Journal of Organometallic Chemistry, 229 (1982) C19-C23 Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

KOMPLEXKATALYSE

XII* NITRIDO-MOLYBDÄN(VI)-KOMPLEXE; EIN NEUER TYP VON HOCHAKTIVEN PRÄKATALYSATOREN FÜR DIE OLEFINMETATHESE

KARL SEYFERTH und RUDOLF TAUBE*

Technische Hochschuke "Carl Schorlemmer" Leuna-Merseburg, Sektion Chemie, DDR-4200 Merseburg (D.D.R.)

(Eingegangen den 17. Dezember 1981)

Summary

The preparation of the trichloronitridomolybdenum(VI) complexes MoNCl₃(OPPh₃)₂, MoNCl₃(Dipy), and [Bu₄N] [MoNCl₄] and their suitability as precatalysts for the metathesis of 2-pentene is described.

Nitrido-molybdän(VI)-Komplexe haben in den letzten Jahren aus struktureller Sicht und auch wegen ihrer Bedeutung als Zwischenstufe bei der iologischen Stickstoff-Fixierung zunehmend an Interesse gewonnen [1]. Neu ist, dass diese Verbindungen in Kombination mit EtAlCl2 ein sehr effektives Katalysatorsystem für die Olefinmetathese bilden können. Neben Nitrosyl-molybdän-Komplexen der Zusammensetzung Mo^oCl₂(NO)₂L₂ [2,3], Mo^{II}Cl₂(NO)L₂ [4.5] und Mo⁰Cl(NO)(CO)₂L₂ [6] sowie den Halogenopentacarbonyl-molybdaten(0) [R4N] [Mo⁰(CO), Cl] [7] verkörpern die genannten Nitrido-Komplexe mit der allgemeinen Formel MoVINCl₃L₂ eine dritte und neue Gruppe von Metathesekatalvsatoren auf Molvbdän-Basis. Es handelt sich um die ersten metathese-aktiven Molybdän-Komplexe, in denen das Zentralatom der Ausgangsverbindung in einer höheren Oxydationsstufe als +2 vorliegt. Die Stammverbindung MoNCl₃ ist erstmals von Dehnicke et al. durch Reaktion von Mo(CO)₆ mit NCl₃ [8] bzw. aus MoCl₅ und ClN₃ [9] dargestellt worden. MoNCl₃ reagiert mit Donorliganden zu Komplexen der Zusammensetzung MoNCl₃L_n (L = Dipy, n = 1; L = Pyridin, n=3) [9,10]. Mit Tetraalkylammoniumchlorid ensteht dagegen der Tetrachloro-Komplex [R₄N] [MoNCl₄] (R = CH₃, C₂H₅) [8]. Von Chatt et al. wird

^{*}XI. Mitteilung, vgl. Ref. [6].

ein einfacher Weg zur Herstellung von $MoNCl_3L_2$ -Komplexen (L=1/2 Dipy, $OPPh_3$) aus $MoCl_4(CH_3CN)_2$, Trimethylsilylazid und dem entsprechenden Donorliganden L in THF bzw. Acetonitril angegeben [11]. Der Einsatz von Natriumazid für die Gewinnung von $MoNCl_3(Dipy)$ wird lediglich erwähnt.

Nach unseren Untersuchungen eröffnet die Reaktion von Tetrachloromolybdän(IV)-Komplexen $MoCl_4L_2$ ($L=CH_3CN$, C_2H_5CN) mit Natriumazid in Acetonitril einen denkbar einfachen Zugang zu $MoNCl_3L_2$ -Komplexen. Unter N_2 Entwicklung erhält man eine bei Raumtemperatur stabile, tiefrote Lösung, von der überschüssiges NaN_3 und gebildetes NaCl durch Filtration leicht abgetrennt werden können. Die Reaktion verläuft offenbar im Sinne einer 1/1-Umsetzung nach Gleichung 1. Der in Lösung zunächst gebildete Acetonitril-Nitrido-Komplex konnte nicht kristallin isoliert werden.

$$MoCl_4(CH_3CN)_2 + NaN_3 \rightarrow MoNCl_3(CH_3CN)_x + N_2 + NaCl$$
 (1)

$$MoNCl_3(CH_3CN)_x + 2 L \rightarrow MoNCl_3L_2 + x CH_3CN$$
 (2)

 $(L = 1/2 \text{ Dipy, OPPh}_3)$

$$MoNCl_3(CH_3CN)_x + Bu_4NCl \rightarrow [Bu_4N][MoNCl_4] + x CH_3CN$$
 (3)

Nach Zugabe der entsprechenden Liganden erhält man gemäss 2 und 3 die in der Literatur bereits erwähnten Komplexe MoNCl₃L₂ mit L = 1/2 Dipy und OPPh₃ bzw. das bisher noch nicht beschriebene [Bu₄N] [MoNCl₄] in kristalliner Form. Die luftbeständigen aber hydrolyseempfindlichen Verbindungen wurden durch Elementaranalyse und IR-Spektrum charakterisiert (vgl. Tabelle 1).

TABELLE 1 NITRIDO-MOLYBDÄN(VI)-KOMPLEXE

Nitrido-Komplex	Kristallfarbe	Charakteristische IR-Banden im Mo≡N-Bereich (cm ⁻¹) ^a	
MoNCl ₃ (Dipy) ^d MoNCl ₃ (OPPh ₃) ₂ [MoNCl ₄] [NBu ₄]	grauviolett hellbraun rotbraun	1010 ^b , 1020, 1035 1020, 1030 ^c , 1070 1010, 1032 ^c , 1065	

^a IR-Spektren in KBr. ^b Entspricht dem Wert der für MoNCl₃(Dipy) von Dehnicke angegebenen Bande [9]. ^c Entspricht den von Chatt für MoNCl₃(OPPh₃)₂ und [Et₄N] [MoNCl₄] angegebenen Werten [10]. ^d Dipy = 2,2'-Dipyridyl, OPPh₃, = Triphenylphosphinoxid, Bu = n-Butyl, Et = Ethyl.

Im Erwartungsbereich für die Mo≡N-Streckschwingung zwischen 1000 und 1100 cm⁻¹ treten bei allen Komplexen drei Banden mittlerer Intensität auf, von denen jeweils eine auch mit den in der Literatur angegebenen Werten übereinstimmt. Die Herkunft der beiden anderen IR-Absorptionen ist noch unklar.

Die Nitrido-Komplexe MoNCl₃(OPPh₃)₂ und [Bu₄N] [MoNCl₄] reagieren in Chlorbenzen mit 6 Äquivalenten EtAlCl₂ schnell zu dunkelbraunen, nicht vollständig homogenen Lösungen, die die Metathese von 2-Penten zu 2-Buten und 3-Hexen entsprechend Gleichung 4 mit vergleichsweise hoher Aktivität

TABELLE 2

METATHESEAKTIVITÄT VON NITRIDO-MOLYBDÄN(VI)-KOMPLEXEN IN KOMBINATION MIT ETHYLALUMINIUMDICHLORID GEGENÜBER 2-PENTEN BEI VERSCHIEDENEN REAKTIONS-BEDINGUNGEN

$(t_V$ = Katalysatorvorbildungszeit, t_R = Reaktionszeit, Umsatz zu 2-Buten und 3-Hexen, Lösungsmittel
Chlorbenzen, Molverhältnis [Mo]/[2-Penten] = 1/1000)

t _V t _R (min) (mi		Molverhaltnis	Umsatz 2-Penten (mol %)		
	(min)	[Mo]/[Al]	MoNCl ₃ (OPPh ₃) ₂	[MoNCl ₄][NBu ₄]	
15	2	1/6	29	27	
15	5	1/6	41	30	
15	15	1/6	45	44	
15	30	1/6	53	50	
15	5	1/12	51	44	
O	5	1/6	29	6	
5	5	1/6	29	25	
15	5	1/6	30	30	
90	5	1/6	18	34	
300 (5 h)	5	1/6	12	31	

katalysieren (vgl. Tabelle 2). Der thermodynamisch mögliche 2-Penten-Umsatz von 54% [12] wird bei einer Katalysatorvorbildungszeit t_v von 15 Minuten in

$$2 \text{ CH}_3 \text{CH} = \text{CHC}_2 \text{H}_5 \implies \text{CH}_3 \text{CH} = \text{CHCH}_3 + \text{C}_2 \text{H}_5 \text{CH} = \text{CHC}_2 \text{H}_5$$
 (4)
(46%) (27%) (27%)

beiden Systemen nach etwa 30 Minuten erhalten. Mit 12 Äquivalenten EtAlCl₂ bildet MoNCl₃(OPPh₃)₂ eine völlige homogene Lösung, in der bereits nach 5 Minuten Reaktionszeit t_R mit dem Olefin der Gleichgewichtsumsatz erreicht wird. Die Nitrido-Komplexe sind in ihrer Aktivität demnach den oben genannten MoCl₂(NO)₂L₂/EtAlCl₂-Katalysatoren gleichzusetzen [2,5]. Bemerkenswert ist die relativ hohe Anfangsgeschwindigkeit der 2-Penten-Umwandlung mit den Nitrido-Systemen (bei Mo/Al = 1/6 und t_R = 5 min, 27-32% Umsatz). Dass sich das Metathese-Gleichgewicht trotzdem erst nach ca. 30 Minuten einstellt, ist höchstwahrscheinlich einer Desaktivierung des Katalysators zuzuschreiben. Darauf weist auch das deutliche Nachlassen der Metatheseaktivität im System MoNCl₃(OPPh₃)₂/6 EtAlCl₂ bei Katalysatorvorbildungszeiten von 1.5 und 5 Stunden hin (vgl. Tabelle 2). Der Chelatkomplex MoNCl₃-(Dipy) reagiert unter vergleichbaren Bedingungen mit EtAlCl₂ zu einem unlöslichen schwarzbraunen Niederschlag, der metatheseinaktiv ist. Komplexe mit Chelatliganden sind offenbar, ähnlich wie bei den Nitrosyl-molybdän-Verbindungen [5], nicht zur Katalysatorbildung befähigt.

Die besondere Bedeutung der Nitrido-molybdän-Gruppierung für die Katalysatorfunktion wird durch die Tatsache unterstrichen, dass, wie wir nachgeprüft haben, die Verbindungen $MoCl_5$, $MoCl_4L_2$ ($L=PPh_3$, Pyridin, THF, C_2H_5CN), $MoOCl_3L_2$ ($L=THF,OPPh_3$) und $MoO_2Cl_2L_2$ ($L=OPPh_3$) mit $EtAlCl_2$ unter den gleichen Bedingungen keine nennenswert katalytisch aktiven Systeme bilden.

Die hohe Metatheseaktivität der Nitrido-Komplexe hängt entscheidend von der Wahl des Kokatalysators ab. So reagiert MoNCl₃(OPPh₃)₂ mit der Lewis-Säure AlCl₃ zu einer zwar homogenen, jedoch katalytisch inaktiven Lösung. Das reduzierend und Lewis-acid wirkende PhAlCl₂ ergibt mit dem gleichen Nitrido-Komplex eine braune Suspension, die die Metathese von 2-Penten katalysiert, allerdings mit erheblich geringerer Geschwindigkeit als bei Einsatz von EtAlCl₂. Nach 30 Minuten Reaktionszeit t_R (t_V = 15 min) sind erst 14% Umsatz zu registrieren. Dieses Verhalten deutet darauf hin dass neben einer Reduktion des Mo^{VI}NCl₃-Komplexes durch den RAlCl₂-Kokatalysator, auch die Art von R für die Bildung des Katalysatorkomplexes von Bedeutung sein könnte. Da letzterer auf Grund aller bisherigen Erkenntnisse über den Ablauf der Olefinmetathese ein Carben-Komplex sein muss (vgl. Zit. in [13]), wäre als Katalysatorbildungsreaktion eine Organylierung des MoNCl₃-Präkatalysators mit nachfolgender α -H-Abspaltung unter Reduktion zu einem aktiven Nitrido-carbenmolybdän(IV)-Komplexfragment entsprechend Gleichung 5 denkbar. Eine α -H-Abspaltung als Möglichkeit zur

$$Mo^{VI}NCl_3L_2 + (2 + x) C_2H_5AlCl_2 \rightarrow [Mo^{IV}N(CHCH_3)Cl \cdot x C_2H_5AlCl_2] + 2[L \cdot AlCl_3] + C_2H_6$$
 (5)

Bildung des katalytisch aktiven Carben-Komplexes ist in der Literatur wiederholt diskutiert und für einige Katalysatorsysteme experimentell weitgehend gesichert worden [14—17].

Die angenommene Formierung eines metatheseaktiven $Mo^{IV}N(CHCH_3)Cl$ -Komplexes steht in Analogie zu dem von Schrock et al. beschriebenen und vollständig charakterisierten, katalytisch aktiven Oxy-carbenwolfram(IV)-Komplex $W(CHC(CH_3)_3)(PEt_3)(O)Cl_2$ [18]. Die Notwendigkeit der Anwesenheit eines harten π -Donorliganden wie O^{2-} wurde auch für eine Reihe von anderen W-haltigen Metathesekatalysatoren nachgewiesen (vgl. Zit. in [19]). Im Falle des Molybdäns scheint jedoch an Stelle des O^{2-} -Liganden der noch stärker π -basische N^{3-} -Ligand erforderlich zu sein.

Die Untersuchungen werden fortgesetzt.

Darstellungsvorschriften

MoNCl₃(Dipy): 4.0 g MoCl₄(C₂H₅CN)₂ [20] und 0.9 g NaN₃ werden unter Argon in 80 ml Acetonitril bis zur Beendigung der Stickstoffentwicklung gerührt. Die tiefrote Lösung wird filtriert und mit 2.0 g 2,2'-Dipyridyl, gelöst in 20 ml Acetonitril, versetzt. Aus der resultierenden braunroten Lösung fällt ein rotbrauner, kristalliner Niederschlag aus. Die Fällung wird durch Kühlen auf —30°C vervollständigt, das Reaktionsprodukt abfiltriert, mit wenig CH₂Cl₂ sowie Hexan gewaschen und Anschliessend im Vakuum bei —50°C getrocknet. Die im trockenen Zustand grauviolette Substanz ist schwerlöslich in CH₂Cl₂, Acetonitril und THF, unlöslich in Ether und Hexan und konnte nicht unzersetzt umkristallisiert werden. Ausbeute: 4.1 g (93.6%). Analyse: C, 28.14; H, 2.28; N, 10.20; Cl, 31.13. Ber.: C, 32.33; H, 2.71; N, 11.31; Cl, 28.63%.

MoNCl₃(OPPh₃)₂: 3.1 g MoCl₄(CH₃CN)₂ [20] werden in gleicher Weise in 50 ml Acetonitril mit 0.76 g NaN₃ umgesetzt und die filtrierte tiefrote Lösung langsam unter Rühren mit einer Lösung von 6.0 g Triphenylphosphinoxid in 25 ml Acetonitril versetzt. Es fällt ein hellbrauner, kristalliner Niederschlag aus, der

nach Kühlen auf -30°C abfiltriert, mit Ether und Hexan gewaschen und im Vakuum bei 50°C getrocknet wird. Die hellbraune Substanz ist kurze Zeit an der Luft handhabbar, löst sich gut in CH2Cl2, wenig in Acetonitril und THF und ist unlöslich in Ether und Hexan. Die Umkristallisation erfolgt durch Lösen in CH₂Cl₂ und Fällen mit Hexan. Ausbeute: 5.4 g (72.1%). Analyse: C, 55.98; H, 4.55; N, 1.67; Cl, 13.66. Ber.: C, 55.95; H, 3.91; N, 1.81; Cl, 13.76%.

 $[Bu_4N][MoNCl_4]: 4.5 \text{ g MoCl}_4(C_2H_5CN)_2$ werden analog in 110 ml Acetonitril mit 1.0 g NaN3 umgesetzt. Zu der filtrierten tiefroten Lösung tropft man eine Lösung von 3.9 g Tetrabutylammoniumchlorid in 50 ml Acetonitril und rührt 30 Minuten. Nach erneuter Filtration wird das Lösungsmittel im Vakuum vollständig abgezogen. Den Rückstand löst man in CH₂Cl₂ und fällt vorsichtig mit Hexan (Gefahr der Ölbildung). Das Reaktionsprodukt scheidet sich dabei in Form rotbrauner, glänzender, plättchenförmiger Kristalle ab. Die Substanz wird abfiltriert, zweimal mit wenig CH₂Cl₂/Hexan (1/3), anschliessend mit reinem Hexan gewaschen und im Vakuum bei 50°C getrocknet. Die Verbindung ist hydrolyseempfindlich, gut löslich in CH2 Cl2, Acetonitril und THF, wenig löslich in Ether und unlöslich in Hexan. Die Umkristallisation erfolgt durch Lösen in CH₂Cl₂ und Fällen mit Hexan. Ausbeute: 4.2 g (65.7%). Analyse: C, 38.52; H, 8.00; N, 6.68; Cl, 29.55. Ber.: C, 38.88; H, 7.34; N, 5.67; Cl, 28.70%.

Durchführung der Metatheseversuche

In einem Schlenckgefäss werden unter sorgfältigem Sauerstoff- und Feuchtigkeitsausschluss 0.03 mMol des Mo-Komplexes in 1.5 ml Chlorbenzen suspendiert und mit der entsprechenden Menge des Kokatalysators, gelöst in 1.5 ml des gleichen Lösungsmittels, unter Rühren versetzt. Nach einer entsprechenden Katalysatorvorbildungszeit tv werden 3 ml 2-Penten injiziert. Durch Zugabe von 0.2 ml Isoamylalkohol wird die Katalyse abgebrochen. Die Bestimmung des Umsatzes an 2-Penten erfolgte gaschromatographisch über das gebildete 3-Hexen.

Literatur

- 1 K. Dehnicke und J. Strähle, Angew. Chem., 93 (1981) 451.
- 2 E.A. Zuech, J. Chem. Soc., Chem. Commun., (1968) 1182.
- 3 R. Taube und K. Seyferth, Z. Chem., 13 (1973) 300.
- 4 R. Taube und K. Seyferth, Z. Chem., 14 (1974) 284.
- 5 R. Taube und K. Seyferth, Z. Anorg. Allg. Chem., 437 (1977) 213.
- 6 R. Taube und K. Seyferth, J. Organometal. Chem., 229 (1982) 275.
- 7 G. Doyle, J. Catal., 30 (1973) 118.
- 8 K. Dehnicke, U. Weiher und J. Strähle, Z. Naturforsch. B, 32 (1977) 1484.
- 9 K. Dehnicke und J. Strähle, Z. Anorg. Allg. Chem., 339 (1965) 171.
- 10 K. Dehnicke, K. Prinz, W. Kafitz und R. Kujanek, Liebigs Ann. Chem., 1 (1981) 20.
- 11 J. Chatt und J.R. Dilworth, J. Chem. Soc., Chem. Commun., (1975) 983.
- 12 W.B. Hughes, J. Amer. Chem. Soc., 92 (1970) 532. 13 N. Calderon, J.P. Lawrence und E.A. Ofstead, Advan. Organometal. Chem., 17 (1979) 449.
- 14 J.P. Souflet, D. Commercuc und Y. Chauvin, C.R. Akad, Sci. Paris Ser. C, 276 (1973) 169.
- 15 E.L. Muetterties, Inorg. Chem., 14 (1975) 951.
- 16 R.H. Grubbs und C.R. Hoppin, J. Chem. Soc., Chem. Commun., (1977) 634.
- 17 E.L. Muetterties und E.L. Band, J. Amer. Chem. Soc., 102 (1980) 6572.
- 18 J.H. Wengrovius, R.R. Schrock, M.R. Churchill, J.R. Missert und W.J. Youngs, J. Amer. Chem. Soc., 102 (1980) 4515.
- 19 J.D. Fellmann, G.A. Rupprecht, L.W. Messerle und R.R. Schrock, J. Amer. Chem. Soc., 103 (1981)
- 20 E.A. Allen, B.J. Brisdon und G.W.A. Fowles, J. Chem. Soc., (1964) 4531.