Journal of Organometallic Chemistry, 208 (1981) C21—C24 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

Preliminary communication

SYNTHESIS OF METAL—TETRAAZADIENE COMPLEXES VIA LIGAND TRANSFER; TWO ROUTES TO NICKEL— OR PLATINUM—TETRAAZADIENE COMPLEXES [M(Ar₂N₄)(L)₂]

PETER OVERBOSCH, GERARD VAN KOTEN* and KEES VRIEZE

Anorganisch Chemisch Laboratorium, J.H. van 't Hoff Instituut, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (The Netherlands)
(Received December 5th, 1980)

Summary

A novel route for the synthesis of metal—tetraazadiene complexes is reported involving the direct transfer of a Ar_2N_4 ligand from $[Ni(Ar_2N_4)_2]$ to Ni^0 and Pt^0 centres in the presence of t-butylisocyanide, resulting in $[M(Ar_2N_4)(t-BuIC)_2]$ species. For M=Pt the latter complexes can also be prepared by reaction of the zerovalent isocyanide complex with the appropriate azide or by addition of t-BuNC to $[Pt(Ar_2N_4)(COD)]$.

Although the tetraazadiene species RN_4R is unknown as a free compound, tetraazadiene complexes can be generated by reaction of a metal centre with an azide or diazonium salt [1]. The transfer of a complete Ar_2N_4 ligand from the bis-tetraazadiene complex $[Ni(Ar_2N_4)_2]$ [2] to another Ni- or Pt-centre, described below, represents the first application of a new method of preparation of tetra-azadiene complexes.

[Ni(COD)₂] reacts with [Ni(Ar₂N₄)₂] (1/1) to form a brown complex (I) which is insoluble in toluene. Reaction of this complex with excess t-BuNC (8 h at 60° C, see Scheme 1) results in the formation of the known [Ni(Ar₂N₄)-(t-BuNC)₂] [2]. The yields, calculated on the basis of the total amount of Ni present, for Ar = 4-MeC₆H₄ and 3,5-Me₂C₆H₃, are 40 and 80%, respectively. The latter yield also represents recovery of 80% of the Ar₂N₄ ligand in a single mononuclear complex, which is conclusive evidence that Ar₂N₄ transfer has occurred.

A toluene solution of $[Ni(Ar_2N_4)_2]$ and $[Pt(COD)_2]$ (1/1) yields upon addition of t-BuNC a red compound which is only sparingly soluble in toluene, but very soluble in THF. Elemental analyses indicate a complex with stoichiometry

^{*}Author to whom correspondence should be addressed.

$$\begin{bmatrix} N_1(\Delta r_2N_4)_2N_1(COD) \end{bmatrix} \xrightarrow{t-BuNC} \begin{bmatrix} N_1(\Delta r_2N_4)(t-BuNC)_2 \end{bmatrix}$$

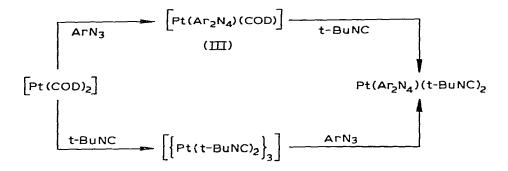
$$\begin{bmatrix} N_1(\Delta r_2N_4)_2 \end{bmatrix} \xrightarrow{t-BuNC} \begin{bmatrix} N_1(\Delta r_2N_4)_2Pt(t-BuNC)_2 \end{bmatrix} \xrightarrow{Bh 60^{\circ}C} \begin{bmatrix} Pt(\Delta r_2N_4)(t-BuNC)_2 \end{bmatrix}$$

$$\begin{bmatrix} Pt(COD)_2 \end{bmatrix} \xrightarrow{t-BuNC} \begin{bmatrix} N_1(\Delta r_2N_4)_2Pt(t-BuNC)_2 \end{bmatrix} \xrightarrow{Bh 60^{\circ}C} \begin{bmatrix} Pt(\Delta r_2N_4)(t-BuNC)_2 \end{bmatrix}$$

$$\begin{bmatrix} Bh 60^{\circ}C \\ t-BuNC \end{bmatrix}$$

(Ar = 4-MeC_6H_4 or $35\text{-Me}_2C_6H_3$ a'l reactions in taluene)

SCHEME 1


[Ni(Ar₂N₄)₂Pt(t-BuNC)₂] (II), while the IR spectra show only terminal bonded t-BuNC (ν (NC) 2190 cm⁻¹(br)). The deep purple [Ni(Ar₂N₄)₂] may be recovered from the intermediate II by passing the red THF solution through a silica column. This suggests that in II both Ar₂N₄ ligands may still be bonded to Ni, with the Pt(t-BuNC)₂ fragment probably coordinated to one Ar₂N₄ unit. After heating II for 8 h at 60°C in toluene, [Pt(Ar₂N₄)(t-BuNC)₂] can be isolated in approximately 25% yield (see Scheme 1). If I is heated in the presence of excess t-BuNC, a mixture of [Ni(Ar₂N₄)(t-BuNC)₂] and [Pt(Ar₂N₄)(t-BuNC)₂] is obtained[×]. The formation of [Ni(Ar₂N₄)(t-BuNC)₂] in this mixture can be explained by coordination of two t-BuNC units to the Ni centre following the transfer of one of the Ar₂N₄ ligands to the Pt centre.

Interestingly the Ar_2N_4 ligand transfer is also observed in the direct reaction of $[Ni(Ar_2N_4)_2]$ with the metal isocyanide complexes $[Ni(t-BuNC)_4]$ and $[\{Pt(t-BuNC)_2\}_3]$ [3], which afford $[Ni(Ar_2N_4)(t-BuNC)_2]$ and $[Pt(Ar_2N_4)(t-BuNC)_2]$, respectively.

Tetrazadiene ligand transfer from [Ni(Ar₂N₄)(η^5 -C₅H₅)] [2] and [Co(Ar₂N₄)(η^5 -C₅H₅)] [4] to other metal centres has not so far been observed, which may be due to the different type of bonding in these [M(Ar₂N₄)(η^5 -C₅H₅)] species. A recent X-ray structure determination of [Ni(Ar₂N₄)(η^5 -C₅H₅)] (Ar = 4-MeC₆H₄ [5] has shown significant differences from [Ni(Ar₂N₄)₂] (Ar = 3,5-MeC₆H₃); a shorter central N—N bond distance of 1.278(3) Å was found with two longer adjacent N—N bonds of 1.344(2) and 1.346(2) Å (cf. the equal N—N bond lengths of 1.319(4) and 1.325(3) Å, respectively, in [Ni(Ar₂N₄)₂]), while the aryl groups are twisted 45° out of the NiN₄ plane (cf. the coplanarity of aryl rings and NiN₄ plane in [Ni(Ar₂N₄)₂]).

An alternative route to the platinum—tetraazadiene complexes [2], namely the reaction of $[Pt(COD)_2]$ with the corresponding azide (see Scheme 2), yielded $[Pt(Ar_2N_4)(COD)]$ (III, $Ar = 4\text{-MeC}_6H_4$, 4-ClC_5H_4 , $4\text{-NO}_2C_6H_4$) in approximately 30% yield. The reactions were carried out at room temperature and proceed more rapidly with increasing electronegativity of the substituent on the aryl groups. Comparison of the 13 C NMR shift data of the olefinic COD carbon

^{*}The mixture was identified by FD mass spectroscopy and comparison of the IR spectra with those of the pure compounds.

(Ar = $4\text{-MeC}_6\text{H}_4$, $4\text{-CIC}_6\text{H}_4$ or $4\text{-NO}_2\text{C}_6\text{H}_4$; all reactions in toluene) SCHEME 2

atoms of III (Ar = 4-ClC_6H_4 , δ 86.5 ppm, J(Pt-C) 168 Hz; Ar = $4\text{-NO}_2C_6H_4$, δ 89.0 ppm, J(Pt-C) 168 Hz) with those of [Pt(COD)(DAB)] [2] * [DAB = ArN=CHCH=NAr, Ar = 4-ClC_6H_4 : δ 80.6 ppm, J(Pt-C) 174 Hz) and those of other known platinum cyclooctadiene complexes [6] indicates that complexes of type III contain zerovalent platinum. Reactions of III with t-BuNC yield $[Pt(Ar_2N_4)(t\text{-BuNC})_2]$ complexes, which can also be prepared by treatment of $[\{Pt(t\text{-BuNC})_2\}_3]$ with the appropriate azide (see Scheme 2).

It is noteworthy that the $[Pt(Ar_2N_4)(COD)]$ complexes show unusual reactions. Reactions of complexes III with DAB and RNSNR resulted in recovery of the starting materials as did attempted reactions with MeI and $Hg(CH_3COO)_2$. The fact that complexes III were not oxidized points to an interesting difference compared with the [Pt(COD)(DAB)] complexes, which are extremely sensitive towards oxidation.

Reaction of III (Ar = 4-MeC₆H₄, 4-ClC₆H₄) with PEt₃ gave [Pt(Ar₂N₄)(PEt₃)₂] (IV) (31 P NMR; Ar = 4-MeC₆H₄, δ -7.1 ppm, J(Pt-P) 3338 Hz; Ar = 4-ClC₆H₄, δ -6.5 ppm, J(Pt-P) 3330 Hz)**.

So far complete transfer of Ar_2N_4 from Ni to Pd has not been accomplished. The reaction of $[Ni(Ar_2N_4)_2]$ with $[\{Pd(t-BuNC)_2\}_n]$ [8] yielded an isolable complex, which, by analogy to the above-mentioned Ni—Pt intermediate II, can be formulated as $[Ni(Ar_2N_4)_2Pd(t-BuNC)_2]$ (V).

The $[Ni(Ar_2N_4)_2ML_2]$ intermediates I, II and V might contain the Ar_2N_4 unit as a metal—metal bridging ligand using either the lone pairs on the N atoms, or the π -electrons in addition to these lone pairs. This is not unlikely in view of the recent characterization of 2e+2e, 6e and 8e donating 1,4-diaza-1,3-

^{*[}Pt(COD)(DAB)] complexes will be the subject of a forthcoming paper.

^{**} For Ar is 4-NO₂C₆H₄ the reaction with PEt₃ gave an intensely blue-coloured compound [7], in sharp contrast to the pale yellow and orange colours of complexes III and derivatives. A recent X-ray structure determination of this blue compound revealed that the structure must be formulated as [{4-NO₂C₆H₄)₂N₄}(PEt₃)PtCHC(PEt₃)H(CH₂)₂CH=CHCH₂CH₂] [5]. The 1.5-cyclooctadiene ligand is \(\eta^2\)-bonded via one C=C unit to Pt, the second C=C unit has undergone nucleophile attack by PEt₃ resulting in a C—Pt \(\eta\)-bond.

The reported complexes were identified by a combination of techniques, including ¹H and ¹³C NMR, FD mass spectroscopy [9], elemental analysis and IR.

butadiene (DAB) units [10], a ligand which is isostructural with Ar_2N_4 . Whether these intermediates react further to give the exchanged products seems to depend on the nature of the aryl substituent, the co-ligand L and the metal. Further research is being directed towards elucidation of the structure of the $[Ni(Ar_2N_4)ML_2]$ intermediates in order to obtain insight into the mechanism of these Ar_2N_4 ligand transfer reactions.

We thank Mr. R.H. Fokkens for recording the F.D. mass spectra, Mr. J. Ernsting for recording the ³¹P NMR spectra, and Dr. D.M. Grove for many helpful discussions.

References

- 1 See S. Cenini and G. la Monica, Inorg. Chim. Acta Rev., 18 (1976) 279.
- 2 P. Overbosch, G. van Koten and O. Overbeek, J. Amer. Chem. Soc., 102 (1980) 2091.
- 3 M. Green, J.A.K. Howard, M. Murray, J.L. Spencer, and F.G.A. Stone, J. Chem. Soc. Dalton, (1977) 1509.
- 4 S. Otsuka and A. Nakamura, Inorg. Chem., 7 (1968) 2542; M.E. Gross, W.C. Trogler, and J.A. Ibers, to be published.
- 5 A.L. Spek, G. Roelofsen and A.J. Duisenberg, to be published.
- 6 M.T. Chicote, M. Green, J.L. Spencer, F.G.A. Stone, and J. Vicente, J. Chem. Soc. Dalton, (1979) 536; D.M. Grove, Ph.D. thesis, Bristol, 1977.
- 7 Cf.: C.M. Flynn, Jr, T.S. Viswanathan and R.B. Martin, Inorg. Nucl. Chem., 39 (1979) 437, and ref. cited therein.
- E.O. Fischer and H. Werner, Chem. Ber., 95 (1962) 703; S. Otsuka, A. Nakamura, and Y. Tatsuno,
 J. Amer. Chem. Soc., 91 (1969) 6994.
- 9 L.H. Staal, G. van Koten, R.H. Fokkens, and N.M.M. Nibbering, Inorg. Chim. Acta, in press; C.N. McEwe and S.D. Ittel, Org. Mass. Spectrom., 15 (1980) 35.
- 10a H. van der Poel, G. van Koten, K. Vrieze, M. Kokkes and C.H. Stam, Inorg. Chim. Acta, 39 (1980) 197.
- 10b H.W. Frühauf, A. Landers, R. Goddard and C. Krieger, Angew. Chem., 90 (1978) 56; L.H. Staal, L.H. Polm, R.W. Balk, G. van Koten, K. Vrieze and A.M.F. Brouwers, Inorg. Chem., 19 (1980) 3343.
- 10c L.H. Staal, L.H. Polm, K. Vrieze, F. Ploeger and C.H. Stam, J. Organometal. Chem., 199 (1980) C13.