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Summary

(n®-CsHs)FeH(CO)(Ph,PCH,CH,PPh,), formed in the LiAlH, reduction of
the cation of [(n3-C;H;)Fe(Ph,PCH,CH,PPh,)CO] PF,, can be converted into
[(n®-CsH)FeH(CO)]1,(Ph,PCH,CH,PPh,), which undergoes thermal and photo-
chemical elimination of hydrogen.

18 Electron cyclopentadienyl-organotransition metal cations undergo hy-
dride addition at the cyclopentadienyl ligand in electron-poor complexes, i.e.
when the other ligands are electron withdrawing. If the cation is electron-rich,
however, attack at cyclopentadienyl is disfavoured |1]. We report here that
hydride reduction of the cation 1 leads to the hydride 2. The dimetallic com-
plex 3, formed by phosphine loss from 2, undergoes elimination of hydrogen
both thermally and photochemically. There are a number of examples of ther-
mal dinuclear elimination of hydrogen. These are thought to proceed by forma-
tion of a hydride-bridged species with concomitant loss of dihydrogen from
either one metal centre in the intact dinuclear species | 2] or from a mononu-
clear dihydride formed by cleavage of the hydride-bridged intermediate [3]. A
key feature of such dinuclear species is the presence of a metal—metal bond
and ligands that can be easily eliminated. The process of synchronous elimina-
tion of dihydrogen from two metal-hydride centres in a dinuclear species has
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not to our knowledge been reported, although a possible analogue has recently
been published [4].

The reduction of 1 with LiAlH, in dichloromethane/tetrahydrofuran (1/1)
at --78°C produces the iron hydride complex 2 (70%). Complex 2 was charac-
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terised by IR (Nujol); »(CO) 1910 cem !5 'H NMR [C D¢} 7 5.90 (CHq, d,
J(PH) 1.3 Hz), 23.3 (FeH, d, J(PH) 74 Hz); *'P NMR & (relative to external
H;P0,) 84.8, —13.5, and gave satisfactory elemental analyses. Hydride addition
to 1 proceeds either by direct attack on the metal or via initial attack on the
carbonyl Ligand followed by hydrogen migration to the metal. The third alter-
native, exo-attack on the cyclopentadieny! ring with subsequent transfer of the
endo-hydrogen to the metal, is incompatible with the observed formation of
the metal deuteride corresponding to 2 when 1 is reduced with LiAID, . Phos-
phine substitution occurs when 2 is dissolved in toluene leading to the forma-
tion of the known dimetallic complex 3 | 5] and diphos (Ph,PCH,CH,PPh,).
Complex 3 may also be prepared by reaction of 2 with (n*-C.H¢)Fe(CO),H.
This substitution reaction is reversible since 3 in the presence of excess diphos
produces 2.

On warming a toluene solution of 3 to 90°C in the absence of light the green
diiron complex 4 {6} and an equimolar quantity of H, are produced together
with a small amount of (n°-C;H;)Fe(diphos)H. Hydrogen was identified by ro-
tational Raman spectroscopy [7]}. Photolysis of 3 also led to the formation of 4.

Under similar conditions 4 is also produced thermally from 2. In the pres-
ence of excess diphos, however, to prevent the formation of 3, 2 does not
undergo dehydrogenation. Compound 3 is coordinatively and electronically sat-
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urated andthus is unable to form a bridging hydride intermediate which could
lead to elimination from one metal centre in a dinuclear species. These facts
suggest that dihydrogen is eliminated from 3 in a synchronous manner involv-
ing both metal centres.
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