s, 9, SiMe₃), MS m/e 306 (M⁺), 278 (M⁺ – CO), 250 (M⁺ – 2 CO – c₄H₈), 249 (M⁺ – c₄H₉), 194 (M⁺ – 2 CO – c₄H₈).

assigned to a carbonyl-bridged ion pair and those at 1875 and 1806 cm⁻¹ to a tight ion pair, following the interpretation of the almost identical spectrum of $CpFe(CO)_2Li$ [14]. The absence of other bands in the carbonyl portion of the spectrum indicates a rapid and complete trimethylsilyl rearrangement. Formation of the stable, coordinatively saturated 18-electron anion III may provide the driving force for the rearrangement. The alkylation of III parallels the well-established chemistry of the CpFe(CO)₂ anion [14].

The detailed mechanism of the reported reaction is currently under investigation, but the unique reactivity of the iron silyl compound I is emphasized by comparison with the behavior of $CpFe(CO)_2Me$ (IV) under the same conditions. When IV in THF solution at $-78^{\circ}C$ is treated with one equivalent of n-BuLi followed by ethyl bromide, the tractable portion of the product (accounting for about 30% of the Fe atoms in the starting material) consists of $CpFe(CO)_2Et$, IV, and ferrocene in a 4:3:1 ratio *. Both $CpFe(CO)_2Et$ and ferrocene are probably products of electron transfer processes, as is the polymeric non-carbonyl material which makes up the bulk of the reaction product.

Compounds IIa and IIb undergo chemical reactions typical of CpFe(CO)₂R (R = alkyl) derivatives. Migratory insertion of a carbonyl ligand is a well-known process [16]. The formation of metal acyl complexes Va (NMR(CDCl₃): δ 7.41 (m, Ph), 4.08–4.68 (m, Cp), 2.21 (s, CH₃), 0.32 ppm (s, SiMe₃); Anal. Found: C, 66.04; H, 5.85. C₂₉H₃₁O₂PSiFe calcd: C, 66.16; H, 5.93%) and Vb (IR-(CH₂Cl₂): 1905, 1592 cm⁻¹; Anal. Found: C, 66.17; H, 6.09. C₃₀H₃₃O₂PSiFe calcd: C, 66.67; H, 6.15%) by migratory insertion is shown in eq. 2 (20% excess of phosphorus ligand, 72 h, 60–70% yield).

Another transformation characteristic of the CpFe(CO)₂R system is elimination of a β -hydride to give a cationic olefin complex [17]. When IIb is allowed to react with trityl fluoroborate (CHCl₃, 0° C, 1.5 h) the ethylene π -complex VI is formed in 68% yield (IR(CH₃CN): 2077, 2040 cm⁻¹; NMR (acetone- d_6) δ 5.99 (s, Cp), 3.97 (s, vinyl), 0.48 ppm (s, SiMe₃); Anal. Found: C, 39.32; H, 4.84. C₁₂H₁₇BF₄O₂SiFe calcd.: C, 39.59; H, 4.71%).

The reaction reported here is the first example of a base-induced silvl rearrangement involving a compound with a transition metal to silicon bond. Additional work in progress is focusing on the mechanism of the rearrangement and

^{*} These three compounds are eluted together by chromatography of the crude reaction product on Florisil; the ratio is determined by integration of the NMR spectrum and is reproducible to $\pm 3\%$ in different experiments. The remainder of the reaction product is a dark, viscous, polymeric material whose IR spectrum shows no significant carbonyl absorptions.

extension of this chemistry to other cyclopentadienyliron triorganosilyl compounds.

Acknowledgement

This research was supported in part by the Office of Research, California State University, Long Beach.

References

- 1 T.S. Piper, D. Lemal and G. Wilkinson, Naturwissenschaften, 43 (1956) 129.
- 2 W. Jetz and W.A.G. Graham, J. Amer. Chem. Soc., 89 (1967) 2773.
- 3 R.B. King, K.H. Pannell, C.R. Bennett and M. Ishaq, J. Organometal. Chem., 19 (1969) 327.
- 4 M. Höfler and J. Scheuren, J. Organometal. Chem., 55 (1973) 177.
- 5 C. Windus, S. Sujishi and W.P. Giering, J. Organometal. Chem., 101 (1975) 279.
- 6 L. Vancea and W.A.G. Graham, Inorg. Chem., 13 (1974) 511.
- 7 W. Jetz and W.A.G. Graham, J. Organometal. Chem., 69 (1974) 383.
- 8 A.M. Mance and C.H. Van Dyke, Inorg. Nucl. Chem. Letters, 15 (1979) 393.
- 9 M.A. Nasta and A.G. MacDiarmid, J. Organometal. Chem., 18 (1969) P11.
- 10 R.E.J. Bichler, H.C. Clark, B.K. Hunter and A.T. Rake, J. Organometal. Chem., 69 (1974) 367.
- 11 D.L. Johnson and J.A. Gladysz, J. Amer. Chem. Soc., 101 (1979) 6433.
- 12 W.K. Dean and W.A.G. Graham, Inorg. Chem., 16 (1977) 1061.
- 13 R. West, Pure Appl. Chem., 19 (1969) 291. For an example of a trimethylsilyl migration between carbon centers see: J.J. Eisch and M.R. Tsai, J. Amer. Chem. Soc., 95 (1973) 4065.
- 14 M. Nitay and M. Rosenblum, J. Organometal. Chem., 136 (1977) C23.
- 15 F.L. Bowden and L.H. Wood in E.A.K. von Gustorf, F.W. Grevels and I. Fischler (Eds.), The Organic Chemistry of Iron, Vol. 1, Academic Press, New York, 1978.
- 16 (a) J.P. Bibler and A. Wojcicki, Inorg. Chem., 5 (1966) 889. (b) J.P. Collman and L.S. Hegedus, Principles and Applications of Organotransition Metal Chemistry, University Science Books, Mill Valley, CA, 1980, chapter 5.
- 17 (a) M.L.H. Green and P.L.I. Nagy, J. Organometal. Chem., 1 (1963) 58. (b) D.E. Laycock, J. Hartgerink and M.C. Baird, J. Org. Chem., 45 (1980) 291.