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Summary

(CsMe;),UCl, exhibits a one-electron, reversible reduction to (CsMes),UCl,~
without detectable CI” loss, E,,, (CH;CN) =—1.30 V and E,,, (THF) =—1.22
V vs. SCE, which is shown to correspond to the one-electron, reversible oxida-
tion of isolated [(CsMe;),UCl, - THF]*Na* and to be distinct from the irrevers-
ible oxidation of (C;Me;),UCl1 - THF (Ep, (THF) = —0.71 V, 50 mV/sec scan
rate); the related (CsMe;s), ThCl, is not reduced even out to —2.7 V.

Recent studies of f-element, organoactinide complexes have demonsfrated
enhanced reactivity relative to their d-block, organotransition metal analogues
[1,2]. For example, we recently reported that (CsMe;),U™MCI - THF oxidative
additions of alkyl halides proceed by an inner-sphere, atom-abstraction mecha-
nism at rates 104*—107 faster than any known, isolable, d-block transition metal
reagent reacting by this pathway [2b]. Since the rates of inner-sphere electron
transfers or atom abstractions generally reflect the reactions’ thermodynamic
driving force [3], a measurement of the E,,, for the U™/U' couple was required
to understand this enhanced reactivity *. Moreover, the results presented below
comprise the first electrochemical study of bls(pentamethylcyclopentadlenyl)-
actinide complexes. :

Electrochemical experiments on these sens1t1ve actinide complexes were
performed on mM solutions at ca. 30°C inside a Vacuum Atmospheres inert
atmosphere (N,) dry box using a conventional 3-electrode cell equipped with
a Luggin capillary, a spherical Pt or planar glassy carbon microelectrode, a

. AgCl-coated Ag wire quasm:eference electrode with ferrocene as an internal

. * Our recent mechamsnc study [2b] of (CsMeshUCl THF oxidative additions established that THF
- loss and the resultant coordmatwe—unsaturatxon are one essential component of the enhanced -
: xeactwlty - : .
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standard [4,5], and with carefully purified and dried n-BusN*PF,~ electrolyte
and THF or CH;CN solvent *. Measured half-wave potentials, E,,, =
[ED(catnodic) * ED(anodicy1/2, are reported vs. a saturated calomel electrode
(SCE).

Cyclic voltammetry of (CsMe;).UCl, at either glassy carbon or Pt electrodes
shows a single, one-electron, reversible wave in CH,CN, Fig. 1, at E,,, =—1.30
V vs. SCE (AEp = that of ferrocene internal standard, ca. 77 mV, at 20 mV/sec
scan rate, ip,/ip. = 0.81, ip./(scan rate)'/? = a constant,n =1.0 = 0.1 by
coulometry) Consistent with the assignment of this wave to the UV /y!
couple, cyclic voltammetry of (CsMe;), UCL, in CH;CN containing PhCH,Cl
shows a greatly reduced oxidation current, with the oxidation wave disappear-
ing altogether at slow scan rates, as expected for the consumption of electrogen-
erated U™, (CsMe;),UCL~, by oxidative addition of PhCH,Cl [2]. In THF, a
single reversible wave is observed for (C;Me;),UCl, at E,,, = —1.22 V vs. SCE.
No further reduction, UM to UL was observed in either THF or CH,CN up to a
negative potential limit of ca. —2.7-V.

The reversibility of the reduction of (CsMes), UCl, even in CH;CN suggests
that the reduction occurs without CI™ loss, (CsMe;s),UCl, + ¢ == (C;Me;),UCl,".
This explanation is supported by rapid scan experiments which show only the
one, reversible wave up to scan rates of 200 V/sec at 30°C (Fig. 1, insert) [7a].
Additional evidence for the retention of CI” by (CsMe;),UCl,* was obtained from
the 20 minute, room temperature Na(Hg) reduction of (C;Me;), UCL,; in THF
inside a dry box, followed by recrystallization from toluene containing a small
percentage of THF, decanting the mother liquor, and drying in vacuo. The
resultant green, benzene soluble material is formulated as [(CsMe;s),UCl, -
THF]*Na* based on its elemental analysis and other physical data **_ The
cyclic voltammogram of this maferial, Fig. 2, is essentially that previously
found for the (CsMe;),UCL, /(CsMes),UCL,= couple, and is clearly different
from that of (CsMes),UCl - THF. A green, THF solution of authentic, analyti-
cally pure (CsMe;),UCl - THF (prepared [1f] by (CsMe;s),UCl(Me) + H,) showed

* BuyN+PFg~ was recrystallized from 95% EtOH 4—6 times and dried two days in vacuo at 100°C
over P20;5. THF was distilled from Na/benzophenone under N, and CH3CN was distilled two times
from CaH, under N,. Noticeable decomposition of (CsMeg),UCl; was observed in THF and CH3CN
containing 0.2 M BugNPFg (1, =~ 0.5and 1.0 h, respectively), as evidenced by a color change
from orange to vellow concomitant with a decrease in the reversible wave and the appearance of
an irreversible wave at ca. —1.6 V. Satisfactory and reproducible resuits for the UH complexes
(Cs5Mes)2UC! - THF and [(CsMes)oUCl; - THF]-Na* were obtainable only in THF and only if fresh
solutions < a few minutes old were examined. The use of réeduced, <30°C, temperatures was not
examined and could prove useful for the less stable solutions. On the basis of high uranium—halogen
bond strengths, a sensitivity to the fluorine-containing PFg~ was considered but was not unequiv-
ocally established experimentally. All the organouranium compounds are very sensmve [6] to trace
amounts of impurities and the reproducible data presented hererin was obtamed only as ‘the resuu;
of many experiments.

** Freshly prepared samples show a Ama_x(benzene) 740 nm. a cryoscopu: mw.= 770 =130 (ca.lcd
674), 8 (benzene-dg. CzMes) =—4.7 ppm (line width at half-] hexght =125 Hz) and elemental )
analysis: Found: C, 41.96; H, 5.54; Na, 3.11:Cl, 9.32: U, 36.1°% 0.5. Calcd. (for [(CsMes)gUClz
THFJ]-Nat): C, 42.74: H, 5.68: Na, 3.41: Cl, 10.51: U, 35.29%_ Repeat analysis on'an mdepen-
dent sample, Found: C, 40.59; H. 5.54; Na, 4.47; Cl, 10.82; U, 34.8 = 0.5. :

Although <1% impurities in fresh samples are’ detectable by 1H NMR decompoatxon even in a
good, <1 ppm O2 dry box is observed to g\ve products exhibiting a l!-I NMR. of 5 (henzene-ds) =
2.97 (s). 4.45 (s). 5.78 (s). : :
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Fig. 1. Cyclic voltammogram at Pt (vs. SCE) of (C5Me;5),UCI; in CH3CN containing 0.2 M BugNPFg and
at 20, 50, 100, and 200 mV /sec scan rates. The insert shows an oscilloscope recording of a —0.65 to
—1.65 V (SCE) scan at 50 V/sec scan rate but otherwise under ths same conditions. The observation of
only the E, ;o = —1.30 V wave (ip,/ip, = 1) and the lack of a more cathodic wave due to (CsMes),UC1 *
CH3CN is consistent with Cl™ retention by (C5Meg)2UCl,~. Other evidence for (CsMes)2UC1;Tis provided
in the text.

an irreversible voltammogram (Fig. 3) with a scan rate-dependent, anodic peak
potential Ep, = —0.71 V at 50 mV//sec.

The Cl™ retention by (CsMe;),UCl,- stands in contrast to the somewhat
controversial results [7] for Cp,TiCl, where, at least under certain conditions
[7a], rapid C1” loss follows the electron transfer in an EC mechanism, Cp,TiCl, +
e = Cp,TiCL~, then Cp,TiCl,= + solvent = Cp‘T101 solvent + CI™. The loss of
CI” from szTlr‘lg ‘but not from (CsMe;),UCL,~ is consistent with the picture
* of significant ionic bonding [8] and the known Lewis acidity [9] of organo-

actlmdes and lanthamdes *, :

* In our hands. a control experximent on ca. 5 mM Cp3TiCl; in THF showed an Ep, = —0.80 V (lit.
" [6]1 =--0.80 V) and Ep, = —0.32 and —0.56 'V in CH3CN at 190 mV/sec. For (C5Mes)2UCl,,
efforts to obtain additional evidence for C1” retention by (CsMes); UCI5® by checking the depen-
L dence of the potenuals vs. [C17] [7a] (as added LlCl('I‘HF) or Bug NCI(CH3CN)) were unsuccessful
since new, complex, and not readily interpretabie waves resulted on Cl~ addition.
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Fig. 2. Cyclic voltammogram at Pt (vs. SCE) of [(CsMes),UC], - THF]-Nat in THF containing 0.2 M
BuyNPFg and at 20, 50, and 100 mV/sec scan rates.

In the case of (Cs;Me;), ThCl,, no faradaic current above background was
observed in either CH;CN or THF cut to ca. —2.7 V vs. SCE from which a
positive limit on the (CsMe;), ThCl,, Th'V/Th'™" potential of E,,, < —2.7'V
can be estimated assuming, as is likely based on the (CsMe;),UCl, results, that
there is no large kinetic barrier to the electron transfer. A NMR control showed
that (CsMe;),ThCl, in THF plus Bu,NPF¢ did not ‘undergo decomp051t10n ‘
In summary, (CsMes),UCIl, shows a reversible, one-electron reduction w1thout
CIl" loss at —1.22 V in THF while the E,,, for (CsMes)gThClz lies negatlve of
—2.7 V. When combined with the recent results {7] on Cp2T1012 and Cp221012,
the following order of i increasing dlfﬁculty of reduction results (B, ,z(V ) vs. SCE
in THF): Cp,TiCl, (apparent E,,, = —0.80 V) < (CsMe;),UCL,; (E,,, = —1.22 V) <
CnglC].g (apparent E112 =—1.8 V) < (CsMes)zThC].z (Euz < 2.7 V) ThlS order
demonstrates that while the reversible U™/U" potential of about —-1.2V.
provides a reasonably strong driving force to U™ oxidative addition reactlons
[2], the ca: —0.6 V more negative Zr""/ Zr'V couple suggests’ ‘that Zr™t [10] :
oxidative-additions could, depending upon the other facto f(),_l\_l,_Ed-f[S] ;be
even more faclle than those of Um e e LT
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Fig. 8. Cyclic voltammogram at Pt (vs. SCE) of (CsMes)>UCI - THF in THF containing 0.2 M BugNPFg
and at 20, 50, and 100 mV/sec. A plot of Ep, vs. log v gave a line with a slope of 81 mV/decade while,
in the same resistive solution, ferrocene showed a linear plot with a 57 mV/decade slope. The small
impurity peak labeled *‘i’’ was initially absent in solutions of freshly prepared compound but grew in
very rapidly.
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