Journal of Organometallic Chemistry, 232 (1982) 351-370 Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

BASISCHE METALLE

XXXVI*. DIE SYNTHESE STABILER HYDRIDO(OLEFIN)RHODIUM-KOMPLEXE UND VON [C₅H₅Rh(PMe₃)(η³-CH₃CHC₆H₅)]PF₆

HELMUT WERNER * und RAINER FESER

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, D-8700 Würzburg (B.R.D.)

(Eingegangen den 26. Januar 1982)

Summary

The complexes $C_5H_5Rh(PMe_3)C_2H_3R'$ (R' = H, Me, Ph) and $C_5H_5Rh(PR_3)$ - C_2H_4 (PR₃ = PMe₂Ph, PPrⁱ₃) are prepared by reaction of [PMe₃(C₂H₃R')RhCl]₂ or [PR₃(C₂H₄)RhCl]₂ and TlC₅H₅, respectively. They react with HBF₄ in ether/propionic anhydride to form the BF₄ salts of the hydrido(olefin)rhodium cations [C₅H₅RhH(C₂H₃R')PR₃]⁺ (R = Me; R' = H, Me and R = Prⁱ; R' = H). From C₅H₅Rh(PMe₃)C₂H₃Ph and CF₃COOH/NH₄PF₆ the η ³-benzyl complex [C₅H₅Rh(PMe₃)(η ³-CH₃CHC₆H₅)]PF₆ is obtained. The reversibility of the protonation reactions is demonstrated by temperature-dependent NMR spectra and by deuteration experiments. The complexes C₅H₅Rh(PMe₃)C₂H₃R' (R' = H, Ph) and C₅H₅Rh(PMe₂Ph)C₂H₄ react with CH₃I in ether to give the salts [C₅H₅RhCH₃(C₂H₃R')PR₃]I which in THF or CH₃NO₂ yield the neutral compounds C₅H₅RhCH₃(PR₃)I.

Zusammenfassung

Die Komplexe $C_5H_5Rh(PMe_3)C_2H_3R'$ (R'=H, Me, Ph) und $C_5H_5Rh(PR_3)-C_2H_4$ ($PR_3=PMe_2Ph$, PPr^i_3) sind durch Reaktion von $[PMe_3(C_2H_3R')RhCl]_2$ oder $[PR_3(C_2H_4)RhCl]_2$ und TlC_5H_5 zugänglich. Sie reagieren mit HBF_4 in Ether/Propionsäureanhydrid unter Bildung der BF_4 -Salze der Hydrido(olefin)-rhodium-Kationen $[C_5H_5Rh(C_2H_3R')PR_3]^+$ (R=Me;R'=H, Me und $R=Pr^i;R'=H$). Ausgehend von $C_5H_5Rh(PMe_3)C_2H_3Ph$ und CF_3COOH/NH_4PF_6 erhält man den η^3 -Benzyl-Komplex $[C_5H_5Rh(PMe_3)(\eta^3-CH_3CHC_6H_5)]PF_6$. Die Reversibilität der Protonierungsreaktionen wird durch die temperaturabhängigen NMR-Spektren und durch Deuterierungsexperimente belegt. Die Komplexe C_5H_5Rh -

^{*} Für XXXV. Mitteilung siehe Ref. 1.

 $(PMe_3)C_2H_3R'$ (R'=H, Ph) und $C_5H_5Rh(PMe_2Ph)C_2H_4$ reagieren mit CH_3I in Ether zu den Salzen $[C_5H_5RhCH_3(C_2H_3R')PR_3]I$, die in THF oder CH_3NO_2 die Neutralverbindungen $C_5H_5RhCH_3(PR_3)I$ ergeben.

Einleitung

Hydrido(olefin)-Komplexe von Übergangsmetallen spielen als Zwischenstufen bei der katalytischen Hydrierung und Isomerisierung von Olefinen eine wichtige Rolle [2]. Zu ihrer Darstellung kann man entweder von einer Metallhydridverbindung und einem Olefin oder von einem Metallolefin-Komplex und einer Wasserstoffverbindung (im einfachsten Fall von H₂) ausgehen. In der homogenen Katalyse werden vermutlich beide Wege beschritten.

Wesentlich schwieriger als die intermediäre Bildung ist die Isolierung von Hydrido(olefin)-Metallkomplexen [2]. Von Rhodium, einem Metall, das ausgezeichnete katalytische Fähigkeiten besitzt, war zu Beginn dieser Arbeit keine einzige Verbindung des Typs L, RhH(C, H, R) bekannt. Wir interessierten uns für die Darstellung solcher Verbindungen im Zusammenhang mit unseren Untersuchungen über die Reaktivität Lewis-basischer Halbsandwich-Komplexe der allgemeinen Zusammensetzung C_5R_5MLL' (R = H, Me; M = Co, Rh) [3], in denen L und L' Zweielektronendonoren wie PR₃, P(OR)₃, CO, CS, CNR, C₂H₂, C₂H₄ etc. sind. Der Bis(trimethylphosphin)-Komplex $C_5H_5Rh(PMe_3)_2$ [4] ist in dieser Reihe das beste Nucleophil (d.h. die stärkste "Metall-Base" [5]) und übertrifft diesbezüglich die strukturanalogen Verbindungen C₅H₅Rh[P(OR)₃]₂ [6], $C_5H_5Rh(CO)_2$ [7] und $C_5H_5Rh(C_2H_4)_2$ [8] bei weitem. Bereits mit schwachen Protonendonatoren wie NH₄PF₆ reagiert C₅H₅Rh(PMe₃)₂ zu dem Kation [C₅H₅RhH(PMe₃)₂]⁺ [4], das gegenüber einem Ligandenaustausch erstaunlich inert ist. Der Bis(ethylen)-Komplex C₅H₅Rh(C₂H₄)₂ ist dagegen erst durch starke Säuren wie z.B. HCl angreifbar; dabei lässt sich jedoch nicht die Bildung eines Hydrido(ethylen)-Komplexes sondern nur die der Ethylrhodium-Verbindung $C_5H_5RhC_2H_5(C_2H_4)Cl$ nachweisen [8,9].

Der Ethylen(trimethylphosphin)-Komplex $C_5H_5Rh(PMe_3)C_2H_4$ sollte nun eine Zwischenstellung zwischen $C_5H_5Rh(PMe_3)_2$ und $C_5H_5Rh(C_2H_4)_2$ einnehmen. Nach unseren Erfahrungen mit entsprechenden Aromaten(ethylen)ruthenium-und -osmium-Verbindungen [10,11] war damit zu rechnen, dass der Komplex $C_5H_5Rh(PMe_3)C_2H_4$ mit Brönsted-Säuren glatt reagiert und ein stabiles Hydrido-(olefin)metall-Kation bildet. Der starke Elektronendonor PMe3 sollte dabei die beiden sonst labilen Bindungen Rh— C_2H_4 und Rh—H stabilisieren.

Wir berichten im folgenden über die Synthese der Olefin-Komplexe $C_5H_5Rh-(PR_3)C_2H_3R'$ ($PR_3 = PMe_3$, PMe_2Ph , PPr^i_3 ; R' = H, Me, Ph) und der BF_4 -Salze der entsprechenden Hydrido(olefin)-Kationen, über die Gleichgewichte zwischen diesen Kationen und ihren Alkyl-Isomeren, über die Isolierung und strukturelle Charakterisierung von $[C_5H_5Rh(PMe_3)(\eta^3-CH_3CHC_6H_5)]X$ ($X = BF_4$, PF_6) und über Reaktionen von $C_5H_5Rh(PR_3)C_2H_3R'$ mit Methyliodid. Eine kurze Mitteilung über einige dieser Ergebnisse ist bereits erschienen [12].

Darstellung und Eigenschaften der Komplexe C₅H₅Rh(PR₃)C₂H₃R'

Für die Darstellung der Komplexe C₅H₅Rh(PR₃)C₂H₃R' schienen uns die chloroverbrückten Zweikernverbindungen [PR₃(C₂H₃R')RhCl]₂ die geeignetsten Ausgangssubstanzen zu sein. Wir hatten, in Anlehnung an die von Chatt und Venanzi [13] beschriebene Synthese von C₅H₅RhC₈H₁₂ aus [C₈H₁₂RhCl]₂ und NaC_5H_5 , schon früher gezeigt, dass die Komplexe $C_5H_5Rh[P(OR)_3]_2$ [14] und $(C_5H_4R)Rh(PMe_3)_2$ [15] mit sehr hohen Ausbeuten aus $[(P(OR)_3)_2RhCl]_2$ und NaC₅H₅ bzw. [(PMe₃)₂RhCl]₂ und TlC₅H₄R zugänglich sind. Die nach den Erfahrungen von Maisonnat und Poilblanc [16] vermutlich zeitraubende und mit Ausbeuteverlusten verbundene, mehrstufige Synthese der Verbindungen [PR₃(C₂H₃R')RhCl]₂ versuchten wir dadurch zu umgehen, dass die aus [(C₂H₃R')₂RhCl]₂ und PR₃ erhaltenen gemischten Zweikernkomplexe in Lösung direkt mit TlC5H5 umgesetzt wurden.

Diese Strategie hatte tatsächlich Erfolg. Gemäss Gl. 1 und 2 entstehen die Verbindungen C₅H₅Rh(PR₃)C₂H₃R' (I-V); die Ausbeuten an isolierter Substanz betragen 60-70%.

$$(C_2H_3R')_2RhCl_2 + 2PR_3 \rightarrow [PR_3(C_2H_3R')RhCl_2 + 2C_2H_3R']$$
 (1)

$$[PR_3(C_2H_3R')RhCl]_2 + 2 TlC_5H_5 \rightarrow 2 C_5H_5Rh(PR_3)C_2H_3R' + 2 TlCl$$
 (2)

	PR ₃	R'
I	PMe ₃	н
H	PMe ₃	Me
III	PMe ₃	Ph
IV	PMe ₂ Ph	н
v	PPr ¹ 3	H

(I-V)

Während der Bis(ethylen)-Komplex $\{(C_2H_4)_2RhCl\}_2$ schon länger bekannt

und gut charakterisiert ist [17], sind die analogen Verbindungen [(C₃H₆)₂RhCl]₂ und [(C₂H₃Ph)₂RhCl]₂ (in Lösung) durch Ligandenaustausch aus [(C₈H₁₄)₂-RhCl]₂ und Propen bzw. aus [(C₂H₄)₂RhCl]₂ und Styrol erhältlich. Cramer [18] hatte bereits früher in einer Kurzmitteilung erwähnt, dass durch Umsetzung von [(C₂H₄)₂RhCl]₂ und Cycloocta-1,5-dien der Komplex [C₈H₁₂RhCl]₂ zugänglich ist und dass eine Verdrängung des Ethylens auch mit Acrylnitril gelingt.

Nach unseren Beobachtungen ist [(C₂H₄)₂RhCl]₂ allerdings keine allgemein verwendbare Ausgangssubstanz für die Darstellung der Verbindungen [(alken)2-RhCl]₂. Bei der Umsetzung mit Propen in Benzol bei 25°C liegen auch nach 6 Stunden (unter einer ständig erneuerten Propen-Atmosphäre) noch ca. 10% unumgesetztes [(C₂H₄)₂RhCl]₂ vor. Mit iso-Buten ist unter den gleichen Bedingungen (laut NMR-Spektrum) überhaupt keine Reaktion festzustellen. Mit Acrylnitril reagiert, in Übereinstimmung mit den Ergebnissen von Cramer [18], $(C_2H_4)_2RhCl]_2$ sehr rasch unter Freisetzung von Ethylen; wir halten es jedoch nicht für erwiesen, dass dabei der Komplex [(C₂H₃CN)₂RhCl]₂ entsteht. $[(C_3H_6)_2RhCl]_2$ ist vorteilhafter als aus $[(C_2H_4)_2RhCl]_2$ durch Umsetzung von $[(C_8H_{14})_2RhCl]_2$ und Propen erhältlich.

Die "in-situ"-Darstellung der Olefin(phosphin)-Komplexe [PR₃(C₂H₃R')-RhCl] nach Gl. 1 verläuft ohne Komplikationen. Triisopropylphosphin reagiert überraschenderweise mit $[(C_2H_4)_2RhCl]_2$ nicht zu $[PPr^i_3(C_2H_4)RhCl]_2$ sondern zu der einkernigen Verbindung trans- $[(PPr^i_3)_2(C_2H_4)RhCl]$, die bereits früher auf einem anderen Wege dargestellt worden ist [19]. Sie spaltet auch bei längerem Trocknen im Hochvakuum kein Ethylen ab. Ihre bevorzugte Bildung hat möglicherweise sterische Gründe, zumal zwei weitere Komplexe des Typs trans- $[(PR_3)_2(C_2H_4)RhCl]$ (R = Ph [20], C_6H_{11} [21]) von ähnlich grosser Stabilität bekannt sind. In ihnen liegen ebenfalls sehr raumerfüllende Phosphinliganden vor.

Die Synthese der Cyclopentadienyl-Verbindungen I—V nach Gl. 2 bietet ebenfalls keine Probleme. Oliver und Graham [22] hatten den mit I, IV und V eng verwandten Komplex $C_5H_5Rh(PPh_3)C_2H_4$ in einer Dreistufenreaktion ausgehend von $\{(C_2H_4)_2RhCl\}_2$ über (acac) $Rh(C_2H_4)_2$ und (acac) $Rh(PPh_3)C_2H_4$ erhalten, doch ist der hier vorgeschlagene Weg der älteren Methode sicher vorzuziehen. $C_5H_5Rh(PPr^i_3)C_2H_4$ (V) kann nicht nur im "Eintopf-Verfahren" sondern, allerdings mit wesentlich schlechterer Ausbeute, auch aus *trans*- $\{(PPr^i_3)_2\cdot(C_2H_4)RhCl\}$ und TlC_5H_5 dargestellt werden. Bei dieser Reaktion entsteht zunächst ein öliges Produkt, das laut NMR-Spektrum ein Gemisch von V und $C_5H_5Rh(PPr^i_3)_2$ [23] ist; aus diesem lässt sich V nach Chromatographie an Al_2O_3 in reiner Form isolieren.

Eine von uns schliesslich noch versuchte alternative Möglichkeit zur Darstellung der Olefin-Komplexe C₅H₅Rh(PR₃)C₂H₃R' hat zu keinem befriedigenden Ergebnis geführt. Nach Wakatsuki und Yamazaki [24] reagiert C₅H₅Rh-(PPh₃)₂ bei höherer Temperatur mit aktivierten Olefinen unter Substitution eines Phosphinliganden. Die Autoren konnten so die Verbindungen C₅H₅Rh-(PPh₃)C₂H₃CN und C₅H₅Rh(PPh₃)C₂H₃COOMe darstellen. Der Bis(trimethylphosphin)-Komplex geht weder mit Ethylen noch mit Styrol eine Umsetzung ein; auch nach 3-stündigem Erwärmen auf 60°C ist keine PMe₃-Abspaltung zu beobachten. Mit Acrylnitril entsteht bei 70°C in Benzol eine neue Verbindung, deren NMR-Spektrum dem gewünschten Komplex C₅H₅Rh(PMe₃)C₂H₃CN zugeordnet werden könnte (δ 4.96(t), J(PH) = J(RhH) = 0.7 Hz [C_5H_5]; 4.50(m) $[C_2H_3CN]$; 0.65 (dd), J(PH) = 9.5, J(RhH) = 1.1 Hz $[PMe_3]$). Nach einer Reaktionszeit von 30 Minuten beträgt das Verhältnis Edukt/Produkt etwa 1/1. Weiteres Erwärmen führt zwar zu einer vollständigen Umsetzung von C₅H₅Rh-(PMe₃)₂, zugleich tritt aber auch Zersetzung des Monophosphin-Komplexes C₅H₅Rh(PMe₃)C₂H₃CN ein, so dass dieser nicht in reiner Form isoliert werden konnte. Im Gegensatz zu C₂H₄, C₂H₃Ph und C₂H₃CN reagiert C₅H₅Rh(PMe₃)₂ mit CO praktisch quantitativ zu C₅H₅Rh(PMe₃)CO [23].

Die Verbindungen I und III—V bilden gelbbraune, luftempfindliche Feststoffe, die in allen üblichen organischen Solvenzien gut löslich sind. II ist nur als Öl erhältlich, das leicht Propen abgibt und durch das NMR-Spektrum sowie durch die Umsetzung mit HBF₄ charakterisiert wird.

Die ¹H-NMR-Daten von I—V sind in Tab. 1 zusammengefasst. Die Protonen der Olefinliganden geben in allen Fällen Signale mit einem komplizierten Aufspaltungsmuster, das auf der Grundlage der vorliegenden Spektren nicht näher interpretiert werden kann. Die stark verbreiterten Multipletts für die Olefinprotonen von I, II, IV und V deuten auf eine Rotation des Olefins um die Rh—C₂H₃R-Bindungsachse hin, wie sie auch bei anderen Cyclopentadienyl(olefin)-rhodium-Komplexen beobachtet wird [25].

TABELLE 1

H-NMR-DATEN DER KOMPLEXE I-V IN C_6D_6 (δ in ppm, TMS int.; J in Hz; s, Singulett; d, Dublett; t, Triplett; m, Multiplett; br, verbreitertes Signal)

Komplex	$\delta(C_5H_5)$	J(RhH)	J(PH)	$\delta(PR_3)$	J(RhH)	J(PH)	$\delta(C_2H_3R')$
I	5.18 t	0.7	0.7	0.85 dd	1.0	9.0	1.48 t,br [2H] 2.78 d,br [2H]
II	5.20 t	0.7	0.7	0.87 dd	1.0	9.0	1.60 m,br [1H] 1.87 d ^a [3H] 2.60 m,br [2H]
ш	4.83 t	8.0	0.8	0.87 dd	1.0	9.0	1.43 m [1H] 3.43 m [2H] 7.20 m [5H]
IV	5.12 t	0.6	0.6	1.10 dd 7.10 m [3H] 7.60 m [2H]	1.1	8.6	1.40 t,br [2H] 2.80 d,br [2H]
v	5.22 dd	1.0	0.6	1.10 dd ^b 1.70 m		12.0	1.65 m [2H] 2.77 m [2H]

 $^{^{}a}$ J(PH) = 5.0 Hz. b J(HH) = 6.0 Hz.

Bildung und Dynamik der Hydrido(olefin)metall-Kationen $[C_5H_5RhH(C_2H_3R')-PR_3]^+$

Im Gegensatz zu den Bis(phosphin)-Komplexen $C_5H_5Rh(PMe_3)_2$ [4] und $C_5H_5Rh(PMe_3)PPr^i_3$ [23] werden die Verbindungen I—V von der schwachen Brönsted-Säure NH_4PF_6 nicht protoniert. Dies steht in Einklang mit der Erwartung, dass die Metallbasizität in der Reihe $C_5H_5Rh(PR_3)_2 > C_5H_5Rh(PR_3)_1$ $C_2H_3R' > C_5H_5Rh(C_2H_3R')_2$ abnimmt. Mit HBF_4 reagieren die Olefin-Komplexe jedoch sehr rasch. In Ether fallen die BF_4 -Salze der Kationen $[C_5H_5RhH_1]$ $(C_2H_3R')PR_3|^+$ (VI—VIII) praktisch analysenrein aus; sie sind nur in Lösung, nicht aber in festem Zustand, gegen einen Überschuss von HBF_4 labil. Die Protonierung von $C_5H_5Rh(PMe_2Ph)C_2H_4$ (IV) führt ebenfalls zu einem Hydrido-(olefin)metall-Kation, das allerdings als PF_6 -Salz (IX) nur NMR-spektroskopisch charakterisiert werden konnte; seine Isolierung in analytisch reiner Form misslang.

$$C_5H_5Rh(PR_3)C_2H_3R' + HBF_4 \rightarrow [C_5H_5RhH(C_2H_3R')PR_3]BF_4$$

$$(VI-VIII)$$

$$\frac{R' \quad PR_3}{VI \quad H \quad PMe_3}$$
(3)

Me

PMe₃

PPr¹3

Die Verbindungen VI—VIII bilden farblose, luftempfindliche Kristalle mit sehr ähnlichen Löslichkeitseigenschaften wie der Carbonyl(hydrido)metall-Komplex [C₅H₅RhH(CO)PMe₃]BF₄ [23]. In polaren Solvenzien ist nur VIII längere Zeit stabil. In CH₃NO₂-Lösungen von VI und VII kann nach eintägigem

VII

VIII

Stehen bei Raumtemperatur u.a. die Bildung von $[C_5H_5RhH(PMe_3)_2]BF_4$ [4] nachgewiesen werden.

Die in den IR-Spektren von VI—IX auftretenden Banden bei 2020—2060 cm⁻¹ sind Rh—H-Valenzschwingungen zuzuordnen; sie beweisen damit das Vorliegen einer Metall—Hydrid-Bindung. Die ¹H-NMR-Spektren sind stark temperaturabhängig. Im Fall von VI, VIII und IX werden bei 35°C in CD₃NO₂ für die olefinischen und hydridischen Protonen nur breite Buckel beobachtet. Bei Erniedrigung der Temperatur tritt gleichzeitig eine Verschärfung der Ethylensignale und Hydridsignals auf. Bei —20°C werden schliesslich die erwarteten Aufspaltungsmuster beobachtet (siehe Tab. 2).

Die C₅H₅-Protonen der Hydrido(olefin)metall-Kationen von VI, VIII und IX ergeben ebenso wie die PMe₃-Protonen von VI über den gesamten Temperaturbereich ein scharfes Signal. Für die Methylgruppen des PPrⁱ₃-Liganden von VIII und des PMe₂Ph-Liganden von IX, die an ein prochirales C- bzw. P-Atom gebunden sind, sind jeweils 2 Signale zu erwarten, die im Fall von VIII allerdings erst bei –20°C beobachtet werden. Auffallend ist, dass sich die chemische Verschiebung der Signale der diastereotopen Methylgruppen von IX bei Temperaturerniedrigung ändert; eine Veränderung der Linienbreite tritt jedoch nicht ein.

Die Temperaturabhängigkeit der NMR-Spektren legt für die Hydrido(ethylen) metall-Komplexe in Lösung einen Protonenaustausch nahe, an dem die olefinischen und hydridischen Protonen beteiligt sind. Durch Erhöhung der Temperatur sollte der Platzwechsel dieser Protonen beschleunigt werden, so dass bei genügend hoher Geschwindigkeit nur noch ein Signal auftritt. Tatsächlich verschwinden im ¹H-NMR-Spektrum von VI bei 60°C und in den Spektren von VIII und IX bei 83°C die Signale der olefinischen und hydridischen Protonen praktisch im Untergrund; der Koaleszenzpunkt liegt jedoch wegen des grossen Unterschiedes der chemischen Verschiebung der beiden Signale vermutlich bei noch höheren Temperaturen. Die oberhalb 60 bzw. 83°C rasch eintretende Zersetzung der Hydrido(olefin)-Komplexkationen lässt eine exakte Bestimmung des Koaleszenzpunktes nicht zu. Aus der stets synchron verlaufenden Verbreiterung der C₂H₄- und Hydrid-Signale bei Erhöhung der Temperatur über —10°C ist jedoch zu schliessen, dass diese Protonen einem gemeinsamen Austauschprozess unterliegen. Dieser ist für VI, VIII und IX, ganz analog wie im Fall des schon früher untersuchten Kations $[MoH(C_2H_4)_2(diphos)_2]^+$ (diphos = C_2H_4 -(PPh₂)₂) [26], wie folgt zu formulieren (Gl. 4).

Das möglicherweise solvensstabilisierte 16-Elektronen-Teilchen $[C_5H_5RhC_2H_5-(PR_3)]^+$ muss dabei in sehr geringer Konzentration vorhanden sein, da es weder im 1H - noch im ^{13}C -NMR-Spektrum (für Angaben zu VI und VII siehe Tab. 3) nachgewiesen werden kann. Dass es in einer CD_3NO_2 -Lösung von VI ($PR_3 =$

¹H-NMR-DATEN DER KOMPLEXE VI—IX BEI —20°C IN CD3NO₂ (6 in ppm, TMS int.; J in Hz) TABELLE 2

Komplex	δ(C ₅ H ₅)	J(RhII) J(PH)	J(PH)	δ(PR ₃)	Ј(КћН)	J(PII)	δ(C ₂ H ₃ R')	б(RhH)	У(RhH)	J(PH)
VI	5,88 dd	0,4	1.0	1.63 dd	1.0	11,8	3.00 m [211] 3.50 m [2H]	-10,5 dd	18	25
VII	5.72 s 5.74 s ^a			1,60 dd ^a 1,72 dd	0.8	12.0 12.0	1.90 m [3H] 2.40 m [2H] 4.20 m [1H]	—10,3 dd ^b	16	27
VIII	5.90 d		1.2	1,26 dd ^c 1,28 dd ^c 2,30 m		14.6 14.6	3.16 m [2H] 3.34 m [2H]	-10,3 dd	14	50
XI	5.83 dd	0.3	1.2	1,98 dd 2.00 dd 7,20 m	1,0	11.2	2,80 m [2H] 3,30 m [2H]	—10,3 dd	15	24

 a Signal mit der höheren Intensität. b Es wird nur ein Signal beobachtet, Die RhH-Protonen der Diastereomeren (siehe Text) absorbieren offensichtlich bei der gleichen chemischen Verschiebung, c Bei 35 C nur ein Signal für die diastereotopen Methylgruppen bei 6 1,27 ppm; 3 J(IIH) 7,0 Hz.

TABELLE 3 13 C-NMR-DATEN DER KOMPLEXE VI UND VII IN CD3NO2 (δ in ppm, TMS int.; J in Hz)

Kom- plex	Tempe- ratur (°C)	δ(C ₅ H ₅)	J	J'	δ(PR ₃)	J(RhC)	J(PC)	δ(C ₂ H ₃ R')	J(PC)
VI	+20	93.3 dd ^a	1.5	3.3	19.9 dd	1.5	39.2	45.4 d	9.8
VII	-20	93.9 t ^b 94.2 dd ^a	2.6 1.4	2.6 3.6	19,3 dd ^b 20,4 d	1.4	38.3 38.3	25.0 s 25.6 s ^b	
								46.5 d	10.2
								47.7 d ^b	10.2
								72.9 d ^b	7.4
								73.4 d	7.4

a Eine sichere Zuordnung von J(RhC) und J(PC) ist nicht möglich. b Signal mit höherer Intensität.

PMe₃) vorliegt, lässt sich zumindest durch eine Folgereaktion wahrscheinlich machen. Versetzt man die Lösung von VI mit überschüssiger Trifluoressigsäure so beobachtet man nach mehrstündigem Rühren im 1 H-NMR-Spektrum neben einem Singulett bei δ 0.8 ppm (für C_2H_6) die C_5H_5 - und PMe₃-Signale des Komplexes C_5H_5 Rh(PMe₃)(CF₃CO₂)₂, der von uns in anderem Zusammenhang synthetisiert und analytisch charakterisiert worden ist [27]. Ein Reaktionsverlauf gemäss Gl. 5 ist damit nahegelegt. Er steht mit der Erfahrung im Einklang, dass Alkylmetall-Komplexe mit Säuren unter Spaltung der Metall—Kohlenstoff-σ-Bindung und Bildung des entsprechenden Alkans reagieren.

VI
$$CF_3COO^ CF_3COOH$$
 CF_3COOH
 $COCOCF_3$
 $COCOCF_3$
 $OCOCF_3$

Die Existenz des in Gl. 4 angegebenen Gleichgewichtes beweisen nicht nur die NMR-Messungen sondern auch Deuterierungsexperimente. Bei Zugabe von D₂O zu einer CD₃NO₂-Lösung von VI verschwinden die vorher beobachteten 1 H-NMR-Signale der Rh-H- und C $_2$ H $_4$ -Protonen. Rührt man die Lösung 15 Minuten und behandelt sie anschliessend mit KOH, so erhält man eine pentanlösliche Verbindung, deren ¹H-NMR-Spektrum, mit Ausnahme der fehlenden Signale für die Ethylenprotonen, mit demjenigen von I übereinstimmt. Ein von dieser Probe aufgenommenes Massenspektrum (siehe Experimenteller Teil) zeigt Peaks bei m/e = 272 bis 281. Die Linie höchster Intensität bei m/e = 276entspricht einem Ion der Zusammensetzung C₅H₅Rh(PMe₃)C₂D₄⁺. Schwächere Peaks bei m/e = 277 bis 281 deuten an, dass nicht nur eine Deuterjerung des Ethylens sondern zumindest teilweise auch eine Deuterierung des Fünfrings eingetreten ist. Dies drückt sich auch in der geringen Intensität des Cyclopentadienylsignals im ¹H-NMR-Spektrum aus. Wir nehmen an, dass nach Bildung des Kations $[C_5H_5RhD(C_2H_4)PMe_3]^+$ eine Wanderung des D⁺-Ions vom Metall zum Ring eintritt und dann gemäss (a) oder (b) der ringdeuterierte Komplex entsteht.

$$VI = \begin{bmatrix} D_2O \\ \vdots \\ Rh_{m_n}D \end{bmatrix}^+$$

$$\begin{bmatrix} Rh \\ \vdots \\ Rh \end{bmatrix}$$

Ein analoger H/D-Austausch ist bei der Reaktion von (C₅H₄COCH₃)Rh(1,3-C₆H₈) mit CF₃CO₂D beobachtet und ebenfalls mit einer Wanderung des primär am Rhodium gebundenen Deuterium-Ions an den Acetylcyclopentadienyl-Liganden erklärt worden [28].

Das Vorliegen eines Gleichgewichts zwischen Hydrido(olefin)- und Alkylrhodium-Komplex geht für VII (olefin = C_3H_6) nicht zwangsläufig aus seinen ¹H-NMR-Spektren hervor. Die bei 35°C beobachteten verbreiterten Linien für die Olefin- und Hydrid-Protonen deuten zwar einen Protonenaustausch an, wegen der bei höheren Temperaturen rasch eintretenden Zersetzung kann dieser jedoch NMR-spektroskopisch nicht genauer verfolgt werden. Einen eindeutigen Nachweis für die in Lösung erfolgende reversible Insertion von Propen in die Rh—H-Bindung liefert ein H/D-Austauschexperiment. Beim Schütteln einer CD_3NO_2 -Lösung von VII mit D_2O verschwinden nicht nur die Signale der Olefinund Hydrid-Protonen sondern auch die der Methylgruppe an der C=C-Doppelbindung. Dieser H/D-Austausch an der Methylgruppe ist nur erklärbar, wenn der Hydrido(propen)-Komplex sowohl mit der tautomeren iso-Propyl- als auch der n-Propyl-Verbindung im Gleichgewicht steht.

Man muss annehmen, dass die Geschwindigkeiten von Hin- und Rückreaktion langsam in bezug auf die NMR-Zeitskala sind, da für VII im Gegensatz zu VI, VIII und IX selbst bei 35°C das Vorliegen des Hydrido(olefin)-Komplexes NMR-spektroskopisch eindeutig nachweisbar ist. Das Auftreten von je zwei verbreiter-

ten Signalen für die Cyclopentadienyl- und Trimethylphosphin-Protonen lässt auf jeden Fall die gleichzeitige Anwesenheit eines Alkylrhodium-Kations, d.h. eines 16-Elektronen-Teilchens, vermuten. Das bei —20°C aufgenommene ¹H-NMR-Spektrum zeigt zwar schärfere Linien, enthält jedoch keine Signale für eine am Rhodium gebundene Propylgruppe. Das ¹³C-NMR-Spektrum (siehe Tab. 3) liefert ebenfalls keine Hinweise für ein solches Teilchen. Die Tautomeren des Hydrido(propen)metall-Komplexes müssen folglich ebenso wie diejenigen der Verbindung VI, VIII und IX in so geringer Konzentration vorliegen, dass sie NMR-spektroskopisch nicht erfassbar sind.

$$\begin{bmatrix} RR \end{bmatrix} \qquad \qquad \begin{bmatrix} RS \end{bmatrix} \qquad \qquad \begin{bmatrix} RS \end{bmatrix} \qquad \qquad \begin{bmatrix} RS \end{bmatrix}$$

Die Beobachtung von je zwei ¹H- und ¹³C-NMR-Signalen für die C₅H₅- und PMe₃-Gruppen von VII kann mit der Stereochemie des Komplexes erklärt werden. Dieser besitzt nämlich zwei Chiralitätszentren, und zwar eines am Rhodium und das andere am methylsubstituierten Kohlenstoff des Propens. Es existieren folglich 4 Diastereomere, von denen zwei oben dargestellt sind.

Die beiden nicht-gezeigten Diastereomeren SS und SR bilden mit den oben angegebenen die Paare SS-RR und SR-RS, die sich NMR-spektroskopisch unterscheiden. Dies wird durch die Daten in Tab. 2 und 3 belegt. Bemerkenswerterweise entstehen die Diastereomerenpaare nicht zu gleichen Teilen (50/50) sondern etwa im Verhältnis 70/30, d.h. es tritt eine asymmetrische Induktion [29] ein. Da sich wegen des in Gl. 6 formulierten Gleichgewichts die Konfiguration an den beiden Chiralitätszentren ständig ändert, wird ein Diastereomeres rasch in ein anderes umgewandelt. Dieser dynamische Prozess drückt sich in einer Linienverbreiterung der zweifach vorhandenen Signale der C₅H₅- und PMe₃-Protonen bzw. -Kohlenstoffatome aus. Aufgrund dieser bei Raumtemperatur beobachtbaren Umwandlung dürfte das NMR-spektroskopisch bestimmte Verhältnis von 70/30 die thermodynamische Stabilität der Diastereomerenpaare SS-RR und SR-RS widerspiegeln.

Insgesamt lässt sich zu den Protonierungsreaktionen der Komplexe I—V sagen, dass wir aufgrund der vorliegenden Ergebnisse nicht ausschliessen können, dass der Angriff des Protons der Säure HBF₄ am koordinierten Olefin erfolgt und sich danach sehr rasch gemäss einer β -Eliminierung der Hydrido(olefin)-

Koniplex bildet. Da in strukturanalogen Halbsandwich-Verbindungen wie z.B. $C_5H_5Rh(PMe_3)_2$ [4], $C_5H_5Rh[P(OMe)_3]_2$ [6] und $C_5H_5Rh(PMe_3)CO$ [23] das Proton jedoch stets am Metall addiert wird und nach den Ergebnissen von MO-Rechnungen [38] in den Komplexen der allgemeinen Zusammensetzung C_5H_5MLL' (M = Co, Rh, Ir; L, L' = Zweielektronendonoren) ein freies, nicht-bindendes Elektronenpaar am Metall vorliegen sollte, gehen wir davon aus, dass auch bei der Protonierung der Olefin-Verbindungen das Teilchen H⁺ am Metall angreift. Die der Protonierung folgende und durch die Deuterierungsexperimente belegte intramolekulare Umlagerung (Gl. 4) verläuft so schnell, dass selbst bei sofortiger Aufnahme des 1H -NMR-Spektrums der bei -78° C hergestellten Lösung von I und CF_3COOD in $(CD_3)_2CO$ neben den Signalen der Ethylenprotonen von $[C_5H_5RhD(C_2H_4)PMe_3]^+$ auch das Hydridsignal des Kations $[C_5H_5RhH(C_2H_3D)-PMe_3]^+$ zu beobachten ist.

Darstellung und Eigenschaften der Komplexe [C₅H₅Rh(PMe₃)(η³-CH₃CHC₆H₅)] X

Ebenso wie die Ethylen- und Propen-rhodium(I)-Verbindungen I, II, IV und V reagiert auch der Styrol-Komplex III mit HBF₄ in Ether sehr rasch. Man erhält ein Produkt, dessen Elementaranalyse der erwarteten Zusammensetzung $[C_5H_5-RhH(C_2H_3Ph)PMe_3]BF_4$ entspricht. Im IR-Spektrum ist jedoch keine Bande für eine Rh—H-Valenzschwingung und im ¹H-NMR-Spektrum kein Signal eines hydridischen Wasserstoffatoms zu beobachten. Die NMR-Daten stehen vielmehr mit dem Vorliegen der Verbindung $[C_5H_5Rh(PMe_3)(\eta^3-CH_3CHC_6H_5)]BF_4$ (Xa) in Einklang. Das Signal der CH₃-Protonen des Benzylliganden erscheint bei relativ tiefem Feld (siehe Tab. 4) und kann in Analogie zu den NMR-Daten anderer Allylrhodium-Komplexe einer Methylgruppe in syn-Position zugeordnet werden [30].

Das PF₆-Salz Xb entsteht bei der Protonierung von III mit Trifluoressigsäure in Gegenwart von NH₄PF₆. Es bildet wie das BF₄-Salz Xa rote Kristalle, die gegenüber Luft ziemlich stabil und in polaren Solvenzien wie CH₃NO₂ oder CH₂Cl₂ gut löslich sind. In Aceton zersetzen sich die Komplexe Xa und Xb relativ rasch.

In einer CD₃NO₂-Lösung von Xa oder Xb findet bei Zugabe von D₂O ein Austausch sowohl der CH₃-Protonen des Benzylliganden als auch des einzelnen benzylischen Wasserstoffatoms gegen Deuterium statt. Diese Beobachtung und der Befund, dass die beiden Komplexe Xa und Xb mit NaOH in CH₃NO₂/H₂O quantitativ zu III reagieren, weisen darauf hin, dass das Kation A in Lösung mit den 3 Isomeren B, C und D im Gleichgewicht steht. Diese Isomeren können allerdings nur in sehr geringer Konzentration vorhanden sein, da sie weder NMR-

noch IR-spektroskopisch nachweisbar sind.

Der Hydrido(styrol)-Komplex **C** dürfte das primäre Produkt der Reaktion von III mit HBF₄ bzw. CF₃COOH sein; er lagert sich dann über **B** in **A** um. Für diese Vermutung spricht u.a., dass bei Zugabe von HBF₄ zu der etherischen Lösung von III zunächst ein farbloser Niederschlag ausfällt (vgl. die Farbe von VI—VIII), der dann ölig wird und sich schliesslich in einen roten Feststoff umwandelt.

Die Kristallstrukturanalyse von Xb bestätigt die η^3 -Koordination des 7-Methylbenzyl-Liganden und die syn-Position der Methylgruppe (siehe Gl. 7) [31]. Die C_5H_5 - und C_8H_9 -Ebenen sind annähernd koplanar und die Abstände des Rhodiums zu den Cyclopentadienyl- und den an der Bindung zum Metall beteiligten Benzylkohlenstoffatomen unterscheiden sich nur wenig (Mittelwerte Rh–C 2.24 bzw. 2.21 Å). Es liegt somit eine quasi-oktaedrische Koordination von Rhodium(III) vor. Diese bevorzugte Anordnung könnte erklären, warum das Kation von Xa und Xb in Lösung keine fluktuierende Struktur besitzt. Eine solche wurde sowohl für die Verbindung (η^3 -CH₃CHC₆H₅)Rh(C₂H₃Ph)C₈H₁₂ [32] als auch für die kationischen Palladiumkomplexe [(η^3 -RCHC₆H₅)Pd-(PEt₃)₂]⁺ (R = H, D) [33] nachgewiesen. In beiden Fällen findet eine antarafaciale Wanderung des Metalls statt; auch suprafaciale Umlagerungen sind für η^3 -Benzyl-palladium- und -molybdän-Verbindungen bekannt [33].

Die NMR-Spektren von $[C_5H_5Rh(PMe_3)(\eta^3-CH_3CHC_6H_5)]^+$ geben keine Hinweise auf ähnliche dynamische Prozesse. Im Gegensatz zu dem Komplex $(\eta^3-CH_3CHC_6H_5)Rh(C_2H_3Ph)C_8H_{12}$ [32], dessen 1H -NMR-Spektrum oberhalb -30° nur ein Signal für die beiden Phenylprotonen in *ortho*-Stellung zu der CHCH₃-Gruppe aufweist, werden in den Spektren von Xa und Xb bei 35°C zwei Signale für diese Protonen beobachtet. Das Multiplett bei δ 4.40 ppm resultiert dabei von dem Proton, welches an das an der Koordination teilnehmende Ring-C-Atom gebunden ist, während das Signal des anderen *ortho*-ständigen Protons im üblichen Bereich (und zwar entweder bei 7.40 oder 7.80 ppm) erscheint.

Auch das ¹³C-NMR-Spektrum spricht für eine starre Struktur, zumindest in bezug auf die NMR-Zeitskala. Da von den 6 Signalen der Ring-Kohlenstoffatome des Benzylliganden nur zwei durch Rhodium- und Phosphor-Kopplung aufgespalten sind und diese beiden Signale bei wesentlich höherem Feld als die übrigen auftreten, kann man folgern, dass im zeitlichen Mittel nicht drei sondern nur zwei C-Atome des Sechsrings an das Rhodium koordiniert sind. In Tab. 4 sind die beobachteten ¹H- und ¹³C-NMR-Daten von Xb zusammengestellt.

 η^3 -Benzyl-Metallkomplexe stellen, wie vor allem kürzlich publizierte Arbeiten von Muetterties et al. [34] zeigen, wichtige Zwischenstufen bei katalytischen Prozessen, insbesondere bei der katalytischen Hydrierung von Aromaten, dar.

TABELLE 4

¹H- UND ¹³C-NMR-DATEN VON [C₅H₅Rh(PMe₃)(η^3 -CH₃CHC₆H₅)]PF₆ IN CD₃NO₂ (δ in ppm, TMS int.; J in Hz)

	δ(¹ H)	J(RhH)	J(PH)	δ(¹³ C)	J	J'
C ₅ H ₅	4.93 t	0.7	0.7	94.0 dd ^a	2.2	5.1
PMe ₃	1.77 dd	1.0	10.6	18.3 dd ^b		
C ₆ H ₅	4.40 m [1H] 7.40 m [3H] 7.80 m [1H]			74.4 d ^a 102.5 dd ^a 127.2 s	6.6 2.2	5.2
				127.5 s 132.4 s 137.9 s		
СН <i>СН</i> 3	2.20 d ^c			21.5 s		
<i>СН</i> СН3	2.53 m			$58.2~\mathrm{dd}^a$	7,2	11.5

^a Eine sichere Zuordnung von J(RhC) und J(PC) ist nicht möglich. ^b J(RhC) = 1.5, J(PC) = 33.8 Hz.

 $^{c}J(HH) = 7.0 \text{ Hz}.$

Die Synthese solcher Komplexe erfolgte bisher vorwiegend durch Umsetzung von Benzylhalogeniden mit anionischen oder neutralen Metallverbindungen, im letzteren Fall im Sinn einer oxidativen Addition [33]. Die von uns gefundene Methode der Protonierung eines entsprechenden Olefin-Komplexes ist ein neuer Weg zu Verbindungen des allgemeinen Typs (η^3 -RCHC₆H₅)ML_n, der sein Pendant in der soeben von Su und Wojcicki [35] beobachteten Bildung eines η^3 -Benzyl-Komplexes (und zwar (η^3 -CH₃CHC₆H₅)W(CO)₂C₅H₅) aus einer Metallhydrido-Verbindung (C₅H₅W(CO)₃H) und einem Olefin (Styrol) hat.

Reaktionen der Olefin(phosphin)-Komplexe mit Methyliodid

Die Metall-Basizität der Olefin(phosphin)-Komplexe $C_5H_5Rh(PR_3)C_2H_3R'$ wird nicht nur durch die Protonierung (zu den Hydrido(olefin)-Komplexkationen) sondern auch durch die Methylierung belegt. Die Ethylen-Verbindungen I und IV reagieren mit überschüssigem Methyliodid bei Raumtemperatur in Ether rasch zu den Komplexsalzen $[C_5H_5RhCH_3(C_2H_4)PR_3]I$. Mit $C_5H_5Rh(PPr^i_3)C_2H_4$ tritt unter den gleichen Bedingungen keine Umsetzung ein. Stabiler als die Iodide sind die entsprechenden PF_6 -Salze, die, wie am Beispiel der Trimethylphosphin-Verbindung gezeigt wurde (siehe Gl. 8), durch Umfällen mit NH_4PF_6 in Methanol erhältlich sind.

I, IV
$$CH_{3}I$$
 $Rh_{M_{1}}PR_{3}$ $NH_{4}PF_{6}$ $[C_{5}H_{5}RhCH_{3}(C_{2}H_{4})PR_{3}]PF_{6}$ (8)

(XII, $PR_{3} = PMe_{2}Ph$). (XI, $PR_{3} = PMe_{3}$)

Die Darstellung von [C₅H₅RhCH₃(C₂H₄)PMe₂Ph]PF₆ in analysenreiner Form ist nicht gelungen, da das Iodid XII bereits bei Raumtemperatur in Nitromethan

unter Abspaltung von Ethylen zu $C_5H_5RhCH_3(PMe_2Ph)I$ (XV) reagiert. Eine analoge Reaktion von $[C_5H_5RhCH_3(C_2H_4)PMe_3]I$ findet dagegen erst beim Erwärmen statt (Gl. 9).

$$[C_5H_5RhCH_3(C_2H_4)PR_3]I \rightarrow C_5H_5RhCH_3(PR_3)I + C_2H_4$$

$$(XIV, PR_3 = PMe_3;$$

$$XV, PR_3 = PMe_2Ph)$$
(9)

Die positive Ladung des Kations $[C_5H_5RhCH_3(C_2H_4)PR_3]^+$ wird offensichtlich mit zunehmender Basizität (d.h. des Donorcharakters) des Phosphins stabilisiert. Daher ist es verständlich, dass die bereits früher von Oliver und Graham [22] dargestellte Verbindung $[C_5H_5RhCH_3(C_2H_4)PPh_3]I$ in CH_2Cl_2 spontan Ethylen eliminiert und in den Neutralkomplex $C_5H_5RhCH_3(PPh_3)I$ übergeht.

Das aus $C_5H_5Rh(PMe_3)C_2H_3Ph$ (III) und Methyliodid erhaltene Salz $[C_5H_5RhCH_3(C_2H_3Ph)PMe_3]I$ ist in Lösung ebenfalls sehr labil. In CH_3NO_2 reagiert es rasch unter Bildung von XIV. Zur Charakterisierung des Kations $[C_5H_5RhCH_3(C_2H_3Ph)PMe_3]^+$ haben wir das Iodid in das entsprechende PF_6 -Salz $[C_5H_5RhCH_3(C_2H_3Ph)PMe_3]PF_6$ (XIII) umgefällt. Da, wie die Strukturformel in Gl. 10 zeigt, das Komplexkation $[C_5H_5RhCH_3(C_2H_3Ph)PMe_3]^+$ zwei Chiralitätszentren besitzt, ist die Bildung von zwei Diastereomerenpaaren zu erwarten. Dass dies zutrifft, ist am Auftreten von je zwei Signalen für die C_5H_5 -, PMe_3 - und $RhCH_3$ -Protonen im 1 H-NMR-Spektrum (Tab. 5) zu sehen. Aus der relativen Intensität der Cyclopentadienylsignale lässt sich auf ein Verhältnis der Diastereomerenpaare von ca. 70/30 schliessen.

 $C_5H_5Rh(PMe_3)C_2H_4$ (I) wurde nicht nur mit HBF₄ und CH₃I sondern auch mit Iod umgesetzt. Dabei entsteht sehr rasch unter C_2H_4 -Eliminierung der Komplex $C_5H_5Rh(PMe_3)I_2$ (XVI). Bei der analogen Reaktion von $C_5H_5Rh(PMe_3)_2$ wird das Salz $[C_5H_5RhI(PMe_3)_2]I$ gebildet, das auch in Lösung stabil ist und selbst beim Erwärmen nicht unter Abspaltung von Trimethylphosphin zu XVI reagiert [4].

TABELLE 5 1 H-NMR-DATEN DER KOMPLEXE XI--XVI IN CD3NO2 (δ in ppm, TMS int.; J in Hz)

Kom- plex	δ(C ₅ H ₅)	J(RhH)	J(PH)	δ(PR ₃)	J(RhH)	J(PH)	δ(RhCH ₃)	J(RhH)	J(PH)
ΧI ^a	5.83 dd	0.4	1.4	1.60 dd	0.9	11.4	0.83 dd	2.2	6.0
XIIª	5.70 dd	0.4	1.4	1.93 dd 7.60 m	8.0	11,0	1.03 dd	2.2	6.4
XIIIp	5.40 dd ^c 5.63 dd	0.4 0.4	1.5 1.2	1.63 dd ^c 1.73 dd	0.9 0.9	11.0 11.0	0.40 dd 1.53 dd ^c	2.2 2.2	6.0 6.0
XIV^d	4.87 dd	0.5	1.6	1.23 dd	8.0	10.8	1.17 dd	2.5	6.2
xv	5.19 dd	0.5	1.8	1.87 dd ^e 2.00 dd ^e 7.60 m	1.0 0.8	11.0 11.0	1.13 dd	2.5	6.5
XVI	5.67 dd	0.4	1.8	2.03 dd	0.8	11.8			

 $[^]a$ Signal der C_2H_4 -Protonen bei δ 3.4 m. b Signal der C_2H_3 Ph-Protonen bei δ 2.7 m und der Phenylprotonen bei δ 7.3 m. c Signal mit der höheren Intensität (siehe Text). d Solvens C_6D_6 . e Getrennte Signale für diastereotope PCH₃-Protonen.

Me₃P

(1)
$$CH_3I$$

(2) NH_4PF_6
 C_6H_5

(XIII)

Experimenteller Teil

Alle Arbeiten wurden unter nachgereinigtem Stickstoff und in N₂-gesättigten, sorgfältig getrockneten Lösungsmitteln durchgeführt. Die Ausgangsverbindungen [(C₂H₄)₂RhCl]₂ [17], [(C₈H₁₄)₂RhCl]₂ [36] und PMe₃ [37] wurden nach Literaturangaben dargestellt. Für die spektroskopischen Messungen dienten die folgenden Geräte: Varian T 60, Varian XL 100 und Bruker WH 90 für NMR, Perkin—Elmer 457 für IR; MAT CH7 (70 eV) für MS.

Darstellung von trans-(PPri3)2(C2H4)RhCl

Eine Lösung von 548 mg (1.4 mMol) [(C₂H₄)₂RhCl]₂ und 1.45 ml (5.8 mMol) Triisopropylphosphin in 50 ml Benzol wird solange bei Raumtemperatur gerührt, bis die Gasentwicklung (C₂H₄) beendet ist. Danach wird das Solvens und überschüssiges Phosphin im Hochvakuum entfernt. Der verbleibende gelbe Feststoff wird NMR-spektroskopisch charakterisiert; die erhaltenen Daten stimmen gut mit Literaturwerten [19] überein. Ausbeute 1.34 g (98%).

Darstellung von $C_5H_5Rh(PMe_3)C_2H_4$ (I)

Zu einer Lösung von 780 mg (2 mMol) [(C₂H₄)₂RhCl]₂ in 40 ml THF tropft man langsam unter kräftigem Rühren 0.4 ml (4 mMol) PMe₃. Nach 20 Min wird die Lösung mit einem geringen Überschuss (ca. 4.2 mMol) TlC₅H₅ versetzt und noch 3 Std. gerührt. Danach wird filtriert, das Solvens im Vakuum entfernt und der Rückstand mit Pentan extrahiert. Nach Einengen der Pentan-Lösung und Abkühlen auf —78°C kristallisieren gelbbraune Kristalle, die mit Pentan gewaschen und im Hochvakuum getrocknet werden. Ausbeute 760 mg (70%). Smp. 45°C (Zers.). (Gef.: C, 43.64; H, 6.79; Rh, 37.60. C₁₀H₁₈PRh ber.: C, 44.14; H, 6.79; Rh, 37.81%).

Darstellung von $C_5H_5Rh(PMe_3)C_3H_6$ (II)

In eine gesättigte Lösung von 717 mg (1 mMol) $[(C_8H_{14})_2RhCl]_2$ in THF wird mittels einer Kapillare Propen eingeleitet. Der nach 6 Std. quantitativ (Kontrolle durch NMR-Spektrum) gebildete Komplex $[(C_3H_6)_2RhCl]_2$ wird analog wie für I beschrieben mit PMe₃ und TlC₅H₅ umgesetzt und das Produkt ebenfalls analog zu I isoliert. Wegen der Labilität, auch unter N₂ (Propengeruch), wird II NMR-spektroskopisch, massenspektroskopisch und durch die Umsetzung zu $[C_5H_5RhH(C_3H_6)PMe_3]BF_4$ (siehe unten) charakterisiert.

Darstellung von $C_5H_5Rh(PMe_3)C_2H_3Ph$ (III)

Eine Lösung von 450 mg (1.16 mMol) [(C₂H₄)₂RhCl]₂ und 5 ml Styrol in

60 ml Benzol wird 30 Min. bei Raumtemperatur gerührt. Danach wird das Solvens im Wasserstrahlvakuum langsam entfernt und überschüssiges Styrol im Hochvakuum abgetrennt. Das verbleibende hellgelbe Pulver wird in 25 ml THF gelöst und die Lösung tropfenweise mit 0.23 ml (2.3 mMol) PMe₃ versetzt. Die weitere Reaktion mit TlC_5H_5 und die Isolierung von III erfolgt ähnlich wie für I beschrieben. Es wird lediglich zur Extraktion des Reaktionsrückstandes Ether statt Pentan verwendet. Gelbbraune Nadeln. Ausbeute 485 mg (60%). (Gef.: C, 54.81; H, 6.39. $C_{16}H_{22}PRh$ ber.: C, 55.19; H, 6.37%).

Darstellung von $C_5H_5Rh(PMe_2Ph)C_2H_4$ (IV)

Die Darstellung erfolgt ausgehend von $[(C_2H_4)_2RhCl]_2$, PMe₂Ph und TlC₅H₅ analog wie für I beschrieben. Aus Pentan erhält man bei —78°C gelbbraune Kristalle. Ausbeute 65%. Smp. 59°C. (Gef.: C, 54.08; H, 5.96; Rh, 30.65. $C_{15}H_{20}PRh$ ber.: C, 53.91; H, 6.03; Rh, 30.79%).

Darstellung von $C_5H_5Rh(PPr^i_3)C_2H_4(V)$

Die Darstellung erfolgt ausgehend von $[(C_2H_4)_2RhCl]_2$, PPr^i_3 und TlC_5H_5 analog wie für I beschrieben. Aus der sehr stark eingeengten Pentanlösung erhält man kleine gelbbraune Kristalle. Ausbeute 62%. Smp. 72°C. (Gef.: C, 54.06; H, 8.34; Rh, 29.06. $C_{16}H_{30}PRh$ ber.: C, 53.94; H, 8.49; Rh, 28.88%).

Reaktion von trans- $(PPr_3^i)_2(C_2H_4)RhCl$ mit TlC_5H_5

Eine Lösung von 1.1 g (2.26 mMol) $(PPr_{3}^{i})_{2}(C_{2}H_{4})$ RhCl und 680 mg (2.52 mMol) $TlC_{5}H_{5}$ in 40 ml THF wird 4 Std. bei Raumtemperatur gerührt. Nach Filtrieren und Entfernen des Solvens im Hochvakuum wird der verbleibende Rückstand mit Pentan extrahiert. Durch Einengen der Pentanlösung wird ein rotbraunes Öl erhalten, das sich laut ¹H-NMR-Spektrum aus den Verbindungen V und $C_{5}H_{5}$ Rh(PPr_{3}^{i})₂ [23] zusammensetzt. Der Versuch, das Gemisch durch Säulenchromatographie ($Al_{2}O_{3}$, $C_{6}H_{6}$) zu trennen, liefert V in geringer Ausbeute, während sich $C_{5}H_{5}$ Rh(PPr_{3}^{i})₂ unter diesen Bedingungen zersetzt.

Darstellung der Hydrido(olefin)-Komplexe $[C_5H_5RhH(C_2H_3R')PR_3]BF_4$ (VI--VIII)

Zu einer Lösung von 1 mMol $C_5H_5Rh(PR_3)C_2H_3R'$ (I, II, V) in 10 ml Ether tropft man unter Rühren solange ein Gemisch aus 4 Teilen Propionsäureanhydrid und 1 Teil 50%ige HBF₄, bis kein weiterer Niederschlag mehr entsteht. Nach dem Filtrieren werden die erhaltenen hellbraunen, luftempfindlichen Kristalle mehrmals mit Ether gewaschen und im Hochvakuum getrocknet. Ausbeute 75–80%.

 $[C_5H_5RhH(C_2H_4)PMe_3]BF_4$ (VI): (Gef.: C, 33.40; H, 5.05; Rh, 28.81. $C_{10}H_{19}BF_4PRh$ ber.: C, 33.37; H, 5.32; Rh, 28.59%).

 $[C_5H_5RhH(C_3H_6)PMe_3]BF_4$ (VII): (Gef.: C, 35.22; H, 5.56; Rh, 27.77. $C_{11}H_{21}BF_4PRh$ ber.: C, 35.34; H, 5.66; Rh, 27.52%).

 $[C_5H_5RhH(C_2H_4)PPr^i_3]BF_4$ (VIII): (Gef.: C, 42.48; H, 6.52. $C_{16}H_{31}BF_4PRh$ ber.: C, 43.28; H, 7.04%).

IR (CH_2Cl_2) : $\nu(RhH) = 2020$ (VI), 2030 (VII), 2060 (VIII) cm⁻¹.

Versuche zur Darstellung von $[C_5H_5RhH(C_2H_4)PMe_2Ph]X(X = BF_4, PF_6)$

A. Die Durchführung der Reaktion von C₅H₅Rh(PMe₂Ph)C₂H₄ (IV) mit HBF₄/Propionsäureanhydrid, analog wie für VI—VIII beschrieben, liefert ein in Ether unlösliches Produktgemisch, das laut ¹H-NMR-Spektrum ein Salz des Komplexkations [C₅H₅RhH(C₂H₄)PMe₂Ph]⁺ enthält. Versuche, das Produktgemisch durch Kristallisation aus Nitromethan/Ether aufzutrennen, führten zu keinem Erfolg.

B. Zu einer Lösung von 67 mg (0.2 mMol) IV und 100 mg (0.6 mMol) NH_4PF_6 in 3 ml Methanol werden unter Rühren 0.3 ml CF_3COOH getropft. Danach werden sofort im Hochvakuum die flüchtigen Bestandteile entfernt. Es verbleibt ein Gemisch von $[C_5H_5RhH(C_2H_4)PMe_2Ph]PF_6$ (IX), NH_4PF_6 und weiteren salzartigen Komponenten, aus dem der Komplex IX nicht in analytisch reiner Form abgetrennt werden kann. Er wurde durch das IR- und das 1H -NMR-Spektrum (Tab. 2) charakterisiert.

IR (Nujol): ν (RhH) = 2030 cm⁻¹.

Reaktion von $[C_5H_5RhH(C_2H_4)PMe_3]BF_4$ (VI) mit KOH in D_2O

Eine Lösung von 100 mg (0.28 mMol) VI in 2 ml D_2O wird 15 Min. gerührt. Danach gibt man 200 mg (3.6 mMol) KOH zu, rührt nochmals 15 Min. und entfernt das Lösungsmittel im Hochvakuum. Der Rückstand wird mit 10 ml Pentan extrahiert, die Pentanlösung filtriert und zur Trockne gebracht. Das Massenspektrum des gelbbraunen, öligen Rückstandes zeigt folgende Ionen [Angaben gemäss: m/e (I_r in %)]:

$C_5H_5mD_mRh(PMe_3)C_2H_4nD_n^+$	$C_5H_{5-m}D_mRh(PMe_3)^{\dagger}$	$C_5H_5mD_mRh^+$
281 (4)	249 (20)	173 (8)
280 (5)	248 (27)	172 (10)
279 (4)	247 (20)	171 (10)
278 (3)	246 (16)	170 (9)
277 (5)	245 (27)	169 (15)
276 (16)	244 (100)	168 (41)
275 (4)		
274 (2)		
273 (2)		
272 (4)		

Darstellung von $[C_5H_5Rh(PMe_3)(\eta^3-CH_3CHC_6H_5)]BF_4(Xa)$

Die Darstellung von Xa gelingt ausgehend von III wie für VI—VIII beschrieben. Man erhält rote Kristalle, deren ¹H-NMR-Spektrum identisch mit demjenigen von Xb ist.

Darstellung von $[C_5H_5Rh(PMe_3)(\eta^3-CH_3CHC_6H_5)]PF_6(Xb)$

Zu einer Lösung von 140 mg (0.4 mMol) III und 150 mg (0.92 mMol) NH_4PF_6 in 3 ml Methanol tropft man unter Rühren 0.3 ml CF_3COOH . Es bildet sich sofort ein roter, feinkristalliner Niederschlag, der filtriert und im Hochvakuum getrocknet wird. Nach Lösen in CH_2Cl_2 und Überschichten der Lösung mit Ether erhält man lange rote Nadeln. Ausbeute: 141 mg (71%). (Gef.: C, 38.12; H, 4.82; Rh, 20.73. $C_{16}H_{23}F_6P_2Rh$ ber.: C, 38.89; H, 4.69; Rh, 20.82%).

Darstellung von $[C_5H_5RhCH_3(C_2H_4)PMe_3]I$ und $[C_5H_5RhCH_3(C_2H_4)PMe_3]-PF_6(XI)$

Eine Lösung von 270 mg (1 mMol) I in 10 ml Ether wird mit einem Überschuss (ca. 3 mMol) Methyliodid versetzt. Es fällt sofort ein farbloser Niederschlag aus, von dem die überstehende Lösung nach kurzem Stehenlassen abdekantiert wird. Nach Umkristallisation aus Nitromethan/Ether erhält man schwach bräunliche Kristalle. Ausbeute an [C₅H₅RhCH₃(C₂H₄)PMe₃]I:370 mg (90%). (Gef.: C, 31.63; H, 4.94; Rh, 24.20. C₁₁H₂₁IPRh ber.: C, 31.91; H, 5.11; Rh, 24.85%).

Zur Überführung in das entsprechende PF_6 -Salz XI wird das Iodid in Methanol gelöst und mit einem Überschuss an NH_4PF_6 versetzt. Der gebildete Niederschlag wird filtriert, im Hochvakuum getrocknet und mehrmals mit kaltem Wasser gewaschen. Nach erneutem Trocknen wird aus Nitromethan/Ether umkristallisiert. Man erhält nahezu farblose, luftstabile Kristalle. Ausbeute 88%. (Gef.: C, 30.20; H, 4.91. $C_{11}H_{21}F_6P_2Rh$ ber.: C, 30.57; H, 4.90%).

Darstellung von $[C_5H_5RhCH_3(C_2H_4)PMe_2Ph]I(XII)$

Die Darstellung erfolgt ausgehend von IV wie für [C₅H₅RhCH₃(C₂H₄)PMe₃]I beschrieben. Wegen der Labilität des Komplexes wird dieser nur im Hochvakuum getrocknet und nicht umkristallisiert. Ausbeute 96%. (Gef.: C, 41.03; H, 5.24. C₁₆H₂₃IPRh ber.: C, 40.36; H, 4.87%).

Darstellung von $[C_5H_5RhCH_3(C_2H_3Ph)PMe_3]PF_6$ (XIII)

Die Darstellung erfolgt ausgehend von III wie für XI beschrieben. Wegen der Labilität des zunächst gebildeten Iodids $[C_5H_5RhCH_3(C_2H_3Ph)PMe_3]I$ muss das Umfällen mit NH_4PF_6 möglichst rasch durchgeführt werden. Ausbeute 72%. (Gef.: C, 40.62; H, 5.03. $C_{17}H_{25}F_6P_2Rh$ ber.: C, 40.17; H, 4.96%).

Darstellung von $C_5H_5RhCH_3(PMe_3)I(XIV)$

Eine Lösung von 132 mg (0.32 mMol) $[C_5H_5RhCH_3(C_2H_4)PMe_3]I$ in 20 ml THF wird 2 Std. auf 50°C erwärmt. Nach dem Abkühlen wird filtriert und das Filtrat bis auf 2 ml im Vakuum eingeengt. Nach Zugabe von ca. 20 ml Pentan bilden sich rotbraune Kristalle, die mit Pentan gewaschen und im Hochvakuum getrocknet werden. Ausbeute 80 mg (65%). Smp. 130°C (Zers.). (Gef.: C, 27.73; H, 4.47; Rh, 26.80. $C_9H_{17}IPRh$ ber.: C, 28.00; H, 4.44; Rh, 26.66%).

Darstellung von $C_5H_5RhCH_3(PMe_2Ph)I(XV)$

50 mg (0.1 mMol) XII werden in 5 ml Nitromethan gelöst und 30 Min. bei Raumtemperatur gerührt. Die anschliessende Aufarbeitung erfolgt wie für XIV beschrieben. Ausbeute 25 mg (52%). Die Charakterisierung erfolgte durch das ¹H-NMR-Spektrum (Tab. 5).

Darstellung von $C_5H_5Rh(PMe_3)I_2$ (XVI)

Zu einer Lösung von 164 mg (0.6 mMol) I in 10 ml Ether tropft man eine Lösung von 170 mg (0.63 mMol) Iod in 20 ml Ether. Es bildet sich rasch ein rotbrauner Niederschlag, der filtriert, mit Ether gewaschen und im Hochvakuum getrocknet wird. Ausbeute 282 mg (94%). (Gef.: C, 19.25; H, 2.82; Rh, 20.19. $C_8H_{14}I_2PRh$ ber.: C, 19.30; H, 2.83; Rh, 20.67%).

Massenspektren

```
I: m/e(I_r) 272 (29; M^+), 244 (100; M^+ - C_2H_4), 168 (39; C_5H_5Rh^+).
II: m/e(I_r) 286 (46; M^+), 244 (100; M^+ - C_3H_6), 168 (61; C_5H_5Rh^+).
III: m/e(I_r) 348 (21; M^+), 272 (2; M^+ – PMe<sub>3</sub>), 244 (100; C_5H_5RhPMe_3^+), 168
(22; C_5H_5Rh^+).
IV: m/e(I_r) 334 (24; M^+), 306 (100; M^+ - C_2H_4), 168 (57; C_5H_5Rh^+).
V: m/e(I_r) 356 (15; M^+), 328 (100; M^+ - C_2H_4), 168 (86; C_5H_5Rh^+).
XIV: m/e(I_r) 386 (68; M^+), 371 (93; M^+ – CH<sub>3</sub>), 295 (45; C<sub>5</sub>H<sub>5</sub>RhI<sup>+</sup>), 244
(100; C_5H_5RhPMe_3^+), 168 (64; C_5H_5Rh^+).
```

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für grosszügige Unterstützung mit Sachmitteln, den Firmen BASF AG und Degussa für wertvolle Chemikalienspenden, Frau Dr. G. Lange und Frau U. Neumann für die Massenspektren, Herrn Dr. W. Buchner und Herrn C.P. Kneis für NMR-Messungen sowie Frl. R. Schedl, Frau E. Ullrich und Frau M. Rothenburger für die Ausführung von Elementaranalysen. Herrn Dr. Ch. Burschka und Herrn Dr. A. Kühn sind wir für die Bestimmung der Kristallstruktur des Komplexes Xb und für die Mitteilung der Ergebnisse sehr zu Dank verbunden.

Literatur

- 1 H. Werner, R. Feser, W. Paul und L. Hofmann, J. Organometal. Chem. 219 (1981) C29.
- 2 M. Herberhold, Metal π-Complexes, Elsevier, Amsterdam-London-New York (1974), Vol. II, Part 2, Kap. X.
- 3 H. Werner, Pure Appl. Chem., 54 (1982) 177.
- 4 H. Werner, R. Feser und W. Buchner, Chem. Ber., 112 (1979) 834.
- 5 D.F. Shriver, Acc. Chem. Res., 3 (1970) 231.
- 6 H. Werner, H. Neukomm und W. Kläui, Helv. Chim. Acta, 60 (1977) 326.
- 7 E.O. Fischer und K. Bittler, Z. Naturforsch. B, 16 (1961) 225; siehe auch: W.A. Herrmann, J. Plank, E. Guggolz und M.L. Ziegler, Angew. Chem., 92 (1980) 660; Angew. Chem. Int. Ed. Engl., 19 (1980) 653.
- 8 R.D. Cramer, J. Amer. Chem. Soc., 87 (1965) 4717.
- 9 L.P. Seiwell, Inorg. Chem., 15 (1976) 2560.
- 10 H. Werner und R. Werner, J. Organometal. Chem., 174 (1979) C63.
- 11 H. Werner und R. Werner, J. Organometal. Chem., 194 (1980) C7.
- 12 H. Werner und R. Feser, Angew. Chem., 91 (1979) 171; Angew. Chem. Int. Ed. Engl., 18 (1979) 157.
- 13 J. Chatt und L.M. Venanzi, J. Chem. Soc., (1957) 4735. 15 H. Werner und R. Feser, Publikation in Vorbereitung.
- 14 H. Neukomm und H. Werner, Helv. Chim. Acta, 57 (1974) 1067.
- 16 A. Maisonnat und R. Poilblanc, Inorg. Chim. Acta, 29 (1978) 203.
- 17 R. Cramer, Inorg. Synth., XV (1974) 14.
- 18 R. Cramer, Inorg. Chem., 1 (1962) 722.
- 19 C. Busetto, A.D. Alfonso, F. Maspero, G. Perego und A. Zazetta, J. Chem. Soc. Dalton, (1977) 1828.
- 20 J.A. Osborn, F.H. Jardine, J.F. Young und G. Wilkinson, J. Chem. Soc. A, (1966) 1711.
- 21 H.L.M. van Gaal und F.L.A. van den Bekerom, J. Organometal. Chem., 134 (1977) 237.
- 22 A.J. Oliver und W.A.G. Graham, Inorg. Chem., 10 (1971) 1165.
- 23 R. Feser und H. Werner, J. Organometal. Chem., 233 (1982) 193.
- 24 Y. Wakatsuki und H. Yamazaki, J. Organometal. Chem., 64 (1974) 393.
- 25 R. Cramer, J.B. Kline und J.D. Roberts, J. Amer. Chem. Soc., 91 (1969) 2519; R. Cramer und J.J. Mrowca, Inorg. Chim. Acta, 5 (1971) 528.
- 26 J.W. Byrne, H.V. Blaser und J.A. Osborn, J. Amer. Chem. Soc., 97 (1975) 3871; J.W. Byrne, J.R.

- Kress, J.A. Osborn, L. Picard und R.E. Weiss, J. Chem. Soc. Chem. Commun., (1977) 662.
- 27 E. Hörner, Diplomarbeit Univ. Würzburg (1980).
- 28 B.F.G. Johnson, J. Lewis und D.J. Yarrow, J. Chem. Soc. Dalton, (1972) 2084.
- 29 H.R. Christen "Grundlagen der organischen Chemie", Verlag Sauerländer Aarau 1, Auflage (1970), S. 228, 506; K. Stanley und M.C. Baird, J. Amer. Chem. Soc., 97 (1975) 6598; H. Brunner, Adv. Organometal. Chem., Vol. 18 (1980) 186.
- 30 H.O. Stühler und J. Müller, Chem. Ber., 112 (1979) 1359.
- 31 Ch. Burschka und A. Kühn, unveröffentlichte Untersuchungen.
- 32 H.O. Stühler, Angew. Chem., 92 (1980) 475; Angew. Chem. Int. Ed. Engl., 19 (1980) 468.
- 33 Y. Becker und J.K. Stille, J. Amer. Chem. Soc., 100 (1978) 845.
- 34 J.R. Bleeke und E.L. Muetterties, Acc. Chem. Res., 12 (1979) 324.
- 35 A. Wojcicki, persönliche Mitteilung; siehe auch: Shiu-Chin H. Su und A. Wojcicki, Abstracts of Papers, X. Int. Conf. Organometal. Chem., Toronto, Canada (1981) S. 47.
- 36 A. van der Ent und A.L. Onder de Linden, Inorg. Synth., XIV (1973) 93.
- 37 W. Wolfsberger und H. Schmidbaur, Synth. Inorg. Metal-org. Chem., 4 (1974) 149.
- 38 R. Hoffmann, Persönliche Mitteilung.