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Summary

The thermal isomerizations of B-(3-hexyl)bis(bicyclo[2.2.2]octyl)borane and
B-(3-hexyl)bis(bicyclo[2.2.1]heptyl)borane were compared with that of B-(3-
hexyl)bis(2,5-dimethylcyclohexyl)borane at 150°C in diglyme. B-(3-Hexy!l)bis(bi-
cyclo[2.2.2] octyl)borane isomerizes approximately 3 times faster than B-(3-
hexyl)bis(2,5-dimethylcyclohexyl)borane and nearly 60 times more rapidly than
B-(3-hexyl)bis(bicyclo{ 2.2.1]heptyl)borane and also yields a 100% equilibrium
boron distribution on C(1) in just 15 minutes, both characteristics making the
thermal isomerization of organoboranes a more attractive synthetic route for
the conversion of internal acyclic olefins into terminal olefins and their
derivatives.

We previously reported [1] that at 150°C B-(3-hexyl)bis(2,5-dimethylcyclo-
hexyl)borane (I) isomerizes approximately 100 times more rapidly than 3-hexyl-
dicyclohexylborane (II), 500 times more rapidly than tris(3-hexyl)borane (III)
and about 4,000 times faster than B-3-hexyl-9-BBN (IV). We rationalized our re-
sults in terms of increasing steric crowding in the organoboranes undergoing the
isomerization and subsequently demonstrated the importance of steric factors
by a careful examination of the thermal isomerization of various 3-hexyldicyclo-
alkylboranes [2].

Encouraged by these findings, we decided to explore the possibility of increas-
ing the rates by incorporating bulky bicycloalkyl moieties into the trialkylborane,
moieties that are structurally similar and possibly sterically more demanding than

NNO0_20QaV IR/INNNN—NONNNIRN] NN ® 1982 Fleavier Senmania 8 A



C38

1 2 3 4 S5 6 1 2 3 4 S 5] 1 2 3 4 S5 6 1 2 3 4 5 [}
CHBCHZCHCHZCHZCH3 CHBCHZCHCHZCHZCH3 CH,CH CHCH CH,CH, CH. 4CH, CHCH CH CH,

| I
é N (j \(j (j/ \[j
R R
(R = 3-hexyl)

(tv) (hn )
the moieties in the trialkylborane (I). The two choices we made for this study
were: B-(3-hexyl)bis(bicyclo[2.2.1]heptyl)borane (V) and B-(3-hexyl)bis(bi-
cyclo[2.2.2] octyl)borane (VI).
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Accordingly, we hydroborated cis-3-hexene with bis(bicyclo[2.2.1]heptyl)-
borane and bis(bicyclo[2.2.2] octyl)borane and obtained the organoboranes V
and VI respectively. We then examined the thermal isomerization of these two
organoboranes under our standard conditions, 150°C in diglyme.

It is indeed a pleasure to report that B-(3-hexyl)bis(bicyclo[2.2.2] octy])-
borane (VI) isomerizes even faster than B-(3-hexyl)bis(2,5-dimethylcyclohexyl)-
borane (I), approximately three times faster than this derivative in the initial
phase of the reaction and nearly 60 times faster than B-(3-hexyl)bis(bicyclo-
[2.2.1]heptyl)borane (V, Fig. 1). Apparently, the more rigid nature of the bi-
cyclo[2.2.1}heptyl structure decreases its steric requirements and decreases the
rate of isomerization. Earlier we observed that 3-hexyldicyclopentylborane
undergoes isomerization at a rate considerably slower than the corresponding 3-
hexyldicyclohexylborane, presumably for the same reason [2].

We further found that both B-(3-hexyl)bis(bicyclo[2.2.2]octyl)borane (VI)
and B-(3-hexyl)bis(bicyclo[2.2.1]heptyl)borane (V) yield an essentially quanti-
tative boron distribution on C(1) at the completion of isomerization. However,
organoborane VI takes a significantly shorter time for completion of the isomer-
ization than does organoborane V (Table 1).

B-(3-Hexyl)bis(bicyclo[ 2.2.2] octyl)borane (VI) was prepared by hydroborat-
ing cis-3-hexene with bis(bicyclo[2.2.2]octyl)borane. This in turn was obtained
cleanly by hydroborating bicyclo[2.2.2]Joctene with BH;-SMe, in THF at 25°C
in 5 h. The reaction here stops cleanly at the dialkylborane stage. On the other
hand, B-(3-hexyl)bis(bicyclo[2.2.1]heptyl)borane (V) was prepared by reduc-
tion of bis(bicyclo[ 2.2.1]heptyl)bromoborane using LiAlH, in the presence of
cis-3-hexene [3]. Hydroboration of bicyclo[2.2.1]heptene with H,B-SMe, pro-
ceeds past the R, BH stage to R;B, further evidence for the greater steric require-
ments of the more flexible bicyclo[2.2.2]octyl system.

The following procedure is representative for thermal isomerization. Into an
oven-dried, 50-ml, round-bottom flask flushed with N, and fitted with a reflux
condenser and connecting tube, 3.64 g of B-(3-hexyl)bis(bicyclo[ 2.2.2]octyl)-
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Fig. 1. A comparison of the rates of thermal isomerization.

TABLE 1

THERMAL ISOMERIZATION ® OF ORGANOBORANES

t1/2 b
(s)

Organoborane

Time to
reach equilibrium

(h)

% Composition of hexanols at equilibrium

1-ol 2-0l 3-0l

CHLCH,CHCH,CH,CH, 60

St

CH3CH2THCH2CH2CH3 3
i B :[l

)
CH3CH,CHCH,CH,CHy 1

EONS

(vi)

24

0.5

0.25

100 0 0
100 0 0
100 0 0

@ All thermal isomerizations were done at 150 * 2°¢C in diglyme.

b ty;, was determined graphically from

kinetic data obtained in each case; it indicates the time required for the disappearance of 50% of the starting

3-hexylborane.
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borane (10 mmol) was taken and to that 10 m! of dry diglyme was added. The
resulting mixture was heated in an oil bath at 150 + 2°C whose temperature was
constantly maintained using a Thermowatch. Then 1-ml aliquots were withdrawn
at regular intervals of time and oxidized using 2 ml of 3 M NaOH and 2 ml of
30% H,0, by astandard procedure [4]. The alcohols were then extracted into
ether, dried over 3 A molecular sieves and analyzed by GC; The standard condi-
tions used for GC analysis were: 10% Carbowax 1540 on Chromosorb W (1/8" X
12') and isothermal analysis at 70°C (Varian 1200 FID GC). A nitrogen atmo-
sphere was maintained until the completion of oxidation.

The present study therefore brings out a very rapid and highly efficient
synthetic route for the conversion of internal acyclic olefins into terminal
olefins and their derivatives (Scheme 1).
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We have thus far systematically examined the thermal isomerizations of 3-
hexyldialkylboranes, employing a wide variety of dialkylboranes and clearly de-
monstrated the influence of steric factors on the rate and equilibrium of isomer-
ization. Out of this study a gradual pattern has emerged in the migratory apti-
tude of these dialkylboranes, with bis(bicyclo[ 2.2.2]octyl)borane being the most
powerful. We hope to examine the thermal isomerization of this new dialkyl-
borane on a number of representative olefinic structures in the future in order to
precisely understand the generality of its synthetic usefulness.
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